numam-dpdk/lib/pipeline/rte_swx_ctl.c
Cristian Dumitrescu 103b303d4c pipeline: read large structure fields on control path
Support reading structure fields that are bigger than 64 bits on the
control path for the table update operations.

Signed-off-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
Signed-off-by: Harshad Narayane <harshad.suresh.narayane@intel.com>
2022-09-23 13:56:01 +02:00

3421 lines
77 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/queue.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_tailq.h>
#include <rte_eal_memconfig.h>
#include <rte_swx_table_selector.h>
#include "rte_swx_ctl.h"
#define CHECK(condition, err_code) \
do { \
if (!(condition)) \
return -(err_code); \
} while (0)
#define ntoh64(x) rte_be_to_cpu_64(x)
#define hton64(x) rte_cpu_to_be_64(x)
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define field_ntoh(val, n_bits) (ntoh64((val) << (64 - n_bits)))
#define field_hton(val, n_bits) (hton64((val) << (64 - n_bits)))
#else
#define field_ntoh(val, n_bits) (val)
#define field_hton(val, n_bits) (val)
#endif
struct action {
struct rte_swx_ctl_action_info info;
struct rte_swx_ctl_action_arg_info *args;
uint32_t data_size;
};
struct table {
struct rte_swx_ctl_table_info info;
struct rte_swx_ctl_table_match_field_info *mf;
/* Match field with the smallest offset. */
struct rte_swx_ctl_table_match_field_info *mf_first;
/* Match field with the biggest offset. */
struct rte_swx_ctl_table_match_field_info *mf_last;
struct rte_swx_ctl_table_action_info *actions;
struct rte_swx_table_ops ops;
struct rte_swx_table_params params;
/* Set of "stable" keys: these keys are currently part of the table;
* these keys will be preserved with no action data changes after the
* next commit.
*/
struct rte_swx_table_entry_list entries;
/* Set of new keys: these keys are currently NOT part of the table;
* these keys will be added to the table on the next commit, if
* the commit operation is successful.
*/
struct rte_swx_table_entry_list pending_add;
/* Set of keys to be modified: these keys are currently part of the
* table; these keys are still going to be part of the table after the
* next commit, but their action data will be modified if the commit
* operation is successful. The modify0 list contains the keys with the
* current action data, the modify1 list contains the keys with the
* modified action data.
*/
struct rte_swx_table_entry_list pending_modify0;
struct rte_swx_table_entry_list pending_modify1;
/* Set of keys to be deleted: these keys are currently part of the
* table; these keys are to be deleted from the table on the next
* commit, if the commit operation is successful.
*/
struct rte_swx_table_entry_list pending_delete;
/* The pending default action: this is NOT the current default action;
* this will be the new default action after the next commit, if the
* next commit operation is successful.
*/
struct rte_swx_table_entry *pending_default;
int is_stub;
uint32_t n_add;
uint32_t n_modify;
uint32_t n_delete;
};
struct selector {
/* Selector table info. */
struct rte_swx_ctl_selector_info info;
/* group_id field. */
struct rte_swx_ctl_table_match_field_info group_id_field;
/* selector fields. */
struct rte_swx_ctl_table_match_field_info *selector_fields;
/* member_id field. */
struct rte_swx_ctl_table_match_field_info member_id_field;
/* Current selector table. Array of info.n_groups_max elements.*/
struct rte_swx_table_selector_group **groups;
/* Pending selector table subject to the next commit. Array of info.n_groups_max elements.
*/
struct rte_swx_table_selector_group **pending_groups;
/* Valid flag per group. Array of n_groups_max elements. */
int *groups_added;
/* Pending delete flag per group. Group deletion is subject to the next commit. Array of
* info.n_groups_max elements.
*/
int *groups_pending_delete;
/* Params. */
struct rte_swx_table_selector_params params;
};
struct learner {
struct rte_swx_ctl_learner_info info;
struct rte_swx_ctl_table_match_field_info *mf;
struct rte_swx_ctl_table_action_info *actions;
uint32_t action_data_size;
/* The pending default action: this is NOT the current default action;
* this will be the new default action after the next commit, if the
* next commit operation is successful.
*/
struct rte_swx_table_entry *pending_default;
};
struct rte_swx_ctl_pipeline {
struct rte_swx_ctl_pipeline_info info;
struct rte_swx_pipeline *p;
struct action *actions;
struct table *tables;
struct selector *selectors;
struct learner *learners;
struct rte_swx_table_state *ts;
struct rte_swx_table_state *ts_next;
int numa_node;
};
static struct action *
action_find(struct rte_swx_ctl_pipeline *ctl, const char *action_name)
{
uint32_t i;
for (i = 0; i < ctl->info.n_actions; i++) {
struct action *a = &ctl->actions[i];
if (!strcmp(action_name, a->info.name))
return a;
}
return NULL;
}
static void
action_free(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t i;
if (!ctl->actions)
return;
for (i = 0; i < ctl->info.n_actions; i++) {
struct action *action = &ctl->actions[i];
free(action->args);
}
free(ctl->actions);
ctl->actions = NULL;
}
static struct table *
table_find(struct rte_swx_ctl_pipeline *ctl, const char *table_name)
{
uint32_t i;
for (i = 0; i < ctl->info.n_tables; i++) {
struct table *table = &ctl->tables[i];
if (!strcmp(table_name, table->info.name))
return table;
}
return NULL;
}
static int
table_params_get(struct rte_swx_ctl_pipeline *ctl, uint32_t table_id)
{
struct table *table = &ctl->tables[table_id];
struct rte_swx_ctl_table_match_field_info *first = NULL, *last = NULL;
uint8_t *key_mask = NULL;
enum rte_swx_table_match_type match_type = RTE_SWX_TABLE_MATCH_WILDCARD;
uint32_t key_size = 0, key_offset = 0, action_data_size = 0, i;
if (table->info.n_match_fields) {
uint32_t n_match_fields_em = 0, i;
/* Find first (smallest offset) and last (biggest offset) match fields. */
first = &table->mf[0];
last = &table->mf[0];
for (i = 1; i < table->info.n_match_fields; i++) {
struct rte_swx_ctl_table_match_field_info *f = &table->mf[i];
if (f->offset < first->offset)
first = f;
if (f->offset > last->offset)
last = f;
}
/* match_type. */
for (i = 0; i < table->info.n_match_fields; i++) {
struct rte_swx_ctl_table_match_field_info *f = &table->mf[i];
if (f->match_type == RTE_SWX_TABLE_MATCH_EXACT)
n_match_fields_em++;
}
if (n_match_fields_em == table->info.n_match_fields)
match_type = RTE_SWX_TABLE_MATCH_EXACT;
/* key_offset. */
key_offset = first->offset / 8;
/* key_size. */
key_size = (last->offset + last->n_bits - first->offset) / 8;
/* key_mask. */
key_mask = calloc(1, key_size);
CHECK(key_mask, ENOMEM);
for (i = 0; i < table->info.n_match_fields; i++) {
struct rte_swx_ctl_table_match_field_info *f = &table->mf[i];
uint32_t start;
size_t size;
start = (f->offset - first->offset) / 8;
size = f->n_bits / 8;
memset(&key_mask[start], 0xFF, size);
