numam-dpdk/app/test-crypto-perf/cperf_options_parsing.c
Aleksander Gajewski 8ecd4048ba app/crypto-perf: fix string not null terminated
This commit fixes the case where the string buffer may not have
a null terminator if the source string's length is equal to the
buffer size.

Coverity issue: 141069
Fixes: f8be1786b1 ("app/crypto-perf: introduce performance test application")

Signed-off-by: Aleksander Gajewski <aleksanderx.gajewski@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2017-02-10 16:02:30 +01:00

878 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <getopt.h>
#include <unistd.h>
#include <rte_malloc.h>
#include "cperf_options.h"
struct name_id_map {
const char *name;
uint32_t id;
};
static int
get_str_key_id_mapping(struct name_id_map *map, unsigned int map_len,
const char *str_key)
{
unsigned int i;
for (i = 0; i < map_len; i++) {
if (strcmp(str_key, map[i].name) == 0)
return map[i].id;
}
return -1;
}
static int
parse_cperf_test_type(struct cperf_options *opts, const char *arg)
{
struct name_id_map cperftest_namemap[] = {
{
cperf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT],
CPERF_TEST_TYPE_THROUGHPUT
},
{
cperf_test_type_strs[CPERF_TEST_TYPE_CYCLECOUNT],
CPERF_TEST_TYPE_CYCLECOUNT
},
{
cperf_test_type_strs[CPERF_TEST_TYPE_LATENCY],
CPERF_TEST_TYPE_LATENCY
}
};
int id = get_str_key_id_mapping(
(struct name_id_map *)cperftest_namemap,
RTE_DIM(cperftest_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "failed to parse test type");
return -1;
}
opts->test = (enum cperf_perf_test_type)id;
return 0;
}
static int
parse_uint32_t(uint32_t *value, const char *arg)
{
char *end = NULL;
unsigned long n = strtoul(arg, &end, 10);
if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n > UINT32_MAX)
return -ERANGE;
*value = (uint32_t) n;
return 0;
}
static int
parse_uint16_t(uint16_t *value, const char *arg)
{
uint32_t val = 0;
int ret = parse_uint32_t(&val, arg);
if (ret < 0)
return ret;
if (val > UINT16_MAX)
return -ERANGE;
*value = (uint16_t) val;
return 0;
}
static int
parse_total_ops(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->total_ops, arg);
if (ret)
RTE_LOG(ERR, USER1, "failed to parse total operations count");
return ret;
}
static int
parse_pool_sz(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->pool_sz, arg);
if (ret)
RTE_LOG(ERR, USER1, "failed to parse pool size");
return ret;
}
static int
parse_burst_sz(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->burst_sz, arg);
if (ret)
RTE_LOG(ERR, USER1, "failed to parse burst size");
return ret;
}
static int
parse_buffer_sz(struct cperf_options *opts, const char *arg)
{
uint32_t i, valid_buf_sz[] = {
32, 64, 128, 256, 384, 512, 768, 1024, 1280, 1536, 1792,
2048
};
if (parse_uint32_t(&opts->buffer_sz, arg)) {
RTE_LOG(ERR, USER1, "failed to parse buffer size");
return -1;
}
for (i = 0; i < RTE_DIM(valid_buf_sz); i++)
if (valid_buf_sz[i] == opts->buffer_sz)
return 0;
RTE_LOG(ERR, USER1, "invalid buffer size specified");
return -1;
}
static int
parse_segments_nb(struct cperf_options *opts, const char *arg)
{
int ret = parse_uint32_t(&opts->segments_nb, arg);
if (ret) {
RTE_LOG(ERR, USER1, "failed to parse segments number\n");
return -1;
}
if ((opts->segments_nb == 0) || (opts->segments_nb > 255)) {
RTE_LOG(ERR, USER1, "invalid segments number specified\n");
return -1;
}
return 0;
}
static int
parse_device_type(struct cperf_options *opts, const char *arg)
{
if (strlen(arg) > (sizeof(opts->device_type) - 1))
return -1;
strncpy(opts->device_type, arg, sizeof(opts->device_type) - 1);
*(opts->device_type + sizeof(opts->device_type) - 1) = '\0';
