numam-dpdk/app/test/test_cryptodev_blockcipher.c
Akhil Goyal 2a440d6ab3 cryptodev: hide symmetric session structure
Structure rte_cryptodev_sym_session is moved to internal
headers which are not visible to applications.
The only field which should be used by app is opaque_data.
This field can now be accessed via set/get APIs added in this
patch.
Subsequent changes in app and lib are made to compile the code.

Signed-off-by: Akhil Goyal <gakhil@marvell.com>
Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Kai Ji <kai.ji@intel.com>
Tested-by: Gagandeep Singh <g.singh@nxp.com>
Tested-by: David Coyle <david.coyle@intel.com>
Tested-by: Kevin O'Sullivan <kevin.osullivan@intel.com>
2022-10-04 22:29:01 +02:00

1213 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015-2017 Intel Corporation
*/
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_pause.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include "test.h"
#include "test_cryptodev.h"
#include "test_cryptodev_blockcipher.h"
#include "test_cryptodev_aes_test_vectors.h"
#include "test_cryptodev_des_test_vectors.h"
#include "test_cryptodev_hash_test_vectors.h"
static int
verify_algo_support(const struct blockcipher_test_case *t,
const uint8_t dev_id, const uint32_t digest_len)
{
int ret = 0;
const struct blockcipher_test_data *tdata = t->test_data;
struct rte_cryptodev_sym_capability_idx cap_idx;
const struct rte_cryptodev_symmetric_capability *capability;
if (t->op_mask & BLOCKCIPHER_TEST_OP_CIPHER) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
cap_idx.algo.cipher = tdata->crypto_algo;
capability = rte_cryptodev_sym_capability_get(dev_id, &cap_idx);
if (capability == NULL)
return -1;
if (cap_idx.algo.cipher != RTE_CRYPTO_CIPHER_NULL &&
!(t->test_data->wrapped_key))
ret = rte_cryptodev_sym_capability_check_cipher(capability,
tdata->cipher_key.len,
tdata->iv.len);
if (ret != 0)
return -1;
}
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap_idx.algo.auth = tdata->auth_algo;
capability = rte_cryptodev_sym_capability_get(dev_id, &cap_idx);
if (capability == NULL)
return -1;
if (cap_idx.algo.auth != RTE_CRYPTO_AUTH_NULL)
ret = rte_cryptodev_sym_capability_check_auth(capability,
tdata->auth_key.len,
digest_len,
0);
if (ret != 0)
return -1;
}
return 0;
}
static int
test_blockcipher_one_case(const struct blockcipher_test_case *t,
struct rte_mempool *mbuf_pool,
struct rte_mempool *op_mpool,
struct rte_mempool *sess_mpool,
uint8_t dev_id,
char *test_msg)
{
struct rte_mbuf *ibuf = NULL;
struct rte_mbuf *obuf = NULL;
struct rte_mbuf *iobuf;
struct rte_crypto_sym_xform *cipher_xform = NULL;
struct rte_crypto_sym_xform *auth_xform = NULL;
struct rte_crypto_sym_xform *init_xform = NULL;
struct rte_crypto_sym_op *sym_op = NULL;
struct rte_crypto_op *op = NULL;
struct rte_cryptodev_info dev_info;
void *sess = NULL;
int status = TEST_SUCCESS;
const struct blockcipher_test_data *tdata = t->test_data;
uint8_t cipher_key[tdata->cipher_key.len];
uint8_t auth_key[tdata->auth_key.len];
uint32_t buf_len = tdata->ciphertext.len;
uint32_t digest_len = tdata->digest.len;
char *buf_p = NULL;
uint8_t src_pattern = 0xa5;
uint8_t dst_pattern = 0xb6;
uint8_t tmp_src_buf[MBUF_SIZE];
uint8_t tmp_dst_buf[MBUF_SIZE];
uint32_t pad_len;
int nb_segs = 1;
uint32_t nb_iterates = 0;
rte_cryptodev_info_get(dev_id, &dev_info);
uint64_t feat_flags = dev_info.feature_flags;
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) {
if (!(feat_flags & RTE_CRYPTODEV_FF_SYM_SESSIONLESS)) {
printf("Device doesn't support sessionless operations "
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"SKIPPED");
return TEST_SKIPPED;
}
}
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_DIGEST_ENCRYPTED) {
if (!(feat_flags & RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED)) {
printf("Device doesn't support encrypted digest "
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"SKIPPED");
return TEST_SKIPPED;
}
}
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SG) {
uint64_t oop_flag = RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT;
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP) {
if (!(feat_flags & oop_flag)) {
printf("Device doesn't support out-of-place "
"scatter-gather in input mbuf. "
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"SKIPPED");
return TEST_SKIPPED;
}
} else {
if (!(feat_flags & RTE_CRYPTODEV_FF_IN_PLACE_SGL)) {
printf("Device doesn't support in-place "
"scatter-gather mbufs. "
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"SKIPPED");
return TEST_SKIPPED;
}
}
nb_segs = 3;
}
if (!!(feat_flags & RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY) ^
tdata->wrapped_key) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"SKIPPED");
return TEST_SKIPPED;
}
if (global_api_test_type == CRYPTODEV_RAW_API_TEST &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP)) {
printf("Device doesn't support raw data-path APIs. "
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "SKIPPED");
return TEST_SKIPPED;
}
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP) {
uint64_t oop_flags = RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT;
if (!(feat_flags & oop_flags)) {
printf("Device doesn't support out-of-place operations."
