numam-dpdk/app/test/test_cryptodev_security_ipsec.c
Akhil Goyal 2973dbf93b security: hide session structure
Structure rte_security_session is moved to internal
headers which are not visible to applications.
The only field which should be used by app is opaque_data.
This field can now be accessed via set/get APIs added in this
patch.
Subsequent changes in app and lib are made to compile the code.

Signed-off-by: Akhil Goyal <gakhil@marvell.com>
Tested-by: Gagandeep Singh <g.singh@nxp.com>
Tested-by: David Coyle <david.coyle@intel.com>
Tested-by: Kevin O'Sullivan <kevin.osullivan@intel.com>
2022-10-04 22:37:54 +02:00

1239 lines
31 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include <rte_common.h>
#include <rte_cryptodev.h>
#include <rte_esp.h>
#include <rte_ip.h>
#include <rte_security.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include "test.h"
#include "test_cryptodev_security_ipsec.h"
#define IV_LEN_MAX 16
#ifndef IPVERSION
#define IPVERSION 4
#endif
struct crypto_param_comb alg_list[RTE_DIM(aead_list) +
(RTE_DIM(cipher_list) *
RTE_DIM(auth_list))];
struct crypto_param_comb ah_alg_list[2 * (RTE_DIM(auth_list) - 1)];
static bool
is_valid_ipv4_pkt(const struct rte_ipv4_hdr *pkt)
{
/* The IP version number must be 4 */
if (((pkt->version_ihl) >> 4) != 4)
return false;
/*
* The IP header length field must be large enough to hold the
* minimum length legal IP datagram (20 bytes = 5 words).
*/
if ((pkt->version_ihl & 0xf) < 5)
return false;
/*
* The IP total length field must be large enough to hold the IP
* datagram header, whose length is specified in the IP header length
* field.
*/
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
return false;
return true;
}
static bool
is_valid_ipv6_pkt(const struct rte_ipv6_hdr *pkt)
{
/* The IP version number must be 6 */
if ((rte_be_to_cpu_32((pkt->vtc_flow)) >> 28) != 6)
return false;
return true;
}
void
test_ipsec_alg_list_populate(void)
{
unsigned long i, j, index = 0;
for (i = 0; i < RTE_DIM(aead_list); i++) {
alg_list[index].param1 = &aead_list[i];
alg_list[index].param2 = NULL;
index++;
}
for (i = 0; i < RTE_DIM(cipher_list); i++) {
for (j = 0; j < RTE_DIM(auth_list); j++) {
alg_list[index].param1 = &cipher_list[i];
alg_list[index].param2 = &auth_list[j];
index++;
}
}
}
void
test_ipsec_ah_alg_list_populate(void)
{
unsigned long i, index = 0;
for (i = 1; i < RTE_DIM(auth_list); i++) {
ah_alg_list[index].param1 = &auth_list[i];
ah_alg_list[index].param2 = NULL;
index++;
}
for (i = 1; i < RTE_DIM(auth_list); i++) {
/* NULL cipher */
ah_alg_list[index].param1 = &cipher_list[0];
ah_alg_list[index].param2 = &auth_list[i];
index++;
}
}
int
test_ipsec_sec_caps_verify(struct rte_security_ipsec_xform *ipsec_xform,
const struct rte_security_capability *sec_cap,
bool silent)
{
/* Verify security capabilities */
if (ipsec_xform->options.esn == 1 && sec_cap->ipsec.options.esn == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "ESN is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.udp_encap == 1 &&
sec_cap->ipsec.options.udp_encap == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "UDP encapsulation is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.udp_ports_verify == 1 &&
sec_cap->ipsec.options.udp_ports_verify == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "UDP encapsulation ports "
"verification is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.copy_dscp == 1 &&
sec_cap->ipsec.options.copy_dscp == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "Copy DSCP is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.copy_flabel == 1 &&