}
}
/* action_data_size. */
for (i = 0; i < table->info.n_actions; i++) {
uint32_t action_id = table->actions[i].action_id;
struct action *a = &ctl->actions[action_id];
if (a->data_size > action_data_size)
action_data_size = a->data_size;
}
/* Fill in. */
table->params.match_type = match_type;
table->params.key_size = key_size;
table->params.key_offset = key_offset;
table->params.key_mask0 = key_mask;
table->params.action_data_size = action_data_size;
table->params.n_keys_max = table->info.size;
table->mf_first = first;
table->mf_last = last;
return 0;
}
static void
table_entry_free(struct rte_swx_table_entry *entry)
{
if (!entry)
return;
free(entry->key);
free(entry->key_mask);
free(entry->action_data);
free(entry);
}
static struct rte_swx_table_entry *
table_entry_alloc(struct table *table)
{
struct rte_swx_table_entry *entry;
entry = calloc(1, sizeof(struct rte_swx_table_entry));
if (!entry)
goto error;
/* key, key_mask. */
if (!table->is_stub) {
entry->key = calloc(1, table->params.key_size);
if (!entry->key)
goto error;
if (table->params.match_type != RTE_SWX_TABLE_MATCH_EXACT) {
entry->key_mask = calloc(1, table->params.key_size);
if (!entry->key_mask)
goto error;
}
}
/* action_data. */
if (table->params.action_data_size) {
entry->action_data = calloc(1, table->params.action_data_size);
if (!entry->action_data)
goto error;
}
return entry;
error:
table_entry_free(entry);
return NULL;
}
static int
table_entry_key_check_em(struct table *table, struct rte_swx_table_entry *entry)
{
uint8_t *key_mask0 = table->params.key_mask0;
uint32_t key_size = table->params.key_size, i;
if (!entry->key_mask)
return 0;
for (i = 0; i < key_size; i++) {
uint8_t km0 = key_mask0[i];
uint8_t km = entry->key_mask[i];
if ((km & km0) != km0)
return -EINVAL;
}
return 0;
}
static int
table_entry_check(struct rte_swx_ctl_pipeline *ctl,
uint32_t table_id,
struct rte_swx_table_entry *entry,
int key_check,
int data_check)
{
struct table *table = &ctl->tables[table_id];
int status;
CHECK(entry, EINVAL);
if (key_check && !table->is_stub) {
/* key. */
CHECK(entry->key, EINVAL);
/* key_mask. */
if (table->params.match_type == RTE_SWX_TABLE_MATCH_EXACT) {
status = table_entry_key_check_em(table, entry);
if (status)
return status;
}
}
if (data_check) {
struct action *a;
struct rte_swx_ctl_table_action_info *tai;
uint32_t i;
/* action_id. */
for (i = 0; i < table->info.n_actions; i++) {
tai = &table->actions[i];
if (entry->action_id == tai->action_id)
break;
}
CHECK(i < table->info.n_actions, EINVAL);
/* action_data. */
a = &ctl->actions[entry->action_id];
CHECK(!(a->data_size && !entry->action_data), EINVAL);
/* When both key_check and data_check are true, we are interested in both the entry
* key and data, which means the operation is _regular_ table entry add.
*/
if (key_check && !tai->action_is_for_table_entries)
return -EINVAL;
/* When key_check is false while data_check is true, we are only interested in the
* entry data, which means the operation is _default_ table entry add.
*/
if (!key_check && !tai->action_is_for_default_entry)
return -EINVAL;
}
return 0;
}
static struct rte_swx_table_entry *
table_entry_duplicate(struct rte_swx_ctl_pipeline *ctl,
uint32_t table_id,
struct rte_swx_table_entry *entry,
int key_duplicate,
int data_duplicate)
{
struct table *table = &ctl->tables[table_id];
struct rte_swx_table_entry *new_entry = NULL;
if (!entry)
goto error;
new_entry = calloc(1, sizeof(struct rte_swx_table_entry));
if (!new_entry)
goto error;
if (key_duplicate && !table->is_stub) {
/* key. */
if (!entry->key)
goto error;
new_entry->key = malloc(table->params.key_size);
if (!new_entry->key)
goto error;
memcpy(new_entry->key, entry->key, table->params.key_size);
/* key_signature. */
new_entry->key_signature = entry->key_signature;
/* key_mask. */
if (entry->key_mask) {
new_entry->key_mask = malloc(table->params.key_size);
if (!new_entry->key_mask)
goto error;
memcpy(new_entry->key_mask,
entry->key_mask,
table->params.key_size);
}
/* key_priority. */
new_entry->key_priority = entry->key_priority;
}
if (data_duplicate) {
struct action *a;
uint32_t i;
/* action_id. */
for (i = 0; i < table->info.n_actions; i++)
if (entry->action_id == table->actions[i].action_id)
break;
if (i >= table->info.n_actions)
goto error;
new_entry->action_id = entry->action_id;
/* action_data. */
a = &ctl->actions[entry->action_id];
if (a->data_size && !entry->action_data)
goto error;
/* The table layer provisions a constant action data size per
* entry, which should be the largest data size for all the
* actions enabled for the current table, and attempts to copy
* this many bytes each time a table entry is added, even if the
* specific action requires less data or even no data at all,
* hence we always have to allocate the max.
*/
new_entry->action_data = calloc(1, table->params.action_data_size);
if (!new_entry->action_data)
goto error;
if (a->data_size)
memcpy(new_entry->action_data,
entry->action_data,
a->data_size);
}
return new_entry;
error:
table_entry_free(new_entry);
return NULL;
}
static int
table_entry_keycmp(struct table *table,
struct rte_swx_table_entry *e0,
struct rte_swx_table_entry *e1)
{
uint32_t key_size = table->params.key_size;
uint32_t i;
for (i = 0; i < key_size; i++) {
uint8_t *key_mask0 = table->params.key_mask0;
uint8_t km0, km[2], k[2];
km0 = key_mask0 ? key_mask0[i] : 0xFF;
km[0] = e0->key_mask ? e0->key_mask[i] : 0xFF;
km[1] = e1->key_mask ? e1->key_mask[i] : 0xFF;
k[0] = e0->key[i];
k[1] = e1->key[i];
/* Mask comparison. */
if ((km[0] & km0) != (km[1] & km0))
return 1; /* Not equal. */
/* Value comparison. */
if ((k[0] & km[0] & km0) != (k[1] & km[1] & km0))
return 1; /* Not equal. */
}
return 0; /* Equal. */
}
static struct rte_swx_table_entry *
table_entries_find(struct table *table, struct rte_swx_table_entry *entry)
{
struct rte_swx_table_entry *e;
TAILQ_FOREACH(e, &table->entries, node)
if (!table_entry_keycmp(table, entry, e))
return e; /* Found. */
return NULL; /* Not found. */
}
static void
table_entries_free(struct table *table)
{
for ( ; ; ) {
struct rte_swx_table_entry *entry;
entry = TAILQ_FIRST(&table->entries);
if (!entry)
break;
TAILQ_REMOVE(&table->entries, entry, node);
table_entry_free(entry);
}
}
static struct rte_swx_table_entry *
table_pending_add_find(struct table *table, struct rte_swx_table_entry *entry)
{
struct rte_swx_table_entry *e;
TAILQ_FOREACH(e, &table->pending_add, node)
if (!table_entry_keycmp(table, entry, e))
return e; /* Found. */
return NULL; /* Not found. */
}
static void
table_pending_add_admit(struct table *table)
{
TAILQ_CONCAT(&table->entries, &table->pending_add, node);
}
static void
table_pending_add_free(struct table *table)
{
for ( ; ; ) {
struct rte_swx_table_entry *entry;
entry = TAILQ_FIRST(&table->pending_add);
if (!entry)
break;
TAILQ_REMOVE(&table->pending_add, entry, node);
