99a2dd955f
There is no reason for the DPDK libraries to all have 'librte_' prefix on the directory names. This prefix makes the directory names longer and also makes it awkward to add features referring to individual libraries in the build - should the lib names be specified with or without the prefix. Therefore, we can just remove the library prefix and use the library's unique name as the directory name, i.e. 'eal' rather than 'librte_eal' Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
164 lines
4.5 KiB
C
164 lines
4.5 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include "acl_run.h"
|
|
|
|
/*
|
|
* Resolve priority for multiple results (scalar version).
|
|
* This consists comparing the priority of the current traversal with the
|
|
* running set of results for the packet.
|
|
* For each result, keep a running array of the result (rule number) and
|
|
* its priority for each category.
|
|
*/
|
|
static inline void
|
|
resolve_priority_scalar(uint64_t transition, int n,
|
|
const struct rte_acl_ctx *ctx, struct parms *parms,
|
|
const struct rte_acl_match_results *p, uint32_t categories)
|
|
{
|
|
uint32_t i;
|
|
int32_t *saved_priority;
|
|
uint32_t *saved_results;
|
|
const int32_t *priority;
|
|
const uint32_t *results;
|
|
|
|
saved_results = parms[n].cmplt->results;
|
|
saved_priority = parms[n].cmplt->priority;
|
|
|
|
/* results and priorities for completed trie */
|
|
results = p[transition].results;
|
|
priority = p[transition].priority;
|
|
|
|
/* if this is not the first completed trie */
|
|
if (parms[n].cmplt->count != ctx->num_tries) {
|
|
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
|
|
|
|
if (saved_priority[i] <= priority[i]) {
|
|
saved_priority[i] = priority[i];
|
|
saved_results[i] = results[i];
|
|
}
|
|
if (saved_priority[i + 1] <= priority[i + 1]) {
|
|
saved_priority[i + 1] = priority[i + 1];
|
|
saved_results[i + 1] = results[i + 1];
|
|
}
|
|
if (saved_priority[i + 2] <= priority[i + 2]) {
|
|
saved_priority[i + 2] = priority[i + 2];
|
|
saved_results[i + 2] = results[i + 2];
|
|
}
|
|
if (saved_priority[i + 3] <= priority[i + 3]) {
|
|
saved_priority[i + 3] = priority[i + 3];
|
|
saved_results[i + 3] = results[i + 3];
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
|
|
saved_priority[i] = priority[i];
|
|
saved_priority[i + 1] = priority[i + 1];
|
|
saved_priority[i + 2] = priority[i + 2];
|
|
saved_priority[i + 3] = priority[i + 3];
|
|
|
|
saved_results[i] = results[i];
|
|
saved_results[i + 1] = results[i + 1];
|
|
saved_results[i + 2] = results[i + 2];
|
|
saved_results[i + 3] = results[i + 3];
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint32_t
|
|
scan_forward(uint32_t input, uint32_t max)
|
|
{
|
|
return (input == 0) ? max : rte_bsf32(input);
|
|
}
|
|
|
|
static inline uint64_t
|
|
scalar_transition(const uint64_t *trans_table, uint64_t transition,
|
|
uint8_t input)
|
|
{
|
|
uint32_t addr, index, ranges, x, a, b, c;
|
|
|
|
/* break transition into component parts */
|
|
ranges = transition >> (sizeof(index) * CHAR_BIT);
|
|
index = transition & ~RTE_ACL_NODE_INDEX;
|
|
addr = transition ^ index;
|
|
|
|
if (index != RTE_ACL_NODE_DFA) {
|
|
/* calc address for a QRANGE/SINGLE node */
|
|
c = (uint32_t)input * SCALAR_QRANGE_MULT;
|
|
a = ranges | SCALAR_QRANGE_MIN;
|
|
a -= (c & SCALAR_QRANGE_MASK);
|
|
b = c & SCALAR_QRANGE_MIN;
|
|
a &= SCALAR_QRANGE_MIN;
|
|
a ^= (ranges ^ b) & (a ^ b);
|
|
x = scan_forward(a, 32) >> 3;
|
|
} else {
|
|
/* calc address for a DFA node */
|
|
x = ranges >> (input /
|
|
RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
|
|
x &= UINT8_MAX;
|
|
x = input - x;
|
|
}
|
|
|
|
addr += x;
|
|
|
|
/* pickup next transition */
|
|
transition = *(trans_table + addr);
|
|
return transition;
|
|
}
|
|
|
|
int
|
|
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
|
|
uint32_t *results, uint32_t num, uint32_t categories)
|
|
{
|
|
int n;
|
|
uint64_t transition0, transition1;
|
|
uint32_t input0, input1;
|
|
struct acl_flow_data flows;
|
|
uint64_t index_array[MAX_SEARCHES_SCALAR];
|
|
struct completion cmplt[MAX_SEARCHES_SCALAR];
|
|
struct parms parms[MAX_SEARCHES_SCALAR];
|
|
|
|
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
|
|
categories, ctx->trans_table);
|
|
|
|
for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
|
|
cmplt[n].count = 0;
|
|
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
|
|
}
|
|
|
|
transition0 = index_array[0];
|
|
transition1 = index_array[1];
|
|
|
|
while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
|
|
transition0 = acl_match_check(transition0,
|
|
0, ctx, parms, &flows, resolve_priority_scalar);
|
|
transition1 = acl_match_check(transition1,
|
|
1, ctx, parms, &flows, resolve_priority_scalar);
|
|
}
|
|
|
|
while (flows.started > 0) {
|
|
|
|
input0 = GET_NEXT_4BYTES(parms, 0);
|
|
input1 = GET_NEXT_4BYTES(parms, 1);
|
|
|
|
for (n = 0; n < 4; n++) {
|
|
|
|
transition0 = scalar_transition(flows.trans,
|
|
transition0, (uint8_t)input0);
|
|
input0 >>= CHAR_BIT;
|
|
|
|
transition1 = scalar_transition(flows.trans,
|
|
transition1, (uint8_t)input1);
|
|
input1 >>= CHAR_BIT;
|
|
}
|
|
|
|
while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
|
|
transition0 = acl_match_check(transition0,
|
|
0, ctx, parms, &flows, resolve_priority_scalar);
|
|
transition1 = acl_match_check(transition1,
|
|
1, ctx, parms, &flows, resolve_priority_scalar);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|