sec_cap->ipsec.options.copy_flabel == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "Copy Flow Label is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.copy_df == 1 &&
sec_cap->ipsec.options.copy_df == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "Copy DP bit is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.dec_ttl == 1 &&
sec_cap->ipsec.options.dec_ttl == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "Decrement TTL is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.ecn == 1 && sec_cap->ipsec.options.ecn == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "ECN is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.stats == 1 &&
sec_cap->ipsec.options.stats == 0) {
if (!silent)
RTE_LOG(INFO, USER1, "Stats is not supported\n");
return -ENOTSUP;
}
if ((ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
(ipsec_xform->options.iv_gen_disable == 1) &&
(sec_cap->ipsec.options.iv_gen_disable != 1)) {
if (!silent)
RTE_LOG(INFO, USER1,
"Application provided IV is not supported\n");
return -ENOTSUP;
}
if ((ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
(ipsec_xform->options.tunnel_hdr_verify >
sec_cap->ipsec.options.tunnel_hdr_verify)) {
if (!silent)
RTE_LOG(INFO, USER1,
"Tunnel header verify is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.ip_csum_enable == 1 &&
sec_cap->ipsec.options.ip_csum_enable == 0) {
if (!silent)
RTE_LOG(INFO, USER1,
"Inner IP checksum is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->options.l4_csum_enable == 1 &&
sec_cap->ipsec.options.l4_csum_enable == 0) {
if (!silent)
RTE_LOG(INFO, USER1,
"Inner L4 checksum is not supported\n");
return -ENOTSUP;
}
if (ipsec_xform->replay_win_sz > sec_cap->ipsec.replay_win_sz_max) {
if (!silent)
RTE_LOG(INFO, USER1,
"Replay window size is not supported\n");
return -ENOTSUP;
}
return 0;
}
int
test_ipsec_crypto_caps_aead_verify(
const struct rte_security_capability *sec_cap,
struct rte_crypto_sym_xform *aead)
{
const struct rte_cryptodev_symmetric_capability *sym_cap;
const struct rte_cryptodev_capabilities *crypto_cap;
int j = 0;
while ((crypto_cap = &sec_cap->crypto_capabilities[j++])->op !=
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
crypto_cap->sym.xform_type == aead->type &&
crypto_cap->sym.aead.algo == aead->aead.algo) {
sym_cap = &crypto_cap->sym;
if (rte_cryptodev_sym_capability_check_aead(sym_cap,
aead->aead.key.length,
aead->aead.digest_length,
aead->aead.aad_length,
aead->aead.iv.length) == 0)
return 0;
}
}
return -ENOTSUP;
}
int
test_ipsec_crypto_caps_cipher_verify(
const struct rte_security_capability *sec_cap,
struct rte_crypto_sym_xform *cipher)
{
const struct rte_cryptodev_symmetric_capability *sym_cap;
const struct rte_cryptodev_capabilities *cap;
int j = 0;
while ((cap = &sec_cap->crypto_capabilities[j++])->op !=
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
if (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
cap->sym.xform_type == cipher->type &&
cap->sym.cipher.algo == cipher->cipher.algo) {
sym_cap = &cap->sym;
if (rte_cryptodev_sym_capability_check_cipher(sym_cap,
cipher->cipher.key.length,
cipher->cipher.iv.length) == 0)
return 0;
}
}
return -ENOTSUP;
}
int
test_ipsec_crypto_caps_auth_verify(
const struct rte_security_capability *sec_cap,
struct rte_crypto_sym_xform *auth)
{
const struct rte_cryptodev_symmetric_capability *sym_cap;
const struct rte_cryptodev_capabilities *cap;
int j = 0;
while ((cap = &sec_cap->crypto_capabilities[j++])->op !=
RTE_CRYPTO_OP_TYPE_UNDEFINED) {
if (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
cap->sym.xform_type == auth->type &&
cap->sym.auth.algo == auth->auth.algo) {
sym_cap = &cap->sym;
if (rte_cryptodev_sym_capability_check_auth(sym_cap,
auth->auth.key.length,