table_entry_free(entry);
}
}
static struct rte_swx_table_entry *
table_pending_modify0_find(struct table *table,
struct rte_swx_table_entry *entry)
{
struct rte_swx_table_entry *e;
TAILQ_FOREACH(e, &table->pending_modify0, node)
if (!table_entry_keycmp(table, entry, e))
return e; /* Found. */
return NULL; /* Not found. */
}
static void
table_pending_modify0_admit(struct table *table)
{
TAILQ_CONCAT(&table->entries, &table->pending_modify0, node);
}
static void
table_pending_modify0_free(struct table *table)
{
for ( ; ; ) {
struct rte_swx_table_entry *entry;
entry = TAILQ_FIRST(&table->pending_modify0);
if (!entry)
break;
TAILQ_REMOVE(&table->pending_modify0, entry, node);
table_entry_free(entry);
}
}
static struct rte_swx_table_entry *
table_pending_modify1_find(struct table *table,
struct rte_swx_table_entry *entry)
{
struct rte_swx_table_entry *e;
TAILQ_FOREACH(e, &table->pending_modify1, node)
if (!table_entry_keycmp(table, entry, e))
return e; /* Found. */
return NULL; /* Not found. */
}
static void
table_pending_modify1_admit(struct table *table)
{
TAILQ_CONCAT(&table->entries, &table->pending_modify1, node);
}
static void
table_pending_modify1_free(struct table *table)
{
for ( ; ; ) {
struct rte_swx_table_entry *entry;
entry = TAILQ_FIRST(&table->pending_modify1);
if (!entry)
break;
TAILQ_REMOVE(&table->pending_modify1, entry, node);
table_entry_free(entry);
}
}
static struct rte_swx_table_entry *
table_pending_delete_find(struct table *table,
struct rte_swx_table_entry *entry)
{
struct rte_swx_table_entry *e;
TAILQ_FOREACH(e, &table->pending_delete, node)
if (!table_entry_keycmp(table, entry, e))
return e; /* Found. */
return NULL; /* Not found. */
}
static void
table_pending_delete_admit(struct table *table)
{
TAILQ_CONCAT(&table->entries, &table->pending_delete, node);
}
static void
table_pending_delete_free(struct table *table)
{
for ( ; ; ) {
struct rte_swx_table_entry *entry;
entry = TAILQ_FIRST(&table->pending_delete);
if (!entry)
break;
TAILQ_REMOVE(&table->pending_delete, entry, node);
table_entry_free(entry);
}
}
static void
table_pending_default_free(struct table *table)
{
if (!table->pending_default)
return;
free(table->pending_default->action_data);
free(table->pending_default);
table->pending_default = NULL;
}
static int
table_is_update_pending(struct table *table, int consider_pending_default)
{
struct rte_swx_table_entry *e;
uint32_t n = 0;
/* Pending add. */
TAILQ_FOREACH(e, &table->pending_add, node)
n++;
/* Pending modify. */
TAILQ_FOREACH(e, &table->pending_modify1, node)
n++;
/* Pending delete. */
TAILQ_FOREACH(e, &table->pending_delete, node)
n++;
/* Pending default. */
if (consider_pending_default && table->pending_default)
n++;
return n;
}
static void
table_free(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t i;
if (!ctl->tables)
return;
for (i = 0; i < ctl->info.n_tables; i++) {
struct table *table = &ctl->tables[i];
free(table->mf);
free(table->actions);
free(table->params.key_mask0);
table_entries_free(table);
table_pending_add_free(table);
table_pending_modify0_free(table);
table_pending_modify1_free(table);
table_pending_delete_free(table);
table_pending_default_free(table);
}
free(ctl->tables);
ctl->tables = NULL;
}
static void
selector_group_members_free(struct selector *s, uint32_t group_id)
{
struct rte_swx_table_selector_group *group = s->groups[group_id];
if (!group)
return;
for ( ; ; ) {
struct rte_swx_table_selector_member *m;
m = TAILQ_FIRST(&group->members);
if (!m)
break;
TAILQ_REMOVE(&group->members, m, node);
free(m);
}
free(group);
s->groups[group_id] = NULL;
}
static void
selector_pending_group_members_free(struct selector *s, uint32_t group_id)
{
struct rte_swx_table_selector_group *group = s->pending_groups[group_id];
if (!group)
return;
for ( ; ; ) {
struct rte_swx_table_selector_member *m;
m = TAILQ_FIRST(&group->members);
if (!m)
break;
TAILQ_REMOVE(&group->members, m, node);
free(m);
}
free(group);
s->pending_groups[group_id] = NULL;
}
static int
selector_group_duplicate_to_pending(struct selector *s, uint32_t group_id)
{
struct rte_swx_table_selector_group *g, *gp;
struct rte_swx_table_selector_member *m;
selector_pending_group_members_free(s, group_id);
g = s->groups[group_id];
gp = s->pending_groups[group_id];
if (!gp) {
gp = calloc(1, sizeof(struct rte_swx_table_selector_group));
if (!gp)
goto error;
TAILQ_INIT(&gp->members);
s->pending_groups[group_id] = gp;
}
if (!g)
return 0;
TAILQ_FOREACH(m, &g->members, node) {
struct rte_swx_table_selector_member *mp;
mp = calloc(1, sizeof(struct rte_swx_table_selector_member));
if (!mp)
goto error;
memcpy(mp, m, sizeof(struct rte_swx_table_selector_member));
TAILQ_INSERT_TAIL(&gp->members, mp, node);
}
return 0;
error:
selector_pending_group_members_free(s, group_id);
return -ENOMEM;
}
static void
selector_free(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t i;
if (!ctl->selectors)
return;
for (i = 0; i < ctl->info.n_selectors; i++) {
struct selector *s = &ctl->selectors[i];
uint32_t i;
/* selector_fields. */
free(s->selector_fields);
/* groups. */
if (s->groups)
for (i = 0; i < s->info.n_groups_max; i++)
selector_group_members_free(s, i);
free(s->groups);
/* pending_groups. */
if (s->pending_groups)
for (i = 0; i < s->info.n_groups_max; i++)
selector_pending_group_members_free(s, i);
free(s->pending_groups);
/* groups_added. */
free(s->groups_added);
/* groups_pending_delete. */
free(s->groups_pending_delete);
/* params. */
free(s->params.selector_mask);
}
free(ctl->selectors);
ctl->selectors = NULL;
}
static struct selector *
selector_find(struct rte_swx_ctl_pipeline *ctl, const char *selector_name)
{
uint32_t i;
for (i = 0; i < ctl->info.n_selectors; i++) {
struct selector *s = &ctl->selectors[i];
if (!strcmp(selector_name, s->info.name))
return s;
}
return NULL;
}
static int
selector_params_get(struct rte_swx_ctl_pipeline *ctl, uint32_t selector_id)
{
struct selector *s = &ctl->selectors[selector_id];
struct rte_swx_ctl_table_match_field_info *first = NULL, *last = NULL;
uint8_t *selector_mask = NULL;
uint32_t selector_size = 0, selector_offset = 0, i;
/* Find first (smallest offset) and last (biggest offset) match fields. */
first = &s->selector_fields[0];
last = &s->selector_fields[0];
for (i = 1; i < s->info.n_selector_fields; i++) {
struct rte_swx_ctl_table_match_field_info *f = &s->selector_fields[i];
if (f->offset < first->offset)
first = f;
if (f->offset > last->offset)
last = f;
}
/* selector_offset. */
selector_offset = first->offset / 8;
/* selector_size. */
selector_size = (last->offset + last->n_bits - first->offset) / 8;
/* selector_mask. */
selector_mask = calloc(1, selector_size);
if (!selector_mask)
return -ENOMEM;
for (i = 0; i < s->info.n_selector_fields; i++) {
struct rte_swx_ctl_table_match_field_info *f = &s->selector_fields[i];