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"SKIPPED");
return TEST_SKIPPED;
}
if (global_api_test_type == CRYPTODEV_RAW_API_TEST) {
printf("Raw Data Path APIs do not support OOP, "
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "SKIPPED");
status = TEST_SKIPPED;
goto error_exit;
}
}
if (tdata->cipher_key.len)
memcpy(cipher_key, tdata->cipher_key.data,
tdata->cipher_key.len);
if (tdata->auth_key.len)
memcpy(auth_key, tdata->auth_key.data,
tdata->auth_key.len);
/* Check if PMD is capable of performing that test */
if (verify_algo_support(t, dev_id, digest_len) < 0) {
RTE_LOG(DEBUG, USER1,
"Device does not support this algorithm."
"Test Skipped.\n");
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "SKIPPED");
return TEST_SKIPPED;
}
/* preparing data */
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH)
buf_len += digest_len;
pad_len = RTE_ALIGN(buf_len, 16) - buf_len;
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED)
buf_len += pad_len;
/* for contiguous mbuf, nb_segs is 1 */
ibuf = create_segmented_mbuf(mbuf_pool,
tdata->ciphertext.len, nb_segs, src_pattern);
if (ibuf == NULL) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: %s",
__LINE__, "Cannot create source mbuf");
status = TEST_FAILED;
goto error_exit;
}
/* only encryption requires plaintext.data input,
* decryption/(digest gen)/(digest verify) use ciphertext.data
* to be computed
*/
if (t->op_mask & BLOCKCIPHER_TEST_OP_ENCRYPT)
pktmbuf_write(ibuf, 0, tdata->plaintext.len,
tdata->plaintext.data);
else
pktmbuf_write(ibuf, 0, tdata->ciphertext.len,
tdata->ciphertext.data);
buf_p = rte_pktmbuf_append(ibuf, digest_len);
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_VERIFY)
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED)
rte_memcpy(buf_p,
tdata->ciphertext.data + tdata->ciphertext.len,
digest_len);
else
rte_memcpy(buf_p, tdata->digest.data, digest_len);
else
memset(buf_p, 0, digest_len);
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED) {
buf_p = rte_pktmbuf_append(ibuf, pad_len);
if (!buf_p) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__,
"No room to append mbuf");
status = TEST_FAILED;
goto error_exit;
}
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_VERIFY) {
const uint8_t *temp_p = tdata->ciphertext.data +
tdata->ciphertext.len +
digest_len;
rte_memcpy(buf_p, temp_p, pad_len);
} else
memset(buf_p, 0xa5, pad_len);
}
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP) {
obuf = rte_pktmbuf_alloc(mbuf_pool);
if (!obuf) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__,
"Allocation of rte_mbuf failed");
status = TEST_FAILED;
goto error_exit;
}
memset(obuf->buf_addr, dst_pattern, obuf->buf_len);
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED)
buf_p = rte_pktmbuf_append(obuf, buf_len + pad_len);
else
buf_p = rte_pktmbuf_append(obuf, buf_len);
if (!buf_p) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__,
"No room to append mbuf");
status = TEST_FAILED;
goto error_exit;
}
memset(buf_p, 0, buf_len);
}
/* Generate Crypto op data structure */
op = rte_crypto_op_alloc(op_mpool, RTE_CRYPTO_OP_TYPE_SYMMETRIC);
if (!op) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: %s",