auth->auth.digest_length,
auth->auth.iv.length) == 0)
return 0;
}
}
return -ENOTSUP;
}
void
test_ipsec_td_in_from_out(const struct ipsec_test_data *td_out,
struct ipsec_test_data *td_in)
{
memcpy(td_in, td_out, sizeof(*td_in));
/* Populate output text of td_in with input text of td_out */
memcpy(td_in->output_text.data, td_out->input_text.data,
td_out->input_text.len);
td_in->output_text.len = td_out->input_text.len;
/* Populate input text of td_in with output text of td_out */
memcpy(td_in->input_text.data, td_out->output_text.data,
td_out->output_text.len);
td_in->input_text.len = td_out->output_text.len;
td_in->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
if (td_in->aead) {
td_in->xform.aead.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
} else {
td_in->xform.chain.auth.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
td_in->xform.chain.cipher.cipher.op =
RTE_CRYPTO_CIPHER_OP_DECRYPT;
}
}
static bool
is_ipv4(void *ip)
{
struct rte_ipv4_hdr *ipv4 = ip;
uint8_t ip_ver;
ip_ver = (ipv4->version_ihl & 0xf0) >> RTE_IPV4_IHL_MULTIPLIER;
if (ip_ver == IPVERSION)
return true;
else
return false;
}
static void
test_ipsec_csum_init(void *ip, bool l3, bool l4)
{
struct rte_ipv4_hdr *ipv4;
struct rte_tcp_hdr *tcp;
struct rte_udp_hdr *udp;
uint8_t next_proto;
uint8_t size;
if (is_ipv4(ip)) {
ipv4 = ip;
size = sizeof(struct rte_ipv4_hdr);
next_proto = ipv4->next_proto_id;
if (l3)
ipv4->hdr_checksum = 0;
} else {
size = sizeof(struct rte_ipv6_hdr);
next_proto = ((struct rte_ipv6_hdr *)ip)->proto;
}
if (l4) {
switch (next_proto) {
case IPPROTO_TCP:
tcp = (struct rte_tcp_hdr *)RTE_PTR_ADD(ip, size);
tcp->cksum = 0;
break;
case IPPROTO_UDP:
udp = (struct rte_udp_hdr *)RTE_PTR_ADD(ip, size);
udp->dgram_cksum = 0;
break;
default:
return;
}
}
}
void
test_ipsec_td_prepare(const struct crypto_param *param1,
const struct crypto_param *param2,
const struct ipsec_test_flags *flags,
struct ipsec_test_data *td_array,
int nb_td)
{
struct ipsec_test_data *td;
int i;
memset(td_array, 0, nb_td * sizeof(*td));
for (i = 0; i < nb_td; i++) {
td = &td_array[i];
/* Prepare fields based on param */
if (param1->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
/* Copy template for packet & key fields */
if (flags->ipv6)
memcpy(td, &pkt_aes_256_gcm_v6, sizeof(*td));
else
memcpy(td, &pkt_aes_256_gcm, sizeof(*td));
if (param1->alg.aead == RTE_CRYPTO_AEAD_AES_CCM)
td->salt.len = 3;
td->aead = true;
td->xform.aead.aead.algo = param1->alg.aead;
td->xform.aead.aead.key.length = param1->key_length;
} else {
/* Copy template for packet & key fields */
if (flags->ipv6)
memcpy(td, &pkt_aes_128_cbc_hmac_sha256_v6,
sizeof(*td));
else
memcpy(td, &pkt_aes_128_cbc_hmac_sha256,
sizeof(*td));
td->aead = false;
if (param1->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
td->xform.chain.auth.auth.algo =
param1->alg.auth;
td->xform.chain.auth.auth.key.length =
param1->key_length;
td->xform.chain.auth.auth.digest_length =
param1->digest_length;
td->auth_only = true;
if (td->xform.chain.auth.auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
td->xform.chain.auth.auth.iv.length =
param1->iv_length;
td->aes_gmac = true;
}
} else {
td->xform.chain.cipher.cipher.algo =
param1->alg.cipher;
td->xform.chain.cipher.cipher.key.length =
param1->key_length;
td->xform.chain.cipher.cipher.iv.length =
param1->iv_length;
td->xform.chain.auth.auth.algo =
param2->alg.auth;
td->xform.chain.auth.auth.key.length =
param2->key_length;
td->xform.chain.auth.auth.digest_length =
param2->digest_length;
if (td->xform.chain.auth.auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
td->xform.chain.auth.auth.iv.length =
param2->iv_length;
