numam-dpdk/lib/power/power_acpi_cpufreq.c
Stephen Hemminger 4a6672c2d3 fix spelling in comments and doxygen
Fix spelling errors in comments including doxygen found using codespell.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Acked-by: Ray Kinsella <mdr@ashroe.eu>
Acked-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
Acked-by: Chenbo Xia <chenbo.xia@intel.com>
2021-11-16 17:57:09 +01:00

586 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <limits.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_string_fns.h>
#include "power_acpi_cpufreq.h"
#include "power_common.h"
#define STR_SIZE 1024
#define POWER_CONVERT_TO_DECIMAL 10
#define POWER_GOVERNOR_USERSPACE "userspace"
#define POWER_SYSFILE_AVAIL_FREQ \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_available_frequencies"
#define POWER_SYSFILE_SETSPEED \
"/sys/devices/system/cpu/cpu%u/cpufreq/scaling_setspeed"
#define POWER_ACPI_DRIVER "acpi-cpufreq"
/*
* MSR related
*/
#define PLATFORM_INFO 0x0CE
#define TURBO_RATIO_LIMIT 0x1AD
#define IA32_PERF_CTL 0x199
#define CORE_TURBO_DISABLE_BIT ((uint64_t)1<<32)
enum power_state {
POWER_IDLE = 0,
POWER_ONGOING,
POWER_USED,
POWER_UNKNOWN
};
/**
* Power info per lcore.
*/
struct acpi_power_info {
unsigned int lcore_id; /**< Logical core id */
uint32_t freqs[RTE_MAX_LCORE_FREQS]; /**< Frequency array */
uint32_t nb_freqs; /**< number of available freqs */
FILE *f; /**< FD of scaling_setspeed */
char governor_ori[32]; /**< Original governor name */
uint32_t curr_idx; /**< Freq index in freqs array */
uint32_t state; /**< Power in use state */
uint16_t turbo_available; /**< Turbo Boost available */
uint16_t turbo_enable; /**< Turbo Boost enable/disable */
} __rte_cache_aligned;
static struct acpi_power_info lcore_power_info[RTE_MAX_LCORE];
/**
* It is to set specific freq for specific logical core, according to the index
* of supported frequencies.
*/
static int
set_freq_internal(struct acpi_power_info *pi, uint32_t idx)
{
if (idx >= RTE_MAX_LCORE_FREQS || idx >= pi->nb_freqs) {
RTE_LOG(ERR, POWER, "Invalid frequency index %u, which "
"should be less than %u\n", idx, pi->nb_freqs);
return -1;
}
/* Check if it is the same as current */
if (idx == pi->curr_idx)
return 0;
POWER_DEBUG_TRACE("Frequency[%u] %u to be set for lcore %u\n",
idx, pi->freqs[idx], pi->lcore_id);
if (fseek(pi->f, 0, SEEK_SET) < 0) {
RTE_LOG(ERR, POWER, "Fail to set file position indicator to 0 "
"for setting frequency for lcore %u\n", pi->lcore_id);
return -1;
}
if (fprintf(pi->f, "%u", pi->freqs[idx]) < 0) {
RTE_LOG(ERR, POWER, "Fail to write new frequency for "
"lcore %u\n", pi->lcore_id);
return -1;
}
fflush(pi->f);
pi->curr_idx = idx;
return 1;
}
/**
* It is to check the current scaling governor by reading sys file, and then
* set it into 'userspace' if it is not by writing the sys file. The original
* governor will be saved for rolling back.
*/
static int
power_set_governor_userspace(struct acpi_power_info *pi)
{
return power_set_governor(pi->lcore_id, POWER_GOVERNOR_USERSPACE,
pi->governor_ori, sizeof(pi->governor_ori));
}
/**
* It is to check the governor and then set the original governor back if
* needed by writing the sys file.
*/
static int
power_set_governor_original(struct acpi_power_info *pi)
{
return power_set_governor(pi->lcore_id, pi->governor_ori, NULL, 0);
}
/**
* It is to get the available frequencies of the specific lcore by reading the
* sys file.