uint32_t start;
size_t size;
start = (f->offset - first->offset) / 8;
size = f->n_bits / 8;
memset(&selector_mask[start], 0xFF, size);
}
/* Fill in. */
s->params.group_id_offset = s->group_id_field.offset / 8;
s->params.selector_size = selector_size;
s->params.selector_offset = selector_offset;
s->params.selector_mask = selector_mask;
s->params.member_id_offset = s->member_id_field.offset / 8;
s->params.n_groups_max = s->info.n_groups_max;
s->params.n_members_per_group_max = s->info.n_members_per_group_max;
return 0;
}
static void
learner_pending_default_free(struct learner *l)
{
if (!l->pending_default)
return;
free(l->pending_default->action_data);
free(l->pending_default);
l->pending_default = NULL;
}
static void
learner_free(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t i;
if (!ctl->learners)
return;
for (i = 0; i < ctl->info.n_learners; i++) {
struct learner *l = &ctl->learners[i];
free(l->mf);
free(l->actions);
learner_pending_default_free(l);
}
free(ctl->learners);
ctl->learners = NULL;
}
static struct learner *
learner_find(struct rte_swx_ctl_pipeline *ctl, const char *learner_name)
{
uint32_t i;
for (i = 0; i < ctl->info.n_learners; i++) {
struct learner *l = &ctl->learners[i];
if (!strcmp(learner_name, l->info.name))
return l;
}
return NULL;
}
static uint32_t
learner_action_data_size_get(struct rte_swx_ctl_pipeline *ctl, struct learner *l)
{
uint32_t action_data_size = 0, i;
for (i = 0; i < l->info.n_actions; i++) {
uint32_t action_id = l->actions[i].action_id;
struct action *a = &ctl->actions[action_id];
if (a->data_size > action_data_size)
action_data_size = a->data_size;
}
return action_data_size;
}
static void
table_state_free(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t table_base_index, selector_base_index, learner_base_index, i;
if (!ctl->ts_next)
return;
/* For each table, free its table state. */
table_base_index = 0;
for (i = 0; i < ctl->info.n_tables; i++) {
struct table *table = &ctl->tables[i];
struct rte_swx_table_state *ts = &ctl->ts_next[table_base_index + i];
/* Default action data. */
free(ts->default_action_data);
/* Table object. */
if (!table->is_stub && table->ops.free && ts->obj)
table->ops.free(ts->obj);
}
/* For each selector table, free its table state. */
selector_base_index = ctl->info.n_tables;
for (i = 0; i < ctl->info.n_selectors; i++) {
struct rte_swx_table_state *ts = &ctl->ts_next[selector_base_index + i];
/* Table object. */
rte_swx_table_selector_free(ts->obj);
}
/* For each learner table, free its table state. */
learner_base_index = ctl->info.n_tables + ctl->info.n_selectors;
for (i = 0; i < ctl->info.n_learners; i++) {
struct rte_swx_table_state *ts = &ctl->ts_next[learner_base_index + i];
/* Default action data. */
free(ts->default_action_data);
}
free(ctl->ts_next);
ctl->ts_next = NULL;
}
static int
table_state_create(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t table_base_index, selector_base_index, learner_base_index, i;
int status = 0;
ctl->ts_next = calloc(ctl->info.n_tables + ctl->info.n_selectors + ctl->info.n_learners,
sizeof(struct rte_swx_table_state));
if (!ctl->ts_next) {
status = -ENOMEM;
goto error;
}
/* Tables. */
table_base_index = 0;
for (i = 0; i < ctl->info.n_tables; i++) {
struct table *table = &ctl->tables[i];
struct rte_swx_table_state *ts = &ctl->ts[table_base_index + i];
struct rte_swx_table_state *ts_next = &ctl->ts_next[table_base_index + i];
/* Table object. */
if (!table->is_stub && table->ops.add) {
ts_next->obj = table->ops.create(&table->params,
&table->entries,
table->info.args,
ctl->numa_node);
if (!ts_next->obj) {
status = -ENODEV;
goto error;
}
}
if (!table->is_stub && !table->ops.add)
ts_next->obj = ts->obj;
/* Default action data: duplicate from current table state. */
ts_next->default_action_data =
malloc(table->params.action_data_size);
if (!ts_next->default_action_data) {
status = -ENOMEM;
goto error;
}
memcpy(ts_next->default_action_data,
ts->default_action_data,
table->params.action_data_size);
ts_next->default_action_id = ts->default_action_id;
}
/* Selector tables. */
selector_base_index = ctl->info.n_tables;
for (i = 0; i < ctl->info.n_selectors; i++) {
struct selector *s = &ctl->selectors[i];
struct rte_swx_table_state *ts_next = &ctl->ts_next[selector_base_index + i];
/* Table object. */
ts_next->obj = rte_swx_table_selector_create(&s->params, NULL, ctl->numa_node);
if (!ts_next->obj) {
status = -ENODEV;
goto error;
}
}
/* Learner tables. */
learner_base_index = ctl->info.n_tables + ctl->info.n_selectors;
for (i = 0; i < ctl->info.n_learners; i++) {
struct learner *l = &ctl->learners[i];
struct rte_swx_table_state *ts = &ctl->ts[learner_base_index + i];
struct rte_swx_table_state *ts_next = &ctl->ts_next[learner_base_index + i];
/* Table object: duplicate from the current table state. */
ts_next->obj = ts->obj;
/* Default action data: duplicate from the current table state. */
ts_next->default_action_data = malloc(l->action_data_size);
if (!ts_next->default_action_data) {
status = -ENOMEM;
goto error;
}
memcpy(ts_next->default_action_data,
ts->default_action_data,
l->action_data_size);
ts_next->default_action_id = ts->default_action_id;
}
return 0;
error:
table_state_free(ctl);
return status;
}
/* Global list of pipeline instances. */
TAILQ_HEAD(rte_swx_ctl_pipeline_list, rte_tailq_entry);
static struct rte_tailq_elem rte_swx_ctl_pipeline_tailq = {
.name = "RTE_SWX_CTL_PIPELINE",
};
EAL_REGISTER_TAILQ(rte_swx_ctl_pipeline_tailq)
struct rte_swx_ctl_pipeline *
rte_swx_ctl_pipeline_find(const char *name)
{
struct rte_swx_ctl_pipeline_list *ctl_list;
struct rte_tailq_entry *te = NULL;
if (!name || !name[0] || (strnlen(name, RTE_SWX_CTL_NAME_SIZE) >= RTE_SWX_CTL_NAME_SIZE))
return NULL;
ctl_list = RTE_TAILQ_CAST(rte_swx_ctl_pipeline_tailq.head, rte_swx_ctl_pipeline_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, ctl_list, next) {
struct rte_swx_ctl_pipeline *ctl = (struct rte_swx_ctl_pipeline *)te->data;
if (!strncmp(name, ctl->info.name, sizeof(ctl->info.name))) {
rte_mcfg_tailq_read_unlock();
return ctl;
}
}
rte_mcfg_tailq_read_unlock();
return NULL;
}
static int
ctl_register(struct rte_swx_ctl_pipeline *ctl)
{
struct rte_swx_ctl_pipeline_list *ctl_list;
struct rte_tailq_entry *te = NULL;
ctl_list = RTE_TAILQ_CAST(rte_swx_ctl_pipeline_tailq.head, rte_swx_ctl_pipeline_list);
rte_mcfg_tailq_write_lock();
TAILQ_FOREACH(te, ctl_list, next) {
struct rte_swx_ctl_pipeline *ctl_crt = (struct rte_swx_ctl_pipeline *)te->data;
if (!strncmp(ctl->info.name, ctl_crt->info.name, sizeof(ctl->info.name))) {
rte_mcfg_tailq_write_unlock();
return -EEXIST;
}
}
te = calloc(1, sizeof(struct rte_tailq_entry));
if (!te) {
rte_mcfg_tailq_write_unlock();
return -ENOMEM;
}
te->data = (void *)ctl;
TAILQ_INSERT_TAIL(ctl_list, te, next);
rte_mcfg_tailq_write_unlock();
return 0;
}
static void