__LINE__, "Failed to allocate symmetric crypto "
"operation struct");
status = TEST_FAILED;
goto error_exit;
}
sym_op = op->sym;
iterate:
if (nb_iterates) {
struct rte_mbuf *tmp_buf = ibuf;
ibuf = obuf;
obuf = tmp_buf;
rte_pktmbuf_reset(ibuf);
rte_pktmbuf_reset(obuf);
rte_pktmbuf_append(ibuf, tdata->ciphertext.len);
/* only encryption requires plaintext.data input,
* decryption/(digest gen)/(digest verify) use ciphertext.data
* to be computed
*/
if (t->op_mask & BLOCKCIPHER_TEST_OP_ENCRYPT)
pktmbuf_write(ibuf, 0, tdata->plaintext.len,
tdata->plaintext.data);
else
pktmbuf_write(ibuf, 0, tdata->ciphertext.len,
tdata->ciphertext.data);
buf_p = rte_pktmbuf_append(ibuf, digest_len);
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_VERIFY)
rte_memcpy(buf_p, tdata->digest.data, digest_len);
else
memset(buf_p, 0, digest_len);
memset(obuf->buf_addr, dst_pattern, obuf->buf_len);
buf_p = rte_pktmbuf_append(obuf, buf_len);
if (!buf_p) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__,
"No room to append mbuf");
status = TEST_FAILED;
goto error_exit;
}
memset(buf_p, 0, buf_len);
}
sym_op->m_src = ibuf;
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP) {
sym_op->m_dst = obuf;
iobuf = obuf;
} else {
sym_op->m_dst = NULL;
iobuf = ibuf;
}
/* sessionless op requires allocate xform using
* rte_crypto_op_sym_xforms_alloc(), otherwise rte_zmalloc()
* is used
*/
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) {
uint32_t n_xforms = 0;
if (t->op_mask & BLOCKCIPHER_TEST_OP_CIPHER)
n_xforms++;
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH)
n_xforms++;
if (rte_crypto_op_sym_xforms_alloc(op, n_xforms)
== NULL) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__, "Failed to "
"allocate space for crypto transforms");
status = TEST_FAILED;
goto error_exit;
}
} else {
cipher_xform = rte_zmalloc(NULL,
sizeof(struct rte_crypto_sym_xform), 0);
auth_xform = rte_zmalloc(NULL,
sizeof(struct rte_crypto_sym_xform), 0);
if (!cipher_xform || !auth_xform) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__, "Failed to "
"allocate memory for crypto transforms");
status = TEST_FAILED;
goto error_exit;
}
}
/* preparing xform, for sessioned op, init_xform is initialized
* here and later as param in rte_cryptodev_sym_session_create() call
*/
if (t->op_mask == BLOCKCIPHER_TEST_OP_ENC_AUTH_GEN) {
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) {
cipher_xform = op->sym->xform;
auth_xform = cipher_xform->next;
auth_xform->next = NULL;
} else {
cipher_xform->next = auth_xform;
auth_xform->next = NULL;
init_xform = cipher_xform;
}
} else if (t->op_mask == BLOCKCIPHER_TEST_OP_AUTH_VERIFY_DEC) {
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) {
auth_xform = op->sym->xform;
cipher_xform = auth_xform->next;
cipher_xform->next = NULL;
} else {
auth_xform->next = cipher_xform;
cipher_xform->next = NULL;
init_xform = auth_xform;
}
} else if (t->op_mask == BLOCKCIPHER_TEST_OP_AUTH_GEN_ENC) {
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) {
auth_xform = op->sym->xform;
cipher_xform = auth_xform->next;
cipher_xform->next = NULL;
} else {
auth_xform->next = cipher_xform;
cipher_xform->next = NULL;