td->aes_gmac = true;
}
}
}
if (flags->ah) {
td->ipsec_xform.proto =
RTE_SECURITY_IPSEC_SA_PROTO_AH;
}
if (flags->iv_gen)
td->ipsec_xform.options.iv_gen_disable = 0;
if (flags->sa_expiry_pkts_soft)
td->ipsec_xform.life.packets_soft_limit =
IPSEC_TEST_PACKETS_MAX - 1;
if (flags->ip_csum) {
td->ipsec_xform.options.ip_csum_enable = 1;
test_ipsec_csum_init(&td->input_text.data, true, false);
}
if (flags->l4_csum) {
td->ipsec_xform.options.l4_csum_enable = 1;
test_ipsec_csum_init(&td->input_text.data, false, true);
}
if (flags->transport) {
td->ipsec_xform.mode =
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT;
} else {
td->ipsec_xform.mode =
RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
if (flags->tunnel_ipv6)
td->ipsec_xform.tunnel.type =
RTE_SECURITY_IPSEC_TUNNEL_IPV6;
else
td->ipsec_xform.tunnel.type =
RTE_SECURITY_IPSEC_TUNNEL_IPV4;
}
if (flags->stats_success)
td->ipsec_xform.options.stats = 1;
if (flags->fragment) {
struct rte_ipv4_hdr *ip;
ip = (struct rte_ipv4_hdr *)&td->input_text.data;
ip->fragment_offset = 4;
ip->hdr_checksum = rte_ipv4_cksum(ip);
}
if (flags->df == TEST_IPSEC_COPY_DF_INNER_0 ||
flags->df == TEST_IPSEC_COPY_DF_INNER_1)
td->ipsec_xform.options.copy_df = 1;
if (flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_0 ||
flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_1)
td->ipsec_xform.options.copy_dscp = 1;
if (flags->flabel == TEST_IPSEC_COPY_FLABEL_INNER_0 ||
flags->flabel == TEST_IPSEC_COPY_FLABEL_INNER_1)
td->ipsec_xform.options.copy_flabel = 1;
if (flags->dec_ttl_or_hop_limit)
td->ipsec_xform.options.dec_ttl = 1;
}
}
void
test_ipsec_td_update(struct ipsec_test_data td_inb[],
const struct ipsec_test_data td_outb[],
int nb_td,
const struct ipsec_test_flags *flags)
{
int i;
for (i = 0; i < nb_td; i++) {
memcpy(td_inb[i].output_text.data, td_outb[i].input_text.data,
td_outb[i].input_text.len);
td_inb[i].output_text.len = td_outb->input_text.len;
if (flags->icv_corrupt) {
int icv_pos = td_inb[i].input_text.len - 4;
td_inb[i].input_text.data[icv_pos] += 1;
}
if (flags->sa_expiry_pkts_hard)
td_inb[i].ipsec_xform.life.packets_hard_limit =
IPSEC_TEST_PACKETS_MAX - 1;
if (flags->udp_encap)
td_inb[i].ipsec_xform.options.udp_encap = 1;
if (flags->udp_ports_verify)
td_inb[i].ipsec_xform.options.udp_ports_verify = 1;
td_inb[i].ipsec_xform.options.tunnel_hdr_verify =
flags->tunnel_hdr_verify;
if (flags->ip_csum)
td_inb[i].ipsec_xform.options.ip_csum_enable = 1;
if (flags->l4_csum)
td_inb[i].ipsec_xform.options.l4_csum_enable = 1;
/* Clear outbound specific flags */
td_inb[i].ipsec_xform.options.iv_gen_disable = 0;
}
}
void
test_ipsec_display_alg(const struct crypto_param *param1,
const struct crypto_param *param2)
{
if (param1->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
printf("\t%s [%d]",
rte_crypto_aead_algorithm_strings[param1->alg.aead],
param1->key_length * 8);
} else if (param1->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
printf("\t%s",
rte_crypto_auth_algorithm_strings[param1->alg.auth]);
if (param1->alg.auth != RTE_CRYPTO_AUTH_NULL)
printf(" [%dB ICV]", param1->digest_length);
} else {
printf("\t%s",
rte_crypto_cipher_algorithm_strings[param1->alg.cipher]);
if (param1->alg.cipher != RTE_CRYPTO_CIPHER_NULL)
printf(" [%d]", param1->key_length * 8);
printf(" %s",
rte_crypto_auth_algorithm_strings[param2->alg.auth]);
if (param2->alg.auth != RTE_CRYPTO_AUTH_NULL)
printf(" [%dB ICV]", param2->digest_length);
}
printf("\n");
}
static int
test_ipsec_tunnel_hdr_len_get(const struct ipsec_test_data *td)
{
int len = 0;
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
if (td->ipsec_xform.mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) {