ctl_unregister(struct rte_swx_ctl_pipeline *ctl)
{
struct rte_swx_ctl_pipeline_list *ctl_list;
struct rte_tailq_entry *te = NULL;
ctl_list = RTE_TAILQ_CAST(rte_swx_ctl_pipeline_tailq.head, rte_swx_ctl_pipeline_list);
rte_mcfg_tailq_write_lock();
TAILQ_FOREACH(te, ctl_list, next) {
if (te->data == (void *)ctl) {
TAILQ_REMOVE(ctl_list, te, next);
rte_mcfg_tailq_write_unlock();
free(te);
return;
}
}
rte_mcfg_tailq_write_unlock();
}
void
rte_swx_ctl_pipeline_free(struct rte_swx_ctl_pipeline *ctl)
{
if (!ctl)
return;
if (ctl->info.name[0])
ctl_unregister(ctl);
action_free(ctl);
table_state_free(ctl);
learner_free(ctl);
selector_free(ctl);
table_free(ctl);
free(ctl);
}
struct rte_swx_ctl_pipeline *
rte_swx_ctl_pipeline_create(struct rte_swx_pipeline *p)
{
struct rte_swx_ctl_pipeline *ctl = NULL;
uint32_t i;
int status;
if (!p)
goto error;
ctl = calloc(1, sizeof(struct rte_swx_ctl_pipeline));
if (!ctl)
goto error;
/* info. */
status = rte_swx_ctl_pipeline_info_get(p, &ctl->info);
if (status)
goto error;
/* numa_node. */
status = rte_swx_ctl_pipeline_numa_node_get(p, &ctl->numa_node);
if (status)
goto error;
/* p. */
ctl->p = p;
/* actions. */
ctl->actions = calloc(ctl->info.n_actions, sizeof(struct action));
if (!ctl->actions)
goto error;
for (i = 0; i < ctl->info.n_actions; i++) {
struct action *a = &ctl->actions[i];
uint32_t j;
/* info. */
status = rte_swx_ctl_action_info_get(p, i, &a->info);
if (status)
goto error;
/* args. */
a->args = calloc(a->info.n_args,
sizeof(struct rte_swx_ctl_action_arg_info));
if (!a->args)
goto error;
for (j = 0; j < a->info.n_args; j++) {
status = rte_swx_ctl_action_arg_info_get(p,
i,
j,
&a->args[j]);
if (status)
goto error;
}
/* data_size. */
for (j = 0; j < a->info.n_args; j++) {
struct rte_swx_ctl_action_arg_info *info = &a->args[j];
a->data_size += info->n_bits;
}
a->data_size = (a->data_size + 7) / 8;
}
/* tables. */
ctl->tables = calloc(ctl->info.n_tables, sizeof(struct table));
if (!ctl->tables)
goto error;
for (i = 0; i < ctl->info.n_tables; i++) {
struct table *t = &ctl->tables[i];
TAILQ_INIT(&t->entries);
TAILQ_INIT(&t->pending_add);
TAILQ_INIT(&t->pending_modify0);
TAILQ_INIT(&t->pending_modify1);
TAILQ_INIT(&t->pending_delete);
}
for (i = 0; i < ctl->info.n_tables; i++) {
struct table *t = &ctl->tables[i];
uint32_t j;
/* info. */
status = rte_swx_ctl_table_info_get(p, i, &t->info);
if (status)
goto error;
/* mf. */
t->mf = calloc(t->info.n_match_fields,
sizeof(struct rte_swx_ctl_table_match_field_info));
if (!t->mf)
goto error;
for (j = 0; j < t->info.n_match_fields; j++) {
status = rte_swx_ctl_table_match_field_info_get(p,
i,
j,
&t->mf[j]);
if (status)
goto error;
}
/* actions. */
t->actions = calloc(t->info.n_actions,
sizeof(struct rte_swx_ctl_table_action_info));
if (!t->actions)
goto error;
for (j = 0; j < t->info.n_actions; j++) {
status = rte_swx_ctl_table_action_info_get(p,
i,
j,
&t->actions[j]);
if (status ||
t->actions[j].action_id >= ctl->info.n_actions)
goto error;
}
/* ops, is_stub. */
status = rte_swx_ctl_table_ops_get(p, i, &t->ops, &t->is_stub);
if (status)
goto error;
if ((t->is_stub && t->info.n_match_fields) ||
(!t->is_stub && !t->info.n_match_fields))
goto error;
/* params. */
status = table_params_get(ctl, i);
if (status)
goto error;
}
/* selector tables. */
ctl->selectors = calloc(ctl->info.n_selectors, sizeof(struct selector));
if (!ctl->selectors)
goto error;
for (i = 0; i < ctl->info.n_selectors; i++) {
struct selector *s = &ctl->selectors[i];
uint32_t j;
/* info. */
status = rte_swx_ctl_selector_info_get(p, i, &s->info);
if (status)
goto error;
/* group_id field. */
status = rte_swx_ctl_selector_group_id_field_info_get(p,
i,
&s->group_id_field);
if (status)
goto error;
/* selector fields. */
s->selector_fields = calloc(s->info.n_selector_fields,
sizeof(struct rte_swx_ctl_table_match_field_info));
if (!s->selector_fields)
goto error;
for (j = 0; j < s->info.n_selector_fields; j++) {
status = rte_swx_ctl_selector_field_info_get(p,
i,
j,
&s->selector_fields[j]);
if (status)
goto error;
}
/* member_id field. */
status = rte_swx_ctl_selector_member_id_field_info_get(p,
i,
&s->member_id_field);
if (status)
goto error;
/* groups. */
s->groups = calloc(s->info.n_groups_max,
sizeof(struct rte_swx_table_selector_group *));
if (!s->groups)
goto error;
/* pending_groups. */
s->pending_groups = calloc(s->info.n_groups_max,
sizeof(struct rte_swx_table_selector_group *));
if (!s->pending_groups)
goto error;
/* groups_added. */
s->groups_added = calloc(s->info.n_groups_max, sizeof(int));
if (!s->groups_added)
goto error;
/* groups_pending_delete. */
s->groups_pending_delete = calloc(s->info.n_groups_max, sizeof(int));
if (!s->groups_pending_delete)
goto error;
/* params. */
status = selector_params_get(ctl, i);
if (status)
goto error;
}
/* learner tables. */
ctl->learners = calloc(ctl->info.n_learners, sizeof(struct learner));
if (!ctl->learners)
goto error;
for (i = 0; i < ctl->info.n_learners; i++) {
struct learner *l = &ctl->learners[i];
uint32_t j;
/* info. */
status = rte_swx_ctl_learner_info_get(p, i, &l->info);
if (status)
goto error;
/* mf. */
l->mf = calloc(l->info.n_match_fields,
sizeof(struct rte_swx_ctl_table_match_field_info));
if (!l->mf)
goto error;
for (j = 0; j < l->info.n_match_fields; j++) {
status = rte_swx_ctl_learner_match_field_info_get(p,
i,
j,
&l->mf[j]);
if (status)
goto error;
}
/* actions. */
l->actions = calloc(l->info.n_actions,
sizeof(struct rte_swx_ctl_table_action_info));
if (!l->actions)
goto error;
for (j = 0; j < l->info.n_actions; j++) {
status = rte_swx_ctl_learner_action_info_get(p,
i,
j,
&l->actions[j]);
if (status || l->actions[j].action_id >= ctl->info.n_actions)
goto error;
}
/* action_data_size. */
l->action_data_size = learner_action_data_size_get(ctl, l);
}
/* ts. */
status = rte_swx_pipeline_table_state_get(p, &ctl->ts);
if (status)
goto error;
/* ts_next. */
status = table_state_create(ctl);
if (status)
goto error;
if (ctl->info.name[0]) {
status = ctl_register(ctl);
if (status)
goto error;
}
return ctl;
error:
rte_swx_ctl_pipeline_free(ctl);
return NULL;
}
int
rte_swx_ctl_pipeline_table_entry_add(struct rte_swx_ctl_pipeline *ctl,
const char *table_name,
struct rte_swx_table_entry *entry)
{
struct table *table;
struct rte_swx_table_entry *new_entry, *existing_entry;
uint32_t table_id;
CHECK(ctl, EINVAL);
CHECK(table_name && table_name[0], EINVAL);
table = table_find(ctl, table_name);
CHECK(table, EINVAL);
table_id = table - ctl->tables;
CHECK(entry, EINVAL);
CHECK(!table_entry_check(ctl, table_id, entry, 1, 1), EINVAL);
new_entry = table_entry_duplicate(ctl, table_id, entry, 1, 1);
CHECK(new_entry, ENOMEM);
/* The new entry is found in the table->entries list:
* - Add the new entry to the table->pending_modify1 list;
* - Move the existing entry from the table->entries list to the
* table->pending_modify0 list.