*/
static int
power_get_available_freqs(struct acpi_power_info *pi)
{
FILE *f;
int ret = -1, i, count;
char *p;
char buf[BUFSIZ];
char *freqs[RTE_MAX_LCORE_FREQS];
open_core_sysfs_file(&f, "r", POWER_SYSFILE_AVAIL_FREQ, pi->lcore_id);
if (f == NULL) {
RTE_LOG(ERR, POWER, "failed to open %s\n",
POWER_SYSFILE_AVAIL_FREQ);
goto out;
}
ret = read_core_sysfs_s(f, buf, sizeof(buf));
if ((ret) < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_AVAIL_FREQ);
goto out;
}
/* Split string into at most RTE_MAX_LCORE_FREQS frequencies */
count = rte_strsplit(buf, sizeof(buf), freqs,
RTE_MAX_LCORE_FREQS, ' ');
if (count <= 0) {
RTE_LOG(ERR, POWER, "No available frequency in "
""POWER_SYSFILE_AVAIL_FREQ"\n", pi->lcore_id);
goto out;
}
if (count >= RTE_MAX_LCORE_FREQS) {
RTE_LOG(ERR, POWER, "Too many available frequencies : %d\n",
count);
goto out;
}
/* Store the available frequencies into power context */
for (i = 0, pi->nb_freqs = 0; i < count; i++) {
POWER_DEBUG_TRACE("Lcore %u frequency[%d]: %s\n", pi->lcore_id,
i, freqs[i]);
pi->freqs[pi->nb_freqs++] = strtoul(freqs[i], &p,
POWER_CONVERT_TO_DECIMAL);
}
if ((pi->freqs[0]-1000) == pi->freqs[1]) {
pi->turbo_available = 1;
pi->turbo_enable = 1;
POWER_DEBUG_TRACE("Lcore %u Can do Turbo Boost\n",
pi->lcore_id);
} else {
pi->turbo_available = 0;
pi->turbo_enable = 0;
POWER_DEBUG_TRACE("Turbo Boost not available on Lcore %u\n",
pi->lcore_id);
}
ret = 0;
POWER_DEBUG_TRACE("%d frequency(s) of lcore %u are available\n",
count, pi->lcore_id);
out:
if (f != NULL)
fclose(f);
return ret;
}
/**
* It is to fopen the sys file for the future setting the lcore frequency.
*/
static int
power_init_for_setting_freq(struct acpi_power_info *pi)
{
FILE *f;
char buf[BUFSIZ];
uint32_t i, freq;
int ret;
open_core_sysfs_file(&f, "rw+", POWER_SYSFILE_SETSPEED, pi->lcore_id);
if (f == NULL) {
RTE_LOG(ERR, POWER, "Failed to open %s\n",
POWER_SYSFILE_SETSPEED);
goto err;
}
ret = read_core_sysfs_s(f, buf, sizeof(buf));
if ((ret) < 0) {
RTE_LOG(ERR, POWER, "Failed to read %s\n",
POWER_SYSFILE_SETSPEED);
goto err;
}
freq = strtoul(buf, NULL, POWER_CONVERT_TO_DECIMAL);
for (i = 0; i < pi->nb_freqs; i++) {
if (freq == pi->freqs[i]) {
pi->curr_idx = i;
pi->f = f;
return 0;
}
}
err:
if (f != NULL)
fclose(f);
return -1;
}
int
power_acpi_cpufreq_check_supported(void)
{
return cpufreq_check_scaling_driver(POWER_ACPI_DRIVER);
}
int
power_acpi_cpufreq_init(unsigned int lcore_id)
{
struct acpi_power_info *pi;
uint32_t exp_state;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n",
lcore_id, RTE_MAX_LCORE - 1U);
return -1;
}
pi = &lcore_power_info[lcore_id];
exp_state = POWER_IDLE;
/* The power in use state works as a guard variable between
* the CPU frequency control initialization and exit process.
* The ACQUIRE memory ordering here pairs with the RELEASE
* ordering below as lock to make sure the frequency operations
* in the critical section are done under the correct state.
*/
if (!__atomic_compare_exchange_n(&(pi->state), &exp_state,
POWER_ONGOING, 0,
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
RTE_LOG(INFO, POWER, "Power management of lcore %u is "
"in use\n", lcore_id);
return -1;
}
pi->lcore_id = lcore_id;
/* Check and set the governor */
if (power_set_governor_userspace(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot set governor of lcore %u to "
"userspace\n", lcore_id);
goto fail;
}
/* Get the available frequencies */
if (power_get_available_freqs(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot get available frequencies of "
"lcore %u\n", lcore_id);
goto fail;
}
/* Init for setting lcore frequency */
if (power_init_for_setting_freq(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot init for setting frequency for "
"lcore %u\n", lcore_id);
goto fail;
}
/* Set freq to max by default */
if (power_acpi_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER, "Cannot set frequency of lcore %u "
"to max\n", lcore_id);
goto fail;
}
RTE_LOG(INFO, POWER, "Initialized successfully for lcore %u "
"power management\n", lcore_id);
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_USED,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return 0;
fail:
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return -1;
}
int
power_acpi_cpufreq_exit(unsigned int lcore_id)
{
struct acpi_power_info *pi;
uint32_t exp_state;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Lcore id %u can not exceeds %u\n",
lcore_id, RTE_MAX_LCORE - 1U);
return -1;
}
pi = &lcore_power_info[lcore_id];
exp_state = POWER_USED;
/* The power in use state works as a guard variable between
* the CPU frequency control initialization and exit process.