if (td->ipsec_xform.tunnel.type ==
RTE_SECURITY_IPSEC_TUNNEL_IPV4)
len += sizeof(struct rte_ipv4_hdr);
else
len += sizeof(struct rte_ipv6_hdr);
}
}
return len;
}
static int
test_ipsec_iv_verify_push(struct rte_mbuf *m, const struct ipsec_test_data *td)
{
static uint8_t iv_queue[IV_LEN_MAX * IPSEC_TEST_PACKETS_MAX];
uint8_t *iv_tmp, *output_text = rte_pktmbuf_mtod(m, uint8_t *);
int i, iv_pos, iv_len;
static int index;
if (td->aead)
iv_len = td->xform.aead.aead.iv.length - td->salt.len;
else
iv_len = td->xform.chain.cipher.cipher.iv.length;
iv_pos = test_ipsec_tunnel_hdr_len_get(td) + sizeof(struct rte_esp_hdr);
output_text += iv_pos;
TEST_ASSERT(iv_len <= IV_LEN_MAX, "IV length greater than supported");
/* Compare against previous values */
for (i = 0; i < index; i++) {
iv_tmp = &iv_queue[i * IV_LEN_MAX];
if (memcmp(output_text, iv_tmp, iv_len) == 0) {
printf("IV repeated");
return TEST_FAILED;
}
}
/* Save IV for future comparisons */
iv_tmp = &iv_queue[index * IV_LEN_MAX];
memcpy(iv_tmp, output_text, iv_len);
index++;
if (index == IPSEC_TEST_PACKETS_MAX)
index = 0;
return TEST_SUCCESS;
}
static int
test_ipsec_l3_csum_verify(struct rte_mbuf *m)
{
uint16_t actual_cksum, expected_cksum;
struct rte_ipv4_hdr *ip;
ip = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
if (!is_ipv4((void *)ip))
return TEST_SKIPPED;
actual_cksum = ip->hdr_checksum;
ip->hdr_checksum = 0;
expected_cksum = rte_ipv4_cksum(ip);
if (actual_cksum != expected_cksum)
return TEST_FAILED;
return TEST_SUCCESS;
}
static int
test_ipsec_l4_csum_verify(struct rte_mbuf *m)
{
uint16_t actual_cksum = 0, expected_cksum = 0;
struct rte_ipv4_hdr *ipv4;
struct rte_ipv6_hdr *ipv6;
struct rte_tcp_hdr *tcp;
struct rte_udp_hdr *udp;
void *ip, *l4;
ip = rte_pktmbuf_mtod(m, void *);
if (is_ipv4(ip)) {
ipv4 = ip;
l4 = RTE_PTR_ADD(ipv4, sizeof(struct rte_ipv4_hdr));
switch (ipv4->next_proto_id) {
case IPPROTO_TCP:
tcp = (struct rte_tcp_hdr *)l4;
actual_cksum = tcp->cksum;
tcp->cksum = 0;
expected_cksum = rte_ipv4_udptcp_cksum(ipv4, l4);
break;
case IPPROTO_UDP:
udp = (struct rte_udp_hdr *)l4;
actual_cksum = udp->dgram_cksum;
udp->dgram_cksum = 0;
expected_cksum = rte_ipv4_udptcp_cksum(ipv4, l4);
break;
default:
break;
}
} else {
ipv6 = ip;
l4 = RTE_PTR_ADD(ipv6, sizeof(struct rte_ipv6_hdr));
switch (ipv6->proto) {
case IPPROTO_TCP:
tcp = (struct rte_tcp_hdr *)l4;
actual_cksum = tcp->cksum;
tcp->cksum = 0;
expected_cksum = rte_ipv6_udptcp_cksum(ipv6, l4);
break;
case IPPROTO_UDP:
udp = (struct rte_udp_hdr *)l4;
actual_cksum = udp->dgram_cksum;
udp->dgram_cksum = 0;
expected_cksum = rte_ipv6_udptcp_cksum(ipv6, l4);
break;
default:
break;
}
}
if (actual_cksum != expected_cksum)
return TEST_FAILED;
return TEST_SUCCESS;
}
static int
test_ipsec_ttl_or_hop_decrement_verify(void *received, void *expected)
{
struct rte_ipv4_hdr *iph4_ex, *iph4_re;
struct rte_ipv6_hdr *iph6_ex, *iph6_re;
if (is_ipv4(received) && is_ipv4(expected)) {
iph4_ex = expected;
iph4_re = received;
iph4_ex->time_to_live -= 1;
if (iph4_re->time_to_live != iph4_ex->time_to_live)
return TEST_FAILED;
} else if (!is_ipv4(received) && !is_ipv4(expected)) {
iph6_ex = expected;
iph6_re = received;
iph6_ex->hop_limits -= 1;
if (iph6_re->hop_limits != iph6_ex->hop_limits)
return TEST_FAILED;
} else {
printf("IP header version miss match\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static int
test_ipsec_td_verify(struct rte_mbuf *m, const struct ipsec_test_data *td,
bool silent, const struct ipsec_test_flags *flags)
{
uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
uint32_t skip, len = rte_pktmbuf_pkt_len(m);
uint8_t td_output_text[4096];
int ret;
