numam-dpdk/drivers/net/ice/base/ice_osdep.h
David Marchand 7f7cbf80bd net/ice: factorize firmware loading
Both "normal" and "dcf" inits have their copy of some firmware loading
code.

The DSN query is moved in specific parts for the "normal" and "dcf" init.

A common helper ice_load_pkg is then introduced and takes an adapter
pointer as its main input.

This helper takes care of finding the right firmware file and loading
it.
The adapter active_pkg_type field is set by this helper.

The ice_access macro is removed from the osdep.h header: osdep.h should
only hosts wrappers for base driver code.

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
2021-07-07 16:41:53 +02:00

439 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 Intel Corporation
*/
#ifndef _ICE_OSDEP_H_
#define _ICE_OSDEP_H_
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <stdbool.h>
#include <rte_common.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_log.h>
#include <rte_io.h>
#include "ice_alloc.h"
#include "../ice_logs.h"
#ifndef __INTEL_NET_BASE_OSDEP__
#define __INTEL_NET_BASE_OSDEP__
#define INLINE inline
#define STATIC static
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
typedef uint64_t s64;
#ifndef __le16
#define __le16 uint16_t
#endif
#ifndef __le32
#define __le32 uint32_t
#endif
#ifndef __le64
#define __le64 uint64_t
#endif
#ifndef __be16
#define __be16 uint16_t
#endif
#ifndef __be32
#define __be32 uint32_t
#endif
#ifndef __be64
#define __be64 uint64_t
#endif
/* Avoid macro redefinition warning on Windows */
#ifdef RTE_EXEC_ENV_WINDOWS
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
#endif
#define min(a, b) RTE_MIN(a, b)
#define max(a, b) RTE_MAX(a, b)
#define FIELD_SIZEOF(t, f) RTE_SIZEOF_FIELD(t, f)
#define ARRAY_SIZE(arr) RTE_DIM(arr)
#define CPU_TO_LE16(o) rte_cpu_to_le_16(o)
#define CPU_TO_LE32(s) rte_cpu_to_le_32(s)
#define CPU_TO_LE64(h) rte_cpu_to_le_64(h)
#define LE16_TO_CPU(a) rte_le_to_cpu_16(a)
#define LE32_TO_CPU(c) rte_le_to_cpu_32(c)
#define LE64_TO_CPU(k) rte_le_to_cpu_64(k)
#define CPU_TO_BE16(o) rte_cpu_to_be_16(o)
#define CPU_TO_BE32(o) rte_cpu_to_be_32(o)
#define CPU_TO_BE64(o) rte_cpu_to_be_64(o)
#define BE16_TO_CPU(o) rte_be_to_cpu_16(o)
#define NTOHS(a) rte_be_to_cpu_16(a)
#define NTOHL(a) rte_be_to_cpu_32(a)
#define HTONS(a) rte_cpu_to_be_16(a)
#define HTONL(a) rte_cpu_to_be_32(a)
static __rte_always_inline uint32_t
readl(volatile void *addr)
{
return rte_le_to_cpu_32(rte_read32(addr));
}
static __rte_always_inline void
writel(uint32_t value, volatile void *addr)
{
rte_write32(rte_cpu_to_le_32(value), addr);
}
static __rte_always_inline void
writel_relaxed(uint32_t value, volatile void *addr)
{
rte_write32_relaxed(rte_cpu_to_le_32(value), addr);
}
static __rte_always_inline uint64_t
readq(volatile void *addr)
{
return rte_le_to_cpu_64(rte_read64(addr));
}
static __rte_always_inline void
writeq(uint64_t value, volatile void *addr)
{
rte_write64(rte_cpu_to_le_64(value), addr);
}
#define wr32(a, reg, value) writel((value), (a)->hw_addr + (reg))
#define rd32(a, reg) readl((a)->hw_addr + (reg))
#define wr64(a, reg, value) writeq((value), (a)->hw_addr + (reg))
#define rd64(a, reg) readq((a)->hw_addr + (reg))
#endif /* __INTEL_NET_BASE_OSDEP__ */
#ifndef __always_unused
#define __always_unused __rte_unused
#endif
#ifndef __maybe_unused
#define __maybe_unused __rte_unused
#endif
#ifndef __packed
#define __packed __rte_packed
#endif
#ifndef BIT_ULL
#define BIT_ULL(a) (1ULL << (a))
#endif
#define MAKEMASK(m, s) ((m) << (s))