*/
existing_entry = table_entries_find(table, entry);
if (existing_entry) {
TAILQ_INSERT_TAIL(&table->pending_modify1,
new_entry,
node);
TAILQ_REMOVE(&table->entries,
existing_entry,
node);
TAILQ_INSERT_TAIL(&table->pending_modify0,
existing_entry,
node);
return 0;
}
/* The new entry is found in the table->pending_add list:
* - Replace the entry in the table->pending_add list with the new entry
* (and free the replaced entry).
*/
existing_entry = table_pending_add_find(table, entry);
if (existing_entry) {
TAILQ_INSERT_AFTER(&table->pending_add,
existing_entry,
new_entry,
node);
TAILQ_REMOVE(&table->pending_add,
existing_entry,
node);
table_entry_free(existing_entry);
return 0;
}
/* The new entry is found in the table->pending_modify1 list:
* - Replace the entry in the table->pending_modify1 list with the new
* entry (and free the replaced entry).
*/
existing_entry = table_pending_modify1_find(table, entry);
if (existing_entry) {
TAILQ_INSERT_AFTER(&table->pending_modify1,
existing_entry,
new_entry,
node);
TAILQ_REMOVE(&table->pending_modify1,
existing_entry,
node);
table_entry_free(existing_entry);
return 0;
}
/* The new entry is found in the table->pending_delete list:
* - Add the new entry to the table->pending_modify1 list;
* - Move the existing entry from the table->pending_delete list to the
* table->pending_modify0 list.
*/
existing_entry = table_pending_delete_find(table, entry);
if (existing_entry) {
TAILQ_INSERT_TAIL(&table->pending_modify1,
new_entry,
node);
TAILQ_REMOVE(&table->pending_delete,
existing_entry,
node);
TAILQ_INSERT_TAIL(&table->pending_modify0,
existing_entry,
node);
return 0;
}
/* The new entry is not found in any of the above lists:
* - Add the new entry to the table->pending_add list.
*/
TAILQ_INSERT_TAIL(&table->pending_add, new_entry, node);
return 0;
}
int
rte_swx_ctl_pipeline_table_entry_delete(struct rte_swx_ctl_pipeline *ctl,
const char *table_name,
struct rte_swx_table_entry *entry)
{
struct table *table;
struct rte_swx_table_entry *existing_entry;
uint32_t table_id;
CHECK(ctl, EINVAL);
CHECK(table_name && table_name[0], EINVAL);
table = table_find(ctl, table_name);
CHECK(table, EINVAL);
table_id = table - ctl->tables;
CHECK(entry, EINVAL);
CHECK(!table_entry_check(ctl, table_id, entry, 1, 0), EINVAL);
/* The entry is found in the table->entries list:
* - Move the existing entry from the table->entries list to to the
* table->pending_delete list.
*/
existing_entry = table_entries_find(table, entry);
if (existing_entry) {
TAILQ_REMOVE(&table->entries,
existing_entry,
node);
TAILQ_INSERT_TAIL(&table->pending_delete,
existing_entry,
node);
return 0;
}
/* The entry is found in the table->pending_add list:
* - Remove the entry from the table->pending_add list and free it.
*/
existing_entry = table_pending_add_find(table, entry);
if (existing_entry) {
TAILQ_REMOVE(&table->pending_add,
existing_entry,
node);
table_entry_free(existing_entry);
}
/* The entry is found in the table->pending_modify1 list:
* - Free the entry in the table->pending_modify1 list;
* - Move the existing entry from the table->pending_modify0 list to the
* table->pending_delete list.
*/
existing_entry = table_pending_modify1_find(table, entry);
if (existing_entry) {
struct rte_swx_table_entry *real_existing_entry;
TAILQ_REMOVE(&table->pending_modify1,
existing_entry,
node);
table_entry_free(existing_entry);
real_existing_entry = table_pending_modify0_find(table, entry);
CHECK(real_existing_entry, EINVAL); /* Coverity. */
TAILQ_REMOVE(&table->pending_modify0,
real_existing_entry,
node);
TAILQ_INSERT_TAIL(&table->pending_delete,
real_existing_entry,
node);
return 0;
}
/* The entry is found in the table->pending_delete list:
* - Do nothing: the existing entry is already in the
* table->pending_delete list, i.e. already marked for delete, so
* simply keep it there as it is.
*/
/* The entry is not found in any of the above lists:
* - Do nothing: no existing entry to delete.
*/
return 0;
}
int
rte_swx_ctl_pipeline_table_default_entry_add(struct rte_swx_ctl_pipeline *ctl,
const char *table_name,
struct rte_swx_table_entry *entry)
{
struct table *table;
struct rte_swx_table_entry *new_entry;
uint32_t table_id;
CHECK(ctl, EINVAL);
CHECK(table_name && table_name[0], EINVAL);
table = table_find(ctl, table_name);
CHECK(table, EINVAL);
table_id = table - ctl->tables;
CHECK(!table->info.default_action_is_const, EINVAL);
CHECK(entry, EINVAL);
CHECK(!table_entry_check(ctl, table_id, entry, 0, 1), EINVAL);
new_entry = table_entry_duplicate(ctl, table_id, entry, 0, 1);
CHECK(new_entry, ENOMEM);
table_pending_default_free(table);
table->pending_default = new_entry;
return 0;
}
static void
table_entry_list_free(struct rte_swx_table_entry_list *list)
{
for ( ; ; ) {
struct rte_swx_table_entry *entry;
entry = TAILQ_FIRST(list);
if (!entry)
break;
TAILQ_REMOVE(list, entry, node);
table_entry_free(entry);
}
}
static int
table_entry_list_duplicate(struct rte_swx_ctl_pipeline *ctl,
uint32_t table_id,
struct rte_swx_table_entry_list *dst,
struct rte_swx_table_entry_list *src)
{
struct rte_swx_table_entry *src_entry;
TAILQ_FOREACH(src_entry, src, node) {
struct rte_swx_table_entry *dst_entry;
dst_entry = table_entry_duplicate(ctl, table_id, src_entry, 1, 1);
if (!dst_entry)
goto error;
TAILQ_INSERT_TAIL(dst, dst_entry, node);
}
return 0;
error:
table_entry_list_free(dst);
return -ENOMEM;
}
/* This commit stage contains all the operations that can fail; in case ANY of
* them fails for ANY table, ALL of them are rolled back for ALL the tables.
*/
static int
table_rollfwd0(struct rte_swx_ctl_pipeline *ctl,
uint32_t table_id,
uint32_t after_swap)
{
struct table *table = &ctl->tables[table_id];
struct rte_swx_table_state *ts = &ctl->ts[table_id];
struct rte_swx_table_state *ts_next = &ctl->ts_next[table_id];
if (table->is_stub || !table_is_update_pending(table, 0))
return 0;
/*
* Current table supports incremental update.