/* For tests with status as error for test success, skip verification */
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
(flags->icv_corrupt ||
flags->sa_expiry_pkts_hard ||
flags->tunnel_hdr_verify ||
td->ar_packet))
return TEST_SUCCESS;
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS &&
flags->udp_encap) {
const struct rte_ipv4_hdr *iph4;
const struct rte_ipv6_hdr *iph6;
if (td->ipsec_xform.tunnel.type ==
RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
iph4 = (const struct rte_ipv4_hdr *)output_text;
if (iph4->next_proto_id != IPPROTO_UDP) {
printf("UDP header is not found\n");
return TEST_FAILED;
}
} else {
iph6 = (const struct rte_ipv6_hdr *)output_text;
if (iph6->proto != IPPROTO_UDP) {
printf("UDP header is not found\n");
return TEST_FAILED;
}
}
len -= sizeof(struct rte_udp_hdr);
output_text += sizeof(struct rte_udp_hdr);
}
if (len != td->output_text.len) {
printf("Output length (%d) not matching with expected (%d)\n",
len, td->output_text.len);
return TEST_FAILED;
}
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
flags->fragment) {
const struct rte_ipv4_hdr *iph4;
iph4 = (const struct rte_ipv4_hdr *)output_text;
if (iph4->fragment_offset) {
printf("Output packet is fragmented");
return TEST_FAILED;
}
}
skip = test_ipsec_tunnel_hdr_len_get(td);
len -= skip;
output_text += skip;
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
flags->ip_csum) {
if (m->ol_flags & RTE_MBUF_F_RX_IP_CKSUM_GOOD)
ret = test_ipsec_l3_csum_verify(m);
else
ret = TEST_FAILED;
if (ret == TEST_FAILED)
printf("Inner IP checksum test failed\n");
return ret;
}
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
flags->l4_csum) {
if (m->ol_flags & RTE_MBUF_F_RX_L4_CKSUM_GOOD)
ret = test_ipsec_l4_csum_verify(m);
else
ret = TEST_FAILED;
if (ret == TEST_FAILED)
printf("Inner L4 checksum test failed\n");
return ret;
}
memcpy(td_output_text, td->output_text.data + skip, len);
if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
flags->dec_ttl_or_hop_limit) {
if (test_ipsec_ttl_or_hop_decrement_verify(output_text, td_output_text)) {
printf("Inner TTL/hop limit decrement test failed\n");
return TEST_FAILED;
}
}
if (test_ipsec_pkt_update(td_output_text, flags)) {
printf("Could not update expected vector");
return TEST_FAILED;
}
if (memcmp(output_text, td_output_text, len)) {
if (silent)
return TEST_FAILED;
printf("TestCase %s line %d: %s\n", __func__, __LINE__,
"output text not as expected\n");
rte_hexdump(stdout, "expected", td_output_text, len);
rte_hexdump(stdout, "actual", output_text, len);
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static int
test_ipsec_res_d_prepare(struct rte_mbuf *m, const struct ipsec_test_data *td,
struct ipsec_test_data *res_d)
{
uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
uint32_t len = rte_pktmbuf_pkt_len(m);
memcpy(res_d, td, sizeof(*res_d));
memcpy(res_d->input_text.data, output_text, len);
res_d->input_text.len = len;
res_d->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
if (res_d->aead) {
res_d->xform.aead.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
} else {
res_d->xform.chain.cipher.cipher.op =
RTE_CRYPTO_CIPHER_OP_DECRYPT;
res_d->xform.chain.auth.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
}
return TEST_SUCCESS;
}
static int
test_ipsec_iph4_hdr_validate(const struct rte_ipv4_hdr *iph4,
const struct ipsec_test_flags *flags)
{
uint8_t tos, dscp;
uint16_t f_off;
if (!is_valid_ipv4_pkt(iph4)) {
printf("Tunnel outer header is not IPv4\n");
return -1;
}
if (flags->ah && iph4->next_proto_id != IPPROTO_AH) {
printf("Tunnel outer header proto is not AH\n");
return -1;
}
f_off = rte_be_to_cpu_16(iph4->fragment_offset);