#define ice_debug(h, m, s, ...) \
do { \
if (((m) & (h)->debug_mask)) \
PMD_DRV_LOG_RAW(DEBUG, "ice %02x.%x " s, \
(h)->bus.device, (h)->bus.func, \
##__VA_ARGS__); \
} while (0)
#define ice_info(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
#define ice_warn(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
#define ice_debug_array(hw, type, rowsize, groupsize, buf, len) \
do { \
struct ice_hw *hw_l = hw; \
u16 len_l = len; \
u8 *buf_l = buf; \
int i; \
for (i = 0; i < len_l; i += 8) \
ice_debug(hw_l, type, \
"0x%04X 0x%016"PRIx64"\n", \
i, *((u64 *)((buf_l) + i))); \
} while (0)
#define ice_snprintf snprintf
#ifndef SNPRINTF
#define SNPRINTF ice_snprintf
#endif
#define ICE_PCI_REG_WRITE(reg, value) writel(value, reg)
#define ICE_PCI_REG_WC_WRITE(reg, value) rte_write32_wc(value, reg)
#define ICE_READ_REG(hw, reg) rd32(hw, reg)
#define ICE_WRITE_REG(hw, reg, value) wr32(hw, reg, value)
#define ice_flush(a) ICE_READ_REG((a), GLGEN_STAT)
#define icevf_flush(a) ICE_READ_REG((a), VFGEN_RSTAT)
#define flush(a) ICE_READ_REG((a), GLGEN_STAT)
#define div64_long(n, d) ((n) / (d))
#define BITS_PER_BYTE 8
/* memory allocation tracking */
struct ice_dma_mem {
void *va;
u64 pa;
u32 size;
const void *zone;
} __rte_packed;
struct ice_virt_mem {
void *va;
u32 size;
} __rte_packed;
#define ice_malloc(h, s) rte_zmalloc(NULL, s, 0)
#define ice_calloc(h, c, s) rte_calloc(NULL, c, s, 0)
#define ice_free(h, m) rte_free(m)
#define ice_memset(a, b, c, d) memset((a), (b), (c))
#define ice_memcpy(a, b, c, d) rte_memcpy((a), (b), (c))
/* SW spinlock */
struct ice_lock {
rte_spinlock_t spinlock;
};
static inline void
ice_init_lock(struct ice_lock *sp)
{
rte_spinlock_init(&sp->spinlock);
}
static inline void
ice_acquire_lock(struct ice_lock *sp)
{
rte_spinlock_lock(&sp->spinlock);
}
static inline void
ice_release_lock(struct ice_lock *sp)
{
rte_spinlock_unlock(&sp->spinlock);
}
static inline void
ice_destroy_lock(__rte_unused struct ice_lock *sp)
{
}
struct ice_hw;
static __rte_always_inline void *
ice_memdup(__rte_unused struct ice_hw *hw, const void *src, size_t size,
__rte_unused enum ice_memcpy_type dir)
{
void *p;
p = ice_malloc(hw, size);
if (p)
rte_memcpy(p, src, size);
return p;
}
static inline void *
ice_alloc_dma_mem(__rte_unused struct ice_hw *hw,
struct ice_dma_mem *mem, u64 size)
{
static uint64_t ice_dma_memzone_id;
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
if (!mem)
return NULL;
snprintf(z_name, sizeof(z_name), "ice_dma_%" PRIu64,
__atomic_fetch_add(&ice_dma_memzone_id, 1, __ATOMIC_RELAXED));
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
0, RTE_PGSIZE_2M);
if (!mz)
return NULL;
mem->size = size;
mem->va = mz->addr;
mem->pa = mz->iova;
mem->zone = (const void *)mz;
PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: "
"%"PRIu64, mz->name, mem->pa);
return mem->va;
}
static inline void
ice_free_dma_mem(__rte_unused struct ice_hw *hw,
struct ice_dma_mem *mem)
{
PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: "
"%"PRIu64, ((const struct rte_memzone *)mem->zone)->name,
mem->pa);
rte_memzone_free((const struct rte_memzone *)mem->zone);
mem->zone = NULL;
mem->va = NULL;
mem->pa = (u64)0;
}
static inline u8
ice_hweight8(u32 num)
{
u8 bits = 0;
u32 i;
for (i = 0; i < 8; i++) {
bits += (u8)(num & 0x1);
num >>= 1;
}
return bits;
}
static inline u8
ice_hweight32(u32 num)
{
u8 bits = 0;
u32 i;
for (i = 0; i < 32; i++) {
bits += (u8)(num & 0x1);
num >>= 1;
}
return bits;
}
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define DELAY(x) rte_delay_us(x)