return 0;
}
static int
parse_op_type(struct cperf_options *opts, const char *arg)
{
struct name_id_map optype_namemap[] = {
{
cperf_op_type_strs[CPERF_CIPHER_ONLY],
CPERF_CIPHER_ONLY
},
{
cperf_op_type_strs[CPERF_AUTH_ONLY],
CPERF_AUTH_ONLY
},
{
cperf_op_type_strs[CPERF_CIPHER_THEN_AUTH],
CPERF_CIPHER_THEN_AUTH
},
{
cperf_op_type_strs[CPERF_AUTH_THEN_CIPHER],
CPERF_AUTH_THEN_CIPHER
},
{
cperf_op_type_strs[CPERF_AEAD],
CPERF_AEAD
}
};
int id = get_str_key_id_mapping(optype_namemap,
RTE_DIM(optype_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "invalid opt type specified\n");
return -1;
}
opts->op_type = (enum cperf_op_type)id;
return 0;
}
static int
parse_sessionless(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->sessionless = 1;
return 0;
}
static int
parse_out_of_place(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->out_of_place = 1;
return 0;
}
static int
parse_verify(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->verify = 1;
return 0;
}
static int
parse_test_file(struct cperf_options *opts,
const char *arg)
{
opts->test_file = strdup(arg);
if (access(opts->test_file, F_OK) != -1)
return 0;
RTE_LOG(ERR, USER1, "Test vector file doesn't exist\n");
return -1;
}
static int
parse_test_name(struct cperf_options *opts,
const char *arg)
{
char *test_name = (char *) rte_zmalloc(NULL,
sizeof(char) * (strlen(arg) + 3), 0);
snprintf(test_name, strlen(arg) + 3, "[%s]", arg);
opts->test_name = test_name;
return 0;
}
static int
parse_silent(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->silent = 1;
return 0;
}
static int
parse_cipher_algo(struct cperf_options *opts, const char *arg)
{
struct name_id_map cipher_algo_namemap[] = {
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_3DES_CBC],
RTE_CRYPTO_CIPHER_3DES_CBC
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_3DES_ECB],
RTE_CRYPTO_CIPHER_3DES_ECB
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_3DES_CTR],
RTE_CRYPTO_CIPHER_3DES_CTR
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_CBC],
RTE_CRYPTO_CIPHER_AES_CBC
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_CCM],
RTE_CRYPTO_CIPHER_AES_CCM
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_CTR],
RTE_CRYPTO_CIPHER_AES_CTR
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_ECB],
RTE_CRYPTO_CIPHER_AES_ECB
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_GCM],
RTE_CRYPTO_CIPHER_AES_GCM
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_F8],
RTE_CRYPTO_CIPHER_AES_F8
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_AES_XTS],
RTE_CRYPTO_CIPHER_AES_XTS
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_ARC4],
RTE_CRYPTO_CIPHER_ARC4
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_NULL],
RTE_CRYPTO_CIPHER_NULL
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_KASUMI_F8],
RTE_CRYPTO_CIPHER_KASUMI_F8
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_SNOW3G_UEA2],
RTE_CRYPTO_CIPHER_SNOW3G_UEA2
},
{
rte_crypto_cipher_algorithm_strings
[RTE_CRYPTO_CIPHER_ZUC_EEA3],
RTE_CRYPTO_CIPHER_ZUC_EEA3
},
};
int id = get_str_key_id_mapping(cipher_algo_namemap,
RTE_DIM(cipher_algo_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "Invalid cipher algorithm specified\n");
return -1;
}
opts->cipher_algo = (enum rte_crypto_cipher_algorithm)id;
return 0;
}
static int
parse_cipher_op(struct cperf_options *opts, const char *arg)
{
struct name_id_map cipher_op_namemap[] = {
{
rte_crypto_cipher_operation_strings
[RTE_CRYPTO_CIPHER_OP_ENCRYPT],
RTE_CRYPTO_CIPHER_OP_ENCRYPT },
{
rte_crypto_cipher_operation_strings
[RTE_CRYPTO_CIPHER_OP_DECRYPT],
RTE_CRYPTO_CIPHER_OP_DECRYPT
}
};