if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
flags->df == TEST_IPSEC_SET_DF_1_INNER_0) {
if (!(f_off & RTE_IPV4_HDR_DF_FLAG)) {
printf("DF bit is not set\n");
return -1;
}
} else {
if (f_off & RTE_IPV4_HDR_DF_FLAG) {
printf("DF bit is set\n");
return -1;
}
}
tos = iph4->type_of_service;
dscp = (tos & RTE_IPV4_HDR_DSCP_MASK) >> 2;
if (flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_1 ||
flags->dscp == TEST_IPSEC_SET_DSCP_1_INNER_0) {
if (dscp != TEST_IPSEC_DSCP_VAL) {
printf("DSCP value is not matching [exp: %x, actual: %x]\n",
TEST_IPSEC_DSCP_VAL, dscp);
return -1;
}
} else {
if (dscp != 0) {
printf("DSCP value is set [exp: 0, actual: %x]\n",
dscp);
return -1;
}
}
return 0;
}
static int
test_ipsec_iph6_hdr_validate(const struct rte_ipv6_hdr *iph6,
const struct ipsec_test_flags *flags)
{
uint32_t vtc_flow;
uint32_t flabel;
uint8_t dscp;
if (!is_valid_ipv6_pkt(iph6)) {
printf("Tunnel outer header is not IPv6\n");
return -1;
}
vtc_flow = rte_be_to_cpu_32(iph6->vtc_flow);
dscp = (vtc_flow & RTE_IPV6_HDR_DSCP_MASK) >>
(RTE_IPV6_HDR_TC_SHIFT + 2);
if (flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_1 ||
flags->dscp == TEST_IPSEC_SET_DSCP_1_INNER_0) {
if (dscp != TEST_IPSEC_DSCP_VAL) {
printf("DSCP value is not matching [exp: %x, actual: %x]\n",
TEST_IPSEC_DSCP_VAL, dscp);
return -1;
}
} else {
if (dscp != 0) {
printf("DSCP value is set [exp: 0, actual: %x]\n",
dscp);
return -1;
}
}
flabel = vtc_flow & RTE_IPV6_HDR_FL_MASK;
if (flags->flabel == TEST_IPSEC_COPY_FLABEL_INNER_1 ||
flags->flabel == TEST_IPSEC_SET_FLABEL_1_INNER_0) {
if (flabel != TEST_IPSEC_FLABEL_VAL) {
printf("FLABEL value is not matching [exp: %x, actual: %x]\n",
TEST_IPSEC_FLABEL_VAL, flabel);
return -1;
}
} else {
if (flabel != 0) {
printf("FLABEL value is set [exp: 0, actual: %x]\n",
flabel);
return -1;
}
}
return 0;
}
int
test_ipsec_post_process(struct rte_mbuf *m, const struct ipsec_test_data *td,
struct ipsec_test_data *res_d, bool silent,
const struct ipsec_test_flags *flags)
{
uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
int ret;
if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
const struct rte_ipv4_hdr *iph4;
const struct rte_ipv6_hdr *iph6;
if (flags->iv_gen) {
ret = test_ipsec_iv_verify_push(m, td);
if (ret != TEST_SUCCESS)
return ret;
}
iph4 = (const struct rte_ipv4_hdr *)output_text;
if (td->ipsec_xform.mode ==
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT) {
if (flags->ipv6) {
iph6 = (const struct rte_ipv6_hdr *)output_text;
if (is_valid_ipv6_pkt(iph6) == false) {
printf("Transport packet is not IPv6\n");
return TEST_FAILED;
}
} else {
if (is_valid_ipv4_pkt(iph4) == false) {
printf("Transport packet is not IPv4\n");
return TEST_FAILED;
}
if (flags->ah && iph4->next_proto_id != IPPROTO_AH) {
printf("Transport IPv4 header proto is not AH\n");
return -1;
}
}
} else {
if (td->ipsec_xform.tunnel.type ==
RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
if (test_ipsec_iph4_hdr_validate(iph4, flags))
return TEST_FAILED;
} else {
iph6 = (const struct rte_ipv6_hdr *)output_text;
if (test_ipsec_iph6_hdr_validate(iph6, flags))
return TEST_FAILED;
}
}
}
/*
* In case of known vector tests & all inbound tests, res_d provided
* would be NULL and output data need to be validated against expected.
* For inbound, output_text would be plain packet and for outbound
* output_text would IPsec packet. Validate by comparing against
* known vectors.
*
* In case of combined mode tests, the output_text from outbound
* operation (ie, IPsec packet) would need to be inbound processed to
* obtain the plain text. Copy output_text to result data, 'res_d', so
* that inbound processing can be done.