*/
if (table->ops.add) {
/* Reset counters. */
table->n_add = 0;
table->n_modify = 0;
table->n_delete = 0;
/* Add pending rules. */
struct rte_swx_table_entry *entry;
TAILQ_FOREACH(entry, &table->pending_add, node) {
int status;
status = table->ops.add(ts_next->obj, entry);
if (status)
return status;
table->n_add++;
}
/* Modify pending rules. */
TAILQ_FOREACH(entry, &table->pending_modify1, node) {
int status;
status = table->ops.add(ts_next->obj, entry);
if (status)
return status;
table->n_modify++;
}
/* Delete pending rules. */
TAILQ_FOREACH(entry, &table->pending_delete, node) {
int status;
status = table->ops.del(ts_next->obj, entry);
if (status)
return status;
table->n_delete++;
}
return 0;
}
/*
* Current table does NOT support incremental update.
*/
if (!after_swap) {
struct rte_swx_table_entry_list list;
int status;
/* Create updated list of entries included. */
TAILQ_INIT(&list);
status = table_entry_list_duplicate(ctl,
table_id,
&list,
&table->entries);
if (status)
goto error;
status = table_entry_list_duplicate(ctl,
table_id,
&list,
&table->pending_add);
if (status)
goto error;
status = table_entry_list_duplicate(ctl,
table_id,
&list,
&table->pending_modify1);
if (status)
goto error;
/* Create new table object with the updates included. */
ts_next->obj = table->ops.create(&table->params,
&list,
table->info.args,
ctl->numa_node);
if (!ts_next->obj) {
status = -ENODEV;
goto error;
}
table_entry_list_free(&list);
return 0;
error:
table_entry_list_free(&list);
return status;
}
/* Free the old table object. */
if (ts_next->obj && table->ops.free)
table->ops.free(ts_next->obj);
/* Copy over the new table object. */
ts_next->obj = ts->obj;
return 0;
}
/* This commit stage contains all the operations that cannot fail. They are
* executed only if the previous stage was successful for ALL the tables. Hence,
* none of these operations has to be rolled back for ANY table.
*/
static void
table_rollfwd1(struct rte_swx_ctl_pipeline *ctl, uint32_t table_id)
{
struct table *table = &ctl->tables[table_id];
struct rte_swx_table_state *ts_next = &ctl->ts_next[table_id];
struct action *a;
uint8_t *action_data;
uint64_t action_id;
/* Copy the pending default entry. */
if (!table->pending_default)
return;
action_id = table->pending_default->action_id;
action_data = table->pending_default->action_data;
a = &ctl->actions[action_id];
if (a->data_size)
memcpy(ts_next->default_action_data, action_data, a->data_size);
ts_next->default_action_id = action_id;
}
/* This last commit stage is simply finalizing a successful commit operation.
* This stage is only executed if all the previous stages were successful. This
* stage cannot fail.
*/
static void
table_rollfwd2(struct rte_swx_ctl_pipeline *ctl, uint32_t table_id)
{
struct table *table = &ctl->tables[table_id];
/* Move all the pending add entries to the table, as they are now part
* of the table.
*/
table_pending_add_admit(table);
/* Move all the pending modify1 entries to table, are they are now part
* of the table. Free up all the pending modify0 entries, as they are no
* longer part of the table.
*/
table_pending_modify1_admit(table);
table_pending_modify0_free(table);
/* Free up all the pending delete entries, as they are no longer part of
* the table.
*/
table_pending_delete_free(table);
/* Free up the pending default entry, as it is now part of the table. */
table_pending_default_free(table);
}
/* The rollback stage is only executed when the commit failed, i.e. ANY of the
* commit operations that can fail did fail for ANY table. It reverts ALL the
* tables to their state before the commit started, as if the commit never
* happened.
*/
static void
table_rollback(struct rte_swx_ctl_pipeline *ctl, uint32_t table_id)
{
struct table *table = &ctl->tables[table_id];
struct rte_swx_table_state *ts_next = &ctl->ts_next[table_id];
if (table->is_stub || !table_is_update_pending(table, 0))
return;
if (table->ops.add) {
struct rte_swx_table_entry *entry;
/* Add back all the entries that were just deleted. */
TAILQ_FOREACH(entry, &table->pending_delete, node) {
if (!table->n_delete)
break;
table->ops.add(ts_next->obj, entry);
table->n_delete--;
}
/* Add back the old copy for all the entries that were just
* modified.
*/
TAILQ_FOREACH(entry, &table->pending_modify0, node) {
if (!table->n_modify)
break;
table->ops.add(ts_next->obj, entry);
table->n_modify--;
}
/* Delete all the entries that were just added. */
TAILQ_FOREACH(entry, &table->pending_add, node) {
if (!table->n_add)
break;
table->ops.del(ts_next->obj, entry);
table->n_add--;
}
} else {
struct rte_swx_table_state *ts = &ctl->ts[table_id];
/* Free the new table object, as update was cancelled. */
if (ts_next->obj && table->ops.free)
table->ops.free(ts_next->obj);
/* Reinstate the old table object. */
ts_next->obj = ts->obj;
}
}
/* This stage is conditionally executed (as instructed by the user) after a
* failed commit operation to remove ALL the pending work for ALL the tables.
*/
static void
table_abort(struct rte_swx_ctl_pipeline *ctl, uint32_t table_id)
{
struct table *table = &ctl->tables[table_id];
/* Free up all the pending add entries, as none of them is part of the
* table.
*/
table_pending_add_free(table);
/* Free up all the pending modify1 entries, as none of them made it to
* the table. Add back all the pending modify0 entries, as none of them
* was deleted from the table.
*/
table_pending_modify1_free(table);
table_pending_modify0_admit(table);
/* Add back all the pending delete entries, as none of them was deleted
* from the table.
*/
table_pending_delete_admit(table);
/* Free up the pending default entry, as it is no longer going to be
* added to the table.