int id = get_str_key_id_mapping(cipher_op_namemap,
RTE_DIM(cipher_op_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "Invalid cipher operation specified\n");
return -1;
}
opts->cipher_op = (enum rte_crypto_cipher_operation)id;
return 0;
}
static int
parse_cipher_key_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->cipher_key_sz, arg);
}
static int
parse_cipher_iv_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->cipher_iv_sz, arg);
}
static int
parse_auth_algo(struct cperf_options *opts, const char *arg) {
struct name_id_map cipher_auth_namemap[] = {
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_AES_CBC_MAC],
RTE_CRYPTO_AUTH_AES_CBC_MAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_AES_CCM],
RTE_CRYPTO_AUTH_AES_CCM
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_AES_CMAC],
RTE_CRYPTO_AUTH_AES_CMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_AES_GCM],
RTE_CRYPTO_AUTH_AES_GCM
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_AES_GMAC],
RTE_CRYPTO_AUTH_AES_GMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
RTE_CRYPTO_AUTH_AES_XCBC_MAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_MD5],
RTE_CRYPTO_AUTH_MD5
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_MD5_HMAC],
RTE_CRYPTO_AUTH_MD5_HMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA1],
RTE_CRYPTO_AUTH_SHA1
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA1_HMAC],
RTE_CRYPTO_AUTH_SHA1_HMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA224],
RTE_CRYPTO_AUTH_SHA224
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA224_HMAC],
RTE_CRYPTO_AUTH_SHA224_HMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA256],
RTE_CRYPTO_AUTH_SHA256
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA256_HMAC],
RTE_CRYPTO_AUTH_SHA256_HMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA384],
RTE_CRYPTO_AUTH_SHA384
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA384_HMAC],
RTE_CRYPTO_AUTH_SHA384_HMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA512],
RTE_CRYPTO_AUTH_SHA512
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SHA512_HMAC],
RTE_CRYPTO_AUTH_SHA512_HMAC
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_KASUMI_F9],
RTE_CRYPTO_AUTH_KASUMI_F9
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_SNOW3G_UIA2],
RTE_CRYPTO_AUTH_SNOW3G_UIA2
},
{
rte_crypto_auth_algorithm_strings
[RTE_CRYPTO_AUTH_ZUC_EIA3],
RTE_CRYPTO_AUTH_ZUC_EIA3
},
};
int id = get_str_key_id_mapping(cipher_auth_namemap,
RTE_DIM(cipher_auth_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "invalid authentication algorithm specified"
"\n");
return -1;
}
opts->auth_algo = (enum rte_crypto_auth_algorithm)id;
return 0;
}
static int
parse_auth_op(struct cperf_options *opts, const char *arg)
{
struct name_id_map auth_op_namemap[] = {
{
rte_crypto_auth_operation_strings
[RTE_CRYPTO_AUTH_OP_GENERATE],
RTE_CRYPTO_AUTH_OP_GENERATE },
{
rte_crypto_auth_operation_strings
[RTE_CRYPTO_AUTH_OP_VERIFY],
RTE_CRYPTO_AUTH_OP_VERIFY
}
};
int id = get_str_key_id_mapping(auth_op_namemap,
RTE_DIM(auth_op_namemap), arg);
if (id < 0) {
RTE_LOG(ERR, USER1, "invalid authentication operation specified"
"\n");
return -1;
}
opts->auth_op = (enum rte_crypto_auth_operation)id;
return 0;
}
static int
parse_auth_key_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->auth_key_sz, arg);
}
static int
parse_auth_digest_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->auth_digest_sz, arg);
}
static int
parse_auth_aad_sz(struct cperf_options *opts, const char *arg)
{
return parse_uint16_t(&opts->auth_aad_sz, arg);
}
static int
parse_csv_friendly(struct cperf_options *opts, const char *arg __rte_unused)