* The ACQUIRE memory ordering here pairs with the RELEASE
* ordering below as lock to make sure the frequency operations
* in the critical section are done under the correct state.
*/
if (!__atomic_compare_exchange_n(&(pi->state), &exp_state,
POWER_ONGOING, 0,
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED)) {
RTE_LOG(INFO, POWER, "Power management of lcore %u is "
"not used\n", lcore_id);
return -1;
}
/* Close FD of setting freq */
fclose(pi->f);
pi->f = NULL;
/* Set the governor back to the original */
if (power_set_governor_original(pi) < 0) {
RTE_LOG(ERR, POWER, "Cannot set the governor of %u back "
"to the original\n", lcore_id);
goto fail;
}
RTE_LOG(INFO, POWER, "Power management of lcore %u has exited from "
"'userspace' mode and been set back to the "
"original\n", lcore_id);
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_IDLE,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return 0;
fail:
exp_state = POWER_ONGOING;
__atomic_compare_exchange_n(&(pi->state), &exp_state, POWER_UNKNOWN,
0, __ATOMIC_RELEASE, __ATOMIC_RELAXED);
return -1;
}
uint32_t
power_acpi_cpufreq_freqs(unsigned int lcore_id, uint32_t *freqs, uint32_t num)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return 0;
}
if (freqs == NULL) {
RTE_LOG(ERR, POWER, "NULL buffer supplied\n");
return 0;
}
pi = &lcore_power_info[lcore_id];
if (num < pi->nb_freqs) {
RTE_LOG(ERR, POWER, "Buffer size is not enough\n");
return 0;
}
rte_memcpy(freqs, pi->freqs, pi->nb_freqs * sizeof(uint32_t));
return pi->nb_freqs;
}
uint32_t
power_acpi_cpufreq_get_freq(unsigned int lcore_id)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return RTE_POWER_INVALID_FREQ_INDEX;
}
return lcore_power_info[lcore_id].curr_idx;
}
int
power_acpi_cpufreq_set_freq(unsigned int lcore_id, uint32_t index)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
return set_freq_internal(&(lcore_power_info[lcore_id]), index);
}
int
power_acpi_cpufreq_freq_down(unsigned int lcore_id)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->curr_idx + 1 == pi->nb_freqs)
return 0;
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->curr_idx + 1);
}
int
power_acpi_cpufreq_freq_up(unsigned int lcore_id)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->curr_idx == 0 ||
(pi->curr_idx == 1 && pi->turbo_available && !pi->turbo_enable))
return 0;
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->curr_idx - 1);
}
int
power_acpi_cpufreq_freq_max(unsigned int lcore_id)
{
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
/* Frequencies in the array are from high to low. */
if (lcore_power_info[lcore_id].turbo_available) {
if (lcore_power_info[lcore_id].turbo_enable)
/* Set to Turbo */
return set_freq_internal(
&lcore_power_info[lcore_id], 0);
else
/* Set to max non-turbo */
return set_freq_internal(
&lcore_power_info[lcore_id], 1);
} else
return set_freq_internal(&lcore_power_info[lcore_id], 0);
}
int
power_acpi_cpufreq_freq_min(unsigned int lcore_id)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
/* Frequencies in the array are from high to low. */
return set_freq_internal(pi, pi->nb_freqs - 1);
}
int
power_acpi_turbo_status(unsigned int lcore_id)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
return pi->turbo_enable;
}
int
power_acpi_enable_turbo(unsigned int lcore_id)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
if (pi->turbo_available)
pi->turbo_enable = 1;
else {
pi->turbo_enable = 0;
RTE_LOG(ERR, POWER,
"Failed to enable turbo on lcore %u\n",
lcore_id);
return -1;
}
/* Max may have changed, so call to max function */
if (power_acpi_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER,
"Failed to set frequency of lcore %u to max\n",
lcore_id);
return -1;
}
return 0;
}
int
power_acpi_disable_turbo(unsigned int lcore_id)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
pi->turbo_enable = 0;
if ((pi->turbo_available) && (pi->curr_idx <= 1)) {
/* Try to set freq to max by default coming out of turbo */
if (power_acpi_cpufreq_freq_max(lcore_id) < 0) {
RTE_LOG(ERR, POWER,
"Failed to set frequency of lcore %u to max\n",
lcore_id);
return -1;
}
}
return 0;
}
int power_acpi_get_capabilities(unsigned int lcore_id,
struct rte_power_core_capabilities *caps)
{
struct acpi_power_info *pi;
if (lcore_id >= RTE_MAX_LCORE) {
RTE_LOG(ERR, POWER, "Invalid lcore ID\n");
return -1;
}
if (caps == NULL) {
RTE_LOG(ERR, POWER, "Invalid argument\n");
return -1;
}
pi = &lcore_power_info[lcore_id];
caps->capabilities = 0;
caps->turbo = !!(pi->turbo_available);
return 0;
}