#define ice_usec_delay(x, y) rte_delay_us(x)
#define ice_msec_delay(x, y) rte_delay_us(1000 * (x))
#define udelay(x) DELAY(x)
#define msleep(x) DELAY(1000 * (x))
#define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000))
struct ice_list_entry {
LIST_ENTRY(ice_list_entry) next;
};
LIST_HEAD(ice_list_head, ice_list_entry);
#define LIST_ENTRY_TYPE ice_list_entry
#define LIST_HEAD_TYPE ice_list_head
#define INIT_LIST_HEAD(list_head) LIST_INIT(list_head)
#define LIST_DEL(entry) LIST_REMOVE(entry, next)
/* LIST_EMPTY(list_head)) the same in sys/queue.h */
/*Note parameters are swapped*/
#define LIST_FIRST_ENTRY(head, type, field) (type *)((head)->lh_first)
#define LIST_NEXT_ENTRY(entry, type, field) \
((type *)(entry)->field.next.le_next)
#define LIST_ADD(entry, list_head) LIST_INSERT_HEAD(list_head, entry, next)
#define LIST_ADD_AFTER(entry, list_entry) \
LIST_INSERT_AFTER(list_entry, entry, next)
static inline void list_add_tail(struct ice_list_entry *entry,
struct ice_list_head *head)
{
struct ice_list_entry *tail = head->lh_first;
if (tail == NULL) {
LIST_INSERT_HEAD(head, entry, next);
return;
}
while (tail->next.le_next != NULL)
tail = tail->next.le_next;
LIST_INSERT_AFTER(tail, entry, next);
}
#define LIST_ADD_TAIL(entry, head) list_add_tail(entry, head)
#define LIST_FOR_EACH_ENTRY(pos, head, type, member) \
for ((pos) = (head)->lh_first ? \
container_of((head)->lh_first, struct type, member) : \
0; \
(pos); \
(pos) = (pos)->member.next.le_next ? \
container_of((pos)->member.next.le_next, struct type, \
member) : \
0)
#define LIST_FOR_EACH_ENTRY_SAFE(pos, tmp, head, type, member) \
for ((pos) = (head)->lh_first ? \
container_of((head)->lh_first, struct type, member) : \
0, \
(tmp) = (pos) == 0 ? 0 : ((pos)->member.next.le_next ? \
container_of((pos)->member.next.le_next, struct type, \
member) : \
0); \
(pos); \
(pos) = (tmp), \
(tmp) = (pos) == 0 ? 0 : ((tmp)->member.next.le_next ? \
container_of((pos)->member.next.le_next, struct type, \
member) : \
0))
#define LIST_REPLACE_INIT(list_head, head) do { \
(head)->lh_first = (list_head)->lh_first; \
INIT_LIST_HEAD(list_head); \
} while (0)
#define HLIST_NODE_TYPE LIST_ENTRY_TYPE
#define HLIST_HEAD_TYPE LIST_HEAD_TYPE
#define INIT_HLIST_HEAD(list_head) INIT_LIST_HEAD(list_head)
#define HLIST_ADD_HEAD(entry, list_head) LIST_ADD(entry, list_head)
#define HLIST_EMPTY(list_head) LIST_EMPTY(list_head)
#define HLIST_DEL(entry) LIST_DEL(entry)
#define HLIST_FOR_EACH_ENTRY(pos, head, type, member) \
LIST_FOR_EACH_ENTRY(pos, head, type, member)
#ifndef ICE_DBG_TRACE
#define ICE_DBG_TRACE BIT_ULL(0)
#endif
#ifndef DIVIDE_AND_ROUND_UP
#define DIVIDE_AND_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
#endif
#ifndef ICE_INTEL_VENDOR_ID
#define ICE_INTEL_VENDOR_ID 0x8086
#endif
#ifndef IS_UNICAST_ETHER_ADDR
#define IS_UNICAST_ETHER_ADDR(addr) \
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 0))
#endif
#ifndef IS_MULTICAST_ETHER_ADDR
#define IS_MULTICAST_ETHER_ADDR(addr) \
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 1))
#endif
#ifndef IS_BROADCAST_ETHER_ADDR
/* Check whether an address is broadcast. */
#define IS_BROADCAST_ETHER_ADDR(addr) \
((bool)((((u16 *)(addr))[0] == ((u16)0xffff))))
#endif
#ifndef IS_ZERO_ETHER_ADDR
#define IS_ZERO_ETHER_ADDR(addr) \
(((bool)((((u16 *)(addr))[0] == ((u16)0x0)))) && \
((bool)((((u16 *)(addr))[1] == ((u16)0x0)))) && \
((bool)((((u16 *)(addr))[2] == ((u16)0x0)))))
#endif
#endif /* _ICE_OSDEP_H_ */