init_xform = auth_xform;
}
} else if (t->op_mask == BLOCKCIPHER_TEST_OP_DEC_AUTH_VERIFY) {
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) {
cipher_xform = op->sym->xform;
auth_xform = cipher_xform->next;
auth_xform->next = NULL;
} else {
cipher_xform->next = auth_xform;
auth_xform->next = NULL;
init_xform = cipher_xform;
}
} else if ((t->op_mask == BLOCKCIPHER_TEST_OP_ENCRYPT) ||
(t->op_mask == BLOCKCIPHER_TEST_OP_DECRYPT)) {
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS)
cipher_xform = op->sym->xform;
else
init_xform = cipher_xform;
cipher_xform->next = NULL;
} else if ((t->op_mask == BLOCKCIPHER_TEST_OP_AUTH_GEN) ||
(t->op_mask == BLOCKCIPHER_TEST_OP_AUTH_VERIFY)) {
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS)
auth_xform = op->sym->xform;
else
init_xform = auth_xform;
auth_xform->next = NULL;
} else {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: %s",
__LINE__, "Unrecognized operation");
status = TEST_FAILED;
goto error_exit;
}
/*configure xforms & sym_op cipher and auth data*/
if (t->op_mask & BLOCKCIPHER_TEST_OP_CIPHER) {
cipher_xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
cipher_xform->cipher.algo = tdata->crypto_algo;
if (t->op_mask & BLOCKCIPHER_TEST_OP_ENCRYPT)
cipher_xform->cipher.op =
RTE_CRYPTO_CIPHER_OP_ENCRYPT;
else
cipher_xform->cipher.op =
RTE_CRYPTO_CIPHER_OP_DECRYPT;
cipher_xform->cipher.key.data = cipher_key;
cipher_xform->cipher.key.length = tdata->cipher_key.len;
cipher_xform->cipher.iv.offset = IV_OFFSET;
cipher_xform->cipher.dataunit_len = tdata->xts_dataunit_len;
if (tdata->crypto_algo == RTE_CRYPTO_CIPHER_NULL)
cipher_xform->cipher.iv.length = 0;
else
cipher_xform->cipher.iv.length = tdata->iv.len;
sym_op->cipher.data.offset = tdata->cipher_offset;
sym_op->cipher.data.length = tdata->ciphertext.len -
tdata->cipher_offset;
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED) {
sym_op->cipher.data.length += tdata->digest.len;
sym_op->cipher.data.length += pad_len;
}
rte_memcpy(rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET),
tdata->iv.data,
tdata->iv.len);
}
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH) {
uint32_t digest_offset = tdata->ciphertext.len;
auth_xform->type = RTE_CRYPTO_SYM_XFORM_AUTH;
auth_xform->auth.algo = tdata->auth_algo;
auth_xform->auth.key.length = tdata->auth_key.len;
auth_xform->auth.key.data = auth_key;
auth_xform->auth.digest_length = digest_len;
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_GEN) {
auth_xform->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
sym_op->auth.digest.data = pktmbuf_mtod_offset
(iobuf, digest_offset);
sym_op->auth.digest.phys_addr =
pktmbuf_iova_offset(iobuf,
digest_offset);
} else {
auth_xform->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
sym_op->auth.digest.data = pktmbuf_mtod_offset
(sym_op->m_src, digest_offset);
sym_op->auth.digest.phys_addr =
pktmbuf_iova_offset(sym_op->m_src,
digest_offset);
}
sym_op->auth.data.offset = tdata->auth_offset;
sym_op->auth.data.length = tdata->ciphertext.len -
tdata->auth_offset;
}
/**
* Create session for sessioned op. For mbuf iteration test,
* skip the session creation for the second iteration.