{
opts->csv = 1;
opts->silent = 1;
return 0;
}
typedef int (*option_parser_t)(struct cperf_options *opts,
const char *arg);
struct long_opt_parser {
const char *lgopt_name;
option_parser_t parser_fn;
};
static struct option lgopts[] = {
{ CPERF_PTEST_TYPE, required_argument, 0, 0 },
{ CPERF_POOL_SIZE, required_argument, 0, 0 },
{ CPERF_TOTAL_OPS, required_argument, 0, 0 },
{ CPERF_BURST_SIZE, required_argument, 0, 0 },
{ CPERF_BUFFER_SIZE, required_argument, 0, 0 },
{ CPERF_SEGMENTS_NB, required_argument, 0, 0 },
{ CPERF_DEVTYPE, required_argument, 0, 0 },
{ CPERF_OPTYPE, required_argument, 0, 0 },
{ CPERF_SILENT, no_argument, 0, 0 },
{ CPERF_SESSIONLESS, no_argument, 0, 0 },
{ CPERF_OUT_OF_PLACE, no_argument, 0, 0 },
{ CPERF_VERIFY, no_argument, 0, 0 },
{ CPERF_TEST_FILE, required_argument, 0, 0 },
{ CPERF_TEST_NAME, required_argument, 0, 0 },
{ CPERF_CIPHER_ALGO, required_argument, 0, 0 },
{ CPERF_CIPHER_OP, required_argument, 0, 0 },
{ CPERF_CIPHER_KEY_SZ, required_argument, 0, 0 },
{ CPERF_CIPHER_IV_SZ, required_argument, 0, 0 },
{ CPERF_AUTH_ALGO, required_argument, 0, 0 },
{ CPERF_AUTH_OP, required_argument, 0, 0 },
{ CPERF_AUTH_KEY_SZ, required_argument, 0, 0 },
{ CPERF_AUTH_DIGEST_SZ, required_argument, 0, 0 },
{ CPERF_AUTH_AAD_SZ, required_argument, 0, 0 },
{ CPERF_CSV, no_argument, 0, 0},
{ NULL, 0, 0, 0 }
};
void
cperf_options_default(struct cperf_options *opts)
{
opts->test = CPERF_TEST_TYPE_THROUGHPUT;
opts->pool_sz = 8192;
opts->total_ops = 10000000;
opts->burst_sz = 32;
opts->buffer_sz = 64;
opts->segments_nb = 1;
strncpy(opts->device_type, "crypto_aesni_mb",
sizeof(opts->device_type));
opts->op_type = CPERF_CIPHER_THEN_AUTH;
opts->silent = 0;
opts->verify = 0;
opts->test_file = NULL;
opts->test_name = NULL;
opts->sessionless = 0;
opts->out_of_place = 0;
opts->csv = 0;
opts->cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC;
opts->cipher_op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
opts->cipher_key_sz = 16;
opts->cipher_iv_sz = 16;
opts->auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
opts->auth_op = RTE_CRYPTO_AUTH_OP_GENERATE;
opts->auth_key_sz = 64;
opts->auth_digest_sz = 12;
opts->auth_aad_sz = 0;
}
static int
cperf_opts_parse_long(int opt_idx, struct cperf_options *opts)
{
struct long_opt_parser parsermap[] = {
{ CPERF_PTEST_TYPE, parse_cperf_test_type },
{ CPERF_SILENT, parse_silent },
{ CPERF_POOL_SIZE, parse_pool_sz },
{ CPERF_TOTAL_OPS, parse_total_ops },
{ CPERF_BURST_SIZE, parse_burst_sz },
{ CPERF_BUFFER_SIZE, parse_buffer_sz },
{ CPERF_SEGMENTS_NB, parse_segments_nb },
{ CPERF_DEVTYPE, parse_device_type },
{ CPERF_OPTYPE, parse_op_type },
{ CPERF_SESSIONLESS, parse_sessionless },
{ CPERF_OUT_OF_PLACE, parse_out_of_place },
{ CPERF_VERIFY, parse_verify },
{ CPERF_TEST_FILE, parse_test_file },
{ CPERF_TEST_NAME, parse_test_name },
{ CPERF_CIPHER_ALGO, parse_cipher_algo },
{ CPERF_CIPHER_OP, parse_cipher_op },
{ CPERF_CIPHER_KEY_SZ, parse_cipher_key_sz },
{ CPERF_CIPHER_IV_SZ, parse_cipher_iv_sz },
{ CPERF_AUTH_ALGO, parse_auth_algo },
{ CPERF_AUTH_OP, parse_auth_op },
{ CPERF_AUTH_KEY_SZ, parse_auth_key_sz },
{ CPERF_AUTH_DIGEST_SZ, parse_auth_digest_sz },
{ CPERF_AUTH_AAD_SZ, parse_auth_aad_sz },
{ CPERF_CSV, parse_csv_friendly},
};
unsigned int i;
for (i = 0; i < RTE_DIM(parsermap); i++) {
if (strncmp(lgopts[opt_idx].name, parsermap[i].lgopt_name,
strlen(lgopts[opt_idx].name)) == 0)
return parsermap[i].parser_fn(opts, optarg);
}
return -EINVAL;
}
int
cperf_options_parse(struct cperf_options *options, int argc, char **argv)
{
int opt, retval, opt_idx;