*/
if (res_d == NULL)
return test_ipsec_td_verify(m, td, silent, flags);
else
return test_ipsec_res_d_prepare(m, td, res_d);
}
int
test_ipsec_status_check(const struct ipsec_test_data *td,
struct rte_crypto_op *op,
const struct ipsec_test_flags *flags,
enum rte_security_ipsec_sa_direction dir,
int pkt_num)
{
int ret = TEST_SUCCESS;
if ((dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
td->ar_packet) {
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
printf("Anti replay test case failed\n");
return TEST_FAILED;
} else {
return TEST_SUCCESS;
}
}
if (dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
flags->sa_expiry_pkts_hard &&
pkt_num == IPSEC_TEST_PACKETS_MAX) {
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
printf("SA hard expiry (pkts) test failed\n");
return TEST_FAILED;
} else {
return TEST_SUCCESS;
}
}
if ((dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
flags->tunnel_hdr_verify) {
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
printf("Tunnel header verify test case failed\n");
return TEST_FAILED;
} else {
return TEST_SUCCESS;
}
}
if (dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS && flags->icv_corrupt) {
if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
printf("ICV corruption test case failed\n");
ret = TEST_FAILED;
}
} else {
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
printf("Security op processing failed [pkt_num: %d]\n",
pkt_num);
ret = TEST_FAILED;
}
}
if (flags->sa_expiry_pkts_soft && pkt_num == IPSEC_TEST_PACKETS_MAX) {
if (!(op->aux_flags &
RTE_CRYPTO_OP_AUX_FLAGS_IPSEC_SOFT_EXPIRY)) {
printf("SA soft expiry (pkts) test failed\n");
ret = TEST_FAILED;
}
}
return ret;
}
int
test_ipsec_stats_verify(struct rte_security_ctx *ctx,
void *sess,
const struct ipsec_test_flags *flags,
enum rte_security_ipsec_sa_direction dir)
{
struct rte_security_stats stats = {0};
int ret = TEST_SUCCESS;
if (flags->stats_success) {
if (rte_security_session_stats_get(ctx, sess, &stats) < 0)
return TEST_FAILED;
if (dir == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
if (stats.ipsec.opackets != 1 ||
stats.ipsec.oerrors != 0)
ret = TEST_FAILED;
} else {
if (stats.ipsec.ipackets != 1 ||
stats.ipsec.ierrors != 0)
ret = TEST_FAILED;
}
}
return ret;
}
int
test_ipsec_pkt_update(uint8_t *pkt, const struct ipsec_test_flags *flags)
{
struct rte_ipv4_hdr *iph4;
struct rte_ipv6_hdr *iph6;
bool cksum_dirty = false;
iph4 = (struct rte_ipv4_hdr *)pkt;
if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
flags->df == TEST_IPSEC_SET_DF_0_INNER_1 ||
flags->df == TEST_IPSEC_COPY_DF_INNER_0 ||
flags->df == TEST_IPSEC_SET_DF_1_INNER_0) {
uint16_t frag_off;
if (!is_ipv4(iph4)) {
printf("Invalid packet type\n");
return -1;
}
frag_off = rte_be_to_cpu_16(iph4->fragment_offset);
if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
flags->df == TEST_IPSEC_SET_DF_0_INNER_1)
frag_off |= RTE_IPV4_HDR_DF_FLAG;
else
frag_off &= ~RTE_IPV4_HDR_DF_FLAG;
iph4->fragment_offset = rte_cpu_to_be_16(frag_off);
cksum_dirty = true;
}
if (flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_1 ||
flags->dscp == TEST_IPSEC_SET_DSCP_0_INNER_1 ||
flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_0 ||
flags->dscp == TEST_IPSEC_SET_DSCP_1_INNER_0 ||
flags->flabel == TEST_IPSEC_COPY_FLABEL_INNER_1 ||
flags->flabel == TEST_IPSEC_SET_FLABEL_0_INNER_1 ||
flags->flabel == TEST_IPSEC_COPY_FLABEL_INNER_0 ||
flags->flabel == TEST_IPSEC_SET_FLABEL_1_INNER_0) {
if (is_ipv4(iph4)) {
uint8_t tos;
tos = iph4->type_of_service;
if (flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_1 ||
flags->dscp == TEST_IPSEC_SET_DSCP_0_INNER_1)
tos |= (RTE_IPV4_HDR_DSCP_MASK &
(TEST_IPSEC_DSCP_VAL << 2));
else
tos &= ~RTE_IPV4_HDR_DSCP_MASK;
iph4->type_of_service = tos;
cksum_dirty = true;
} else {
uint32_t vtc_flow;
iph6 = (struct rte_ipv6_hdr *)pkt;
vtc_flow = rte_be_to_cpu_32(iph6->vtc_flow);
if (flags->dscp == TEST_IPSEC_COPY_DSCP_INNER_1 ||
flags->dscp == TEST_IPSEC_SET_DSCP_0_INNER_1)
vtc_flow |= (RTE_IPV6_HDR_DSCP_MASK &
(TEST_IPSEC_DSCP_VAL << (RTE_IPV6_HDR_TC_SHIFT + 2)));
else
vtc_flow &= ~RTE_IPV6_HDR_DSCP_MASK;
if (flags->flabel == TEST_IPSEC_COPY_FLABEL_INNER_1 ||
flags->flabel == TEST_IPSEC_SET_FLABEL_0_INNER_1)
vtc_flow |= (RTE_IPV6_HDR_FL_MASK &
(TEST_IPSEC_FLABEL_VAL << RTE_IPV6_HDR_FL_SHIFT));
else
vtc_flow &= ~RTE_IPV6_HDR_FL_MASK;
iph6->vtc_flow = rte_cpu_to_be_32(vtc_flow);
}
}
if (cksum_dirty && is_ipv4(iph4)) {
iph4->hdr_checksum = 0;
iph4->hdr_checksum = rte_ipv4_cksum(iph4);
}
return 0;
}