*/
if (!(t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS) &&
nb_iterates == 0) {
sess = rte_cryptodev_sym_session_create(dev_id, init_xform,
sess_mpool);
if (sess == NULL) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "UNSUPPORTED");
status = TEST_SKIPPED;
goto error_exit;
}
if (!sess || status < 0) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__,
"Session creation failed");
status = TEST_FAILED;
goto error_exit;
}
/* attach symmetric crypto session to crypto operations */
rte_crypto_op_attach_sym_session(op, sess);
}
debug_hexdump(stdout, "m_src(before):",
sym_op->m_src->buf_addr, sym_op->m_src->buf_len);
rte_memcpy(tmp_src_buf, sym_op->m_src->buf_addr,
sym_op->m_src->buf_len);
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP) {
debug_hexdump(stdout, "m_dst(before):",
sym_op->m_dst->buf_addr, sym_op->m_dst->buf_len);
rte_memcpy(tmp_dst_buf, sym_op->m_dst->buf_addr,
sym_op->m_dst->buf_len);
}
/* Process crypto operation */
if (global_api_test_type == CRYPTODEV_RAW_API_TEST) {
uint8_t is_cipher = 0, is_auth = 0;
if (t->op_mask & BLOCKCIPHER_TEST_OP_CIPHER)
is_cipher = 1;
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH)
is_auth = 1;
process_sym_raw_dp_op(dev_id, 0, op, is_cipher, is_auth, 0,
tdata->iv.len);
} else {
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: %s",
__LINE__, "Error sending packet for encryption");
status = TEST_FAILED;
goto error_exit;
}
op = NULL;
while (rte_cryptodev_dequeue_burst(dev_id, 0, &op, 1) == 0)
rte_pause();
if (!op) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: %s",
__LINE__, "Failed to process sym crypto op");
status = TEST_FAILED;
goto error_exit;
}
}
debug_hexdump(stdout, "m_src(after):",
sym_op->m_src->buf_addr, sym_op->m_src->buf_len);
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP)
debug_hexdump(stdout, "m_dst(after):",
sym_op->m_dst->buf_addr, sym_op->m_dst->buf_len);
/* Verify results */
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
if ((t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_VERIFY) &&
(op->status == RTE_CRYPTO_OP_STATUS_AUTH_FAILED))
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: Digest verification failed "
"(0x%X)", __LINE__, op->status);
else
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: Operation failed "
"(0x%X)", __LINE__, op->status);
status = TEST_FAILED;
goto error_exit;
}
if (t->op_mask & BLOCKCIPHER_TEST_OP_CIPHER) {
uint8_t buffer[2048];
const uint8_t *compare_ref;
uint32_t compare_len;
if (t->op_mask & BLOCKCIPHER_TEST_OP_ENCRYPT) {
compare_ref = tdata->ciphertext.data +
tdata->cipher_offset;
compare_len = tdata->ciphertext.len -
tdata->cipher_offset;
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED)
compare_len += tdata->digest.len;
} else {
compare_ref = tdata->plaintext.data +
tdata->cipher_offset;
compare_len = tdata->plaintext.len -
tdata->cipher_offset;
}
if (memcmp(rte_pktmbuf_read(iobuf, tdata->cipher_offset,
compare_len, buffer), compare_ref,
compare_len)) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__,
"Crypto data not as expected");
status = TEST_FAILED;
goto error_exit;
}
}
/* Check digest data only in enc-then-auth_gen case.
* In auth_gen-then-enc case, cipher text contains both encrypted
* plain text and encrypted digest value. If cipher text is correct,
* it implies digest is also generated properly.
*/
if (!(t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED))
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_GEN) {
uint8_t *auth_res = pktmbuf_mtod_offset(iobuf,
tdata->ciphertext.len);
if (memcmp(auth_res, tdata->digest.data, digest_len)) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "line %u "
"FAILED: %s", __LINE__, "Generated "
"digest data not as expected");
status = TEST_FAILED;
goto error_exit;
}
}
/* The only parts that should have changed in the buffer are
* plaintext/ciphertext and digest.
* In OOP only the dest buffer should change.
*/
if (t->feature_mask & BLOCKCIPHER_TEST_FEATURE_OOP) {
struct rte_mbuf *mbuf;
uint8_t value;
uint32_t head_unchanged_len, changed_len = 0;
uint32_t i;
uint32_t hdroom_used = 0, tlroom_used = 0;
uint32_t hdroom = 0;
mbuf = sym_op->m_src;
/*
* Crypto PMDs specify the headroom & tailroom it would use
* when processing the crypto operation. PMD is free to modify
* this space, and so the verification check should skip that
* block.