while ((opt = getopt_long(argc, argv, "", lgopts, &opt_idx)) != EOF) {
switch (opt) {
/* long options */
case 0:
retval = cperf_opts_parse_long(opt_idx, options);
if (retval != 0)
return retval;
break;
default:
return -EINVAL;
}
}
return 0;
}
int
cperf_options_check(struct cperf_options *options)
{
if (options->segments_nb > options->buffer_sz) {
RTE_LOG(ERR, USER1,
"Segments number greater than buffer size.\n");
return -EINVAL;
}
if (options->verify && options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
}
if (options->test_name != NULL && options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
}
if (options->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY &&
options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
}
if (options->verify &&
options->total_ops > options->pool_sz) {
RTE_LOG(ERR, USER1, "Total number of ops must be less than or"
" equal to the pool size.\n");
return -EINVAL;
}
if (options->op_type == CPERF_CIPHER_THEN_AUTH) {
if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
options->auth_op !=
RTE_CRYPTO_AUTH_OP_GENERATE) {
RTE_LOG(ERR, USER1, "Option cipher then auth must use"
" options: encrypt and generate.\n");
return -EINVAL;
}
} else if (options->op_type == CPERF_AUTH_THEN_CIPHER) {
if (options->cipher_op != RTE_CRYPTO_CIPHER_OP_DECRYPT &&
options->auth_op !=
RTE_CRYPTO_AUTH_OP_VERIFY) {
RTE_LOG(ERR, USER1, "Option auth then cipher must use"
" options: decrypt and verify.\n");
return -EINVAL;
}
} else if (options->op_type == CPERF_AEAD) {
if (!(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT &&
options->auth_op ==
RTE_CRYPTO_AUTH_OP_GENERATE) &&
!(options->cipher_op ==
RTE_CRYPTO_CIPHER_OP_DECRYPT &&
options->auth_op ==
RTE_CRYPTO_AUTH_OP_VERIFY)) {
RTE_LOG(ERR, USER1, "Use together options: encrypt and"
" generate or decrypt and verify.\n");
return -EINVAL;
}
}
return 0;
}
void
cperf_options_dump(struct cperf_options *opts)
{
printf("# Crypto Performance Application Options:\n");
printf("#\n");
printf("# cperf test: %s\n", cperf_test_type_strs[opts->test]);
printf("#\n");
printf("# size of crypto op / mbuf pool: %u\n", opts->pool_sz);
printf("# total number of ops: %u\n", opts->total_ops);
printf("# burst size: %u\n", opts->burst_sz);
printf("# buffer size: %u\n", opts->buffer_sz);
printf("# segments per buffer: %u\n", opts->segments_nb);
printf("#\n");
printf("# cryptodev type: %s\n", opts->device_type);
printf("#\n");
printf("# crypto operation: %s\n", cperf_op_type_strs[opts->op_type]);
printf("# verify operation: %s\n", opts->verify ? "yes" : "no");
printf("# sessionless: %s\n", opts->sessionless ? "yes" : "no");
printf("# out of place: %s\n", opts->out_of_place ? "yes" : "no");
printf("#\n");
if (opts->op_type == CPERF_AUTH_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER ||
opts->op_type == CPERF_AEAD) {
printf("# auth algorithm: %s\n",
rte_crypto_auth_algorithm_strings[opts->auth_algo]);
printf("# auth operation: %s\n",
rte_crypto_auth_operation_strings[opts->auth_op]);
printf("# auth key size: %u\n", opts->auth_key_sz);
printf("# auth digest size: %u\n", opts->auth_digest_sz);
printf("# auth aad size: %u\n", opts->auth_aad_sz);
printf("#\n");
}
if (opts->op_type == CPERF_CIPHER_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER ||
opts->op_type == CPERF_AEAD) {
printf("# cipher algorithm: %s\n",
rte_crypto_cipher_algorithm_strings[opts->cipher_algo]);
printf("# cipher operation: %s\n",
rte_crypto_cipher_operation_strings[opts->cipher_op]);
printf("# cipher key size: %u\n", opts->cipher_key_sz);
printf("# cipher iv size: %u\n", opts->cipher_iv_sz);
printf("#\n");
}
}