*/
hdroom_used = dev_info.min_mbuf_headroom_req;
tlroom_used = dev_info.min_mbuf_tailroom_req;
/* Get headroom */
hdroom = rte_pktmbuf_headroom(mbuf);
head_unchanged_len = mbuf->buf_len;
for (i = 0; i < mbuf->buf_len; i++) {
/* Skip headroom used by PMD */
if (i == hdroom - hdroom_used)
i += hdroom_used;
/* Skip tailroom used by PMD */
if (i == (hdroom + mbuf->data_len))
i += tlroom_used;
value = *((uint8_t *)(mbuf->buf_addr)+i);
if (value != tmp_src_buf[i]) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: OOP src outer mbuf data (0x%x) not as expected (0x%x)",
__LINE__, value, tmp_src_buf[i]);
status = TEST_FAILED;
goto error_exit;
}
}
mbuf = sym_op->m_dst;
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH) {
head_unchanged_len = hdroom + sym_op->auth.data.offset;
changed_len = sym_op->auth.data.length;
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_GEN)
changed_len += digest_len;
} else {
/* cipher-only */
head_unchanged_len = hdroom +
sym_op->cipher.data.offset;
changed_len = sym_op->cipher.data.length;
}
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED)
changed_len = sym_op->cipher.data.length +
digest_len + pad_len;
for (i = 0; i < mbuf->buf_len; i++) {
if (i == head_unchanged_len)
i += changed_len;
value = *((uint8_t *)(mbuf->buf_addr)+i);
if (value != tmp_dst_buf[i]) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: OOP dst outer mbuf data "
"(0x%x) not as expected (0x%x)",
__LINE__, value, tmp_dst_buf[i]);
status = TEST_FAILED;
goto error_exit;
}
}
if (!nb_iterates) {
nb_iterates++;
goto iterate;
}
} else {
/* In-place operation */
struct rte_mbuf *mbuf;
uint8_t value;
uint32_t head_unchanged_len = 0, changed_len = 0;
uint32_t i;
uint32_t hdroom_used = 0, tlroom_used = 0;
uint32_t hdroom = 0;
/*
* Crypto PMDs specify the headroom & tailroom it would use
* when processing the crypto operation. PMD is free to modify
* this space, and so the verification check should skip that
* block.
*/
hdroom_used = dev_info.min_mbuf_headroom_req;
tlroom_used = dev_info.min_mbuf_tailroom_req;
mbuf = sym_op->m_src;
/* Get headroom */
hdroom = rte_pktmbuf_headroom(mbuf);
if (t->op_mask & BLOCKCIPHER_TEST_OP_CIPHER) {
head_unchanged_len = hdroom +
sym_op->cipher.data.offset;
changed_len = sym_op->cipher.data.length;
} else {
/* auth-only */
head_unchanged_len = hdroom +
sym_op->auth.data.offset +
sym_op->auth.data.length;
changed_len = 0;
}
if (t->op_mask & BLOCKCIPHER_TEST_OP_AUTH_GEN)
changed_len += digest_len;
if (t->op_mask & BLOCKCIPHER_TEST_OP_DIGEST_ENCRYPTED)
changed_len = sym_op->cipher.data.length;
for (i = 0; i < mbuf->buf_len; i++) {
/* Skip headroom used by PMD */
if (i == hdroom - hdroom_used)
i += hdroom_used;
if (i == head_unchanged_len)
i += changed_len;
/* Skip tailroom used by PMD */
if (i == (hdroom + mbuf->data_len))
i += tlroom_used;
value = *((uint8_t *)(mbuf->buf_addr)+i);
if (value != tmp_src_buf[i]) {
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN,
"line %u FAILED: outer mbuf data (0x%x) "
"not as expected (0x%x)",
__LINE__, value, tmp_src_buf[i]);
status = TEST_FAILED;
goto error_exit;
}
}
}
snprintf(test_msg, BLOCKCIPHER_TEST_MSG_LEN, "PASS");
error_exit:
if (!(t->feature_mask & BLOCKCIPHER_TEST_FEATURE_SESSIONLESS)) {
if (sess)
rte_cryptodev_sym_session_free(dev_id, sess);
rte_free(cipher_xform);
rte_free(auth_xform);
}
rte_crypto_op_free(op);
rte_pktmbuf_free(obuf);
rte_pktmbuf_free(ibuf);
return status;
}
static int
blockcipher_test_case_run(const void *data)
{
const struct blockcipher_test_case *tc_data = data;
int status;
char test_msg[BLOCKCIPHER_TEST_MSG_LEN + 1];
status = test_blockcipher_one_case(tc_data,
p_testsuite_params->mbuf_pool,
p_testsuite_params->op_mpool,
p_testsuite_params->session_mpool,
p_testsuite_params->valid_devs[0],
test_msg);
return status;
}
static int
aes_chain_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_NULL,
RTE_CRYPTO_CIPHER_AES_CTR,
RTE_CRYPTO_CIPHER_AES_CBC
};
const enum rte_crypto_auth_algorithm auths[] = {
RTE_CRYPTO_AUTH_NULL,
RTE_CRYPTO_AUTH_SHA1_HMAC,
RTE_CRYPTO_AUTH_AES_XCBC_MAC,
RTE_CRYPTO_AUTH_SHA256_HMAC,
RTE_CRYPTO_AUTH_SHA512_HMAC,
RTE_CRYPTO_AUTH_SHA224_HMAC,
RTE_CRYPTO_AUTH_SHA384_HMAC
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
((global_api_test_type == CRYPTODEV_RAW_API_TEST) &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) {
RTE_LOG(INFO, USER1, "Feature flag requirements for AES Chain "
"testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0
&& check_auth_capabilities_supported(auths,
RTE_DIM(auths)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for AES Chain "
"testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
aes_cipheronly_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_NULL,
RTE_CRYPTO_CIPHER_AES_CTR,
RTE_CRYPTO_CIPHER_AES_CBC,
RTE_CRYPTO_CIPHER_AES_ECB,
RTE_CRYPTO_CIPHER_AES_XTS
};
const enum rte_crypto_auth_algorithm auths[] = {
RTE_CRYPTO_AUTH_NULL,
RTE_CRYPTO_AUTH_SHA1_HMAC,
RTE_CRYPTO_AUTH_AES_XCBC_MAC
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
((global_api_test_type == CRYPTODEV_RAW_API_TEST) &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) {
RTE_LOG(INFO, USER1, "Feature flag requirements for AES Cipheronly "
"testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0
&& check_auth_capabilities_supported(auths,
RTE_DIM(auths)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for AES Cipheronly "
"testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
aes_docsis_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_AES_DOCSISBPI
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
/* Data-path service does not support DOCSIS yet */
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
(global_api_test_type == CRYPTODEV_RAW_API_TEST)) {
RTE_LOG(INFO, USER1, "Feature flag requirements for AES Docsis "
"testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for AES Docsis "
"testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
triple_des_chain_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_3DES_CTR,
RTE_CRYPTO_CIPHER_3DES_CBC
};
const enum rte_crypto_auth_algorithm auths[] = {
RTE_CRYPTO_AUTH_SHA1_HMAC,
RTE_CRYPTO_AUTH_SHA1
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
((global_api_test_type == CRYPTODEV_RAW_API_TEST) &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) {
RTE_LOG(INFO, USER1, "Feature flag requirements for 3DES Chain "
"testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0
&& check_auth_capabilities_supported(auths,
RTE_DIM(auths)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for 3DES Chain "
"testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
triple_des_cipheronly_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_3DES_CTR,
RTE_CRYPTO_CIPHER_3DES_CBC
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
((global_api_test_type == CRYPTODEV_RAW_API_TEST) &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) {
RTE_LOG(INFO, USER1, "Feature flag requirements for 3DES "
"Cipheronly testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for 3DES "
"Cipheronly testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
des_cipheronly_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_DES_CBC
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
((global_api_test_type == CRYPTODEV_RAW_API_TEST) &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) {
RTE_LOG(INFO, USER1, "Feature flag requirements for DES "
"Cipheronly testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for DES "
"Cipheronly testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
des_docsis_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_cipher_algorithm ciphers[] = {
RTE_CRYPTO_CIPHER_DES_DOCSISBPI
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
/* Data-path service does not support DOCSIS yet */
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
(global_api_test_type == CRYPTODEV_RAW_API_TEST)) {
RTE_LOG(INFO, USER1, "Feature flag requirements for DES Docsis "
"testsuite not met\n");
return TEST_SKIPPED;
}
if (check_cipher_capabilities_supported(ciphers, RTE_DIM(ciphers)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for DES Docsis "
"testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
static int
authonly_setup(void)
{
uint8_t dev_id = p_testsuite_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
uint64_t feat_flags;
const enum rte_crypto_auth_algorithm auths[] = {
RTE_CRYPTO_AUTH_MD5,
RTE_CRYPTO_AUTH_MD5_HMAC,
RTE_CRYPTO_AUTH_SHA1,
RTE_CRYPTO_AUTH_SHA1_HMAC,
RTE_CRYPTO_AUTH_SHA224,
RTE_CRYPTO_AUTH_SHA224_HMAC,
RTE_CRYPTO_AUTH_SHA256,
RTE_CRYPTO_AUTH_SHA256_HMAC,
RTE_CRYPTO_AUTH_SHA384,
RTE_CRYPTO_AUTH_SHA384_HMAC,
RTE_CRYPTO_AUTH_SHA512,
RTE_CRYPTO_AUTH_SHA512_HMAC,
RTE_CRYPTO_AUTH_AES_CMAC,
RTE_CRYPTO_AUTH_NULL,
RTE_CRYPTO_AUTH_AES_XCBC_MAC
};
rte_cryptodev_info_get(dev_id, &dev_info);
feat_flags = dev_info.feature_flags;
if (!(feat_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) ||
((global_api_test_type == CRYPTODEV_RAW_API_TEST) &&
!(feat_flags & RTE_CRYPTODEV_FF_SYM_RAW_DP))) {
RTE_LOG(INFO, USER1, "Feature flag requirements for Auth Only "
"testsuite not met\n");
return TEST_SKIPPED;
}
if (check_auth_capabilities_supported(auths, RTE_DIM(auths)) != 0) {
RTE_LOG(INFO, USER1, "Capability requirements for Auth Only "
"testsuite not met\n");
return TEST_SKIPPED;
}
return 0;
}
struct unit_test_suite *
build_blockcipher_test_suite(enum blockcipher_test_type test_type)
{
int i, n_test_cases = 0;
struct unit_test_suite *ts;
const char *ts_name = NULL;
const struct blockcipher_test_case *blk_tcs;
struct unit_test_case *tc;
int (*ts_setup)(void) = NULL;
switch (test_type) {
case BLKCIPHER_AES_CHAIN_TYPE:
n_test_cases = RTE_DIM(aes_chain_test_cases);
blk_tcs = aes_chain_test_cases;
ts_name = "AES Chain";
ts_setup = aes_chain_setup;
break;
case BLKCIPHER_AES_CIPHERONLY_TYPE:
n_test_cases = RTE_DIM(aes_cipheronly_test_cases);
blk_tcs = aes_cipheronly_test_cases;
ts_name = "AES Cipher Only";
ts_setup = aes_cipheronly_setup;
break;
case BLKCIPHER_AES_DOCSIS_TYPE:
n_test_cases = RTE_DIM(aes_docsis_test_cases);
blk_tcs = aes_docsis_test_cases;
ts_name = "AES Docsis";
ts_setup = aes_docsis_setup;
break;
case BLKCIPHER_3DES_CHAIN_TYPE:
n_test_cases = RTE_DIM(triple_des_chain_test_cases);
blk_tcs = triple_des_chain_test_cases;
ts_name = "3DES Chain";
ts_setup = triple_des_chain_setup;
break;
case BLKCIPHER_3DES_CIPHERONLY_TYPE:
n_test_cases = RTE_DIM(triple_des_cipheronly_test_cases);
blk_tcs = triple_des_cipheronly_test_cases;
ts_name = "3DES Cipher Only";
ts_setup = triple_des_cipheronly_setup;
break;
case BLKCIPHER_DES_CIPHERONLY_TYPE:
n_test_cases = RTE_DIM(des_cipheronly_test_cases);
blk_tcs = des_cipheronly_test_cases;
ts_name = "DES Cipher Only";
ts_setup = des_cipheronly_setup;
break;
case BLKCIPHER_DES_DOCSIS_TYPE:
n_test_cases = RTE_DIM(des_docsis_test_cases);
blk_tcs = des_docsis_test_cases;
ts_name = "DES Docsis";
ts_setup = des_docsis_setup;
break;
case BLKCIPHER_AUTHONLY_TYPE:
n_test_cases = RTE_DIM(hash_test_cases);
blk_tcs = hash_test_cases;
ts_name = "Auth Only";
ts_setup = authonly_setup;
break;
default:
return NULL;
}
ts = calloc(1, sizeof(struct unit_test_suite) +
(sizeof(struct unit_test_case) * (n_test_cases + 1)));
ts->suite_name = ts_name;
ts->setup = ts_setup;
for (i = 0; i < n_test_cases; i++) {
tc = &ts->unit_test_cases[i];
tc->name = blk_tcs[i].test_descr;
tc->enabled = 1;
tc->setup = ut_setup;
tc->teardown = ut_teardown;
tc->testcase = NULL;
tc->testcase_with_data = blockcipher_test_case_run;
tc->data = &blk_tcs[i];
}
tc = &ts->unit_test_cases[i];
tc->name = NULL;
tc->enabled = 0;
tc->setup = NULL;
tc->teardown = NULL;
tc->testcase = NULL;
tc->testcase_with_data = NULL;
tc->data = NULL;
return ts;
}
void
free_blockcipher_test_suite(struct unit_test_suite *ts)
{
free(ts);
}