*/
table_pending_default_free(table);
}
int
rte_swx_ctl_pipeline_selector_group_add(struct rte_swx_ctl_pipeline *ctl,
const char *selector_name,
uint32_t *group_id)
{
struct selector *s;
uint32_t i;
/* Check input arguments. */
if (!ctl || !selector_name || !selector_name[0] || !group_id)
return -EINVAL;
s = selector_find(ctl, selector_name);
if (!s)
return -EINVAL;
/* Find an unused group. */
for (i = 0; i < s->info.n_groups_max; i++)
if (!s->groups_added[i]) {
*group_id = i;
s->groups_added[i] = 1;
return 0;
}
return -ENOSPC;
}
int
rte_swx_ctl_pipeline_selector_group_delete(struct rte_swx_ctl_pipeline *ctl,
const char *selector_name,
uint32_t group_id)
{
struct selector *s;
struct rte_swx_table_selector_group *group;
/* Check input arguments. */
if (!ctl || !selector_name || !selector_name[0])
return -EINVAL;
s = selector_find(ctl, selector_name);
if (!s ||
(group_id >= s->info.n_groups_max) ||
!s->groups_added[group_id])
return -EINVAL;
/* Check if this group is already scheduled for deletion. */
if (s->groups_pending_delete[group_id])
return 0;
/* Initialize the pending group, if needed. */
if (!s->pending_groups[group_id]) {
int status;
status = selector_group_duplicate_to_pending(s, group_id);
if (status)
return status;
}
group = s->pending_groups[group_id];
/* Schedule removal of all the members from the current group. */
for ( ; ; ) {
struct rte_swx_table_selector_member *m;
m = TAILQ_FIRST(&group->members);
if (!m)
break;
TAILQ_REMOVE(&group->members, m, node);
free(m);
}
/* Schedule the group for deletion. */
s->groups_pending_delete[group_id] = 1;
return 0;
}
int
rte_swx_ctl_pipeline_selector_group_member_add(struct rte_swx_ctl_pipeline *ctl,
const char *selector_name,
uint32_t group_id,
uint32_t member_id,
uint32_t member_weight)
{
struct selector *s;
struct rte_swx_table_selector_group *group;
struct rte_swx_table_selector_member *m;
if (!member_weight)
return rte_swx_ctl_pipeline_selector_group_member_delete(ctl,
selector_name,
group_id,
member_id);
/* Check input arguments. */
if (!ctl || !selector_name || !selector_name[0])
return -EINVAL;
s = selector_find(ctl, selector_name);
if (!s ||
(group_id >= s->info.n_groups_max) ||
!s->groups_added[group_id] ||
s->groups_pending_delete[group_id])
return -EINVAL;
/* Initialize the pending group, if needed. */
if (!s->pending_groups[group_id]) {
int status;
status = selector_group_duplicate_to_pending(s, group_id);
if (status)
return status;
}
group = s->pending_groups[group_id];
/* If this member is already in this group, then simply update its weight and return. */
TAILQ_FOREACH(m, &group->members, node)
if (m->member_id == member_id) {
m->member_weight = member_weight;
return 0;
}
/* Add new member to this group. */
m = calloc(1, sizeof(struct rte_swx_table_selector_member));
if (!m)
return -ENOMEM;
m->member_id = member_id;
m->member_weight = member_weight;
TAILQ_INSERT_TAIL(&group->members, m, node);
return 0;
}
int
rte_swx_ctl_pipeline_selector_group_member_delete(struct rte_swx_ctl_pipeline *ctl,
const char *selector_name,
uint32_t group_id __rte_unused,
uint32_t member_id __rte_unused)
{
struct selector *s;
struct rte_swx_table_selector_group *group;
struct rte_swx_table_selector_member *m;
/* Check input arguments. */
if (!ctl || !selector_name || !selector_name[0])
return -EINVAL;
s = selector_find(ctl, selector_name);
if (!s ||
(group_id >= s->info.n_groups_max) ||
!s->groups_added[group_id] ||
s->groups_pending_delete[group_id])
return -EINVAL;
/* Initialize the pending group, if needed. */
if (!s->pending_groups[group_id]) {
int status;
status = selector_group_duplicate_to_pending(s, group_id);
if (status)
return status;
}
group = s->pending_groups[group_id];
/* Look for this member in the group and remove it, if found. */
TAILQ_FOREACH(m, &group->members, node)
if (m->member_id == member_id) {
TAILQ_REMOVE(&group->members, m, node);
free(m);
return 0;
}
return 0;
}
static int
selector_rollfwd(struct rte_swx_ctl_pipeline *ctl, uint32_t selector_id)
{
struct selector *s = &ctl->selectors[selector_id];
struct rte_swx_table_state *ts_next = &ctl->ts_next[ctl->info.n_tables + selector_id];
uint32_t group_id;
/* Push pending group member changes (s->pending_groups[group_id]) to the selector table
* mirror copy (ts_next->obj).
*/
for (group_id = 0; group_id < s->info.n_groups_max; group_id++) {
struct rte_swx_table_selector_group *group = s->pending_groups[group_id];
int status;
/* Skip this group if no change needed. */
if (!group)
continue;
/* Apply the pending changes for the current group. */
status = rte_swx_table_selector_group_set(ts_next->obj, group_id, group);
if (status)
return status;
}
return 0;
}
static void
selector_rollfwd_finalize(struct rte_swx_ctl_pipeline *ctl, uint32_t selector_id)
{
struct selector *s = &ctl->selectors[selector_id];
uint32_t group_id;
/* Commit pending group member changes (s->pending_groups[group_id]) to the stable group
* records (s->groups[group_id).
*/
for (group_id = 0; group_id < s->info.n_groups_max; group_id++) {
struct rte_swx_table_selector_group *g = s->groups[group_id];
struct rte_swx_table_selector_group *gp = s->pending_groups[group_id];
/* Skip this group if no change needed. */
if (!gp)
continue;
/* Transition the pending changes to stable. */
s->groups[group_id] = gp;
s->pending_groups[group_id] = NULL;
/* Free the old group member list. */
if (!g)
continue;
for ( ; ; ) {
struct rte_swx_table_selector_member *m;
m = TAILQ_FIRST(&g->members);
if (!m)
break;
TAILQ_REMOVE(&g->members, m, node);
free(m);
}
free(g);
}
/* Commit pending group validity changes (from s->groups_pending_delete[group_id] to
* s->groups_added[group_id].
*/
for (group_id = 0; group_id < s->info.n_groups_max; group_id++)
if (s->groups_pending_delete[group_id]) {
s->groups_added[group_id] = 0;
s->groups_pending_delete[group_id] = 0;
}
}
static void
selector_rollback(struct rte_swx_ctl_pipeline *ctl, uint32_t selector_id)
{
struct selector *s = &ctl->selectors[selector_id];
struct rte_swx_table_state *ts = &ctl->ts[ctl->info.n_tables + selector_id];
struct rte_swx_table_state *ts_next = &ctl->ts_next[ctl->info.n_tables + selector_id];
uint32_t group_id;
/* Discard any previous changes to the selector table mirror copy (ts_next->obj). */
for (group_id = 0; group_id < s->info.n_groups_max; group_id++) {
struct rte_swx_table_selector_group *gp = s->pending_groups[group_id];
if (gp) {
ts_next->obj = ts->obj;
break;
}
}
}
static void
selector_abort(struct rte_swx_ctl_pipeline *ctl, uint32_t selector_id)
{
struct selector *s = &ctl->selectors[selector_id];
uint32_t group_id;
/* Discard any pending group member changes (s->pending_groups[group_id]). */
for (group_id = 0; group_id < s->info.n_groups_max; group_id++)
selector_pending_group_members_free(s, group_id);
/* Discard any pending group deletions. */
memset(s->groups_pending_delete, 0, s->info.n_groups_max * sizeof(int));
}
static struct rte_swx_table_entry *
learner_default_entry_alloc(struct learner *l)
{
struct rte_swx_table_entry *entry;
entry = calloc(1, sizeof(struct rte_swx_table_entry));
if (!entry)
goto error;
/* action_data. */
if (l->action_data_size) {
entry->action_data = calloc(1, l->action_data_size);
if (!entry->action_data)
goto error;
}
return entry;
error:
table_entry_free(entry);
return NULL;
}
static int
learner_default_entry_check(struct rte_swx_ctl_pipeline *ctl,
uint32_t learner_id,
struct rte_swx_table_entry *entry)
{
struct learner *l = &ctl->learners[learner_id];
struct action *a;
uint32_t i;
CHECK(entry, EINVAL);
/* action_id. */
for (i = 0; i < l->info.n_actions; i++)
if (entry->action_id == l->actions[i].action_id)
break;
CHECK(i < l->info.n_actions, EINVAL);
/* action_data. */
a = &ctl->actions[entry->action_id];
CHECK(!(a->data_size && !entry->action_data), EINVAL);
return 0;
}
static struct rte_swx_table_entry *
learner_default_entry_duplicate(struct rte_swx_ctl_pipeline *ctl,
uint32_t learner_id,
struct rte_swx_table_entry *entry)
{
struct learner *l = &ctl->learners[learner_id];
struct rte_swx_table_entry *new_entry = NULL;
struct action *a;
uint32_t i;
if (!entry)
goto error;
new_entry = calloc(1, sizeof(struct rte_swx_table_entry));
if (!new_entry)
goto error;
/* action_id. */
for (i = 0; i < l->info.n_actions; i++)
if (entry->action_id == l->actions[i].action_id)
break;
if (i >= l->info.n_actions)
goto error;
new_entry->action_id = entry->action_id;
/* action_data. */
a = &ctl->actions[entry->action_id];
if (a->data_size && !entry->action_data)
goto error;
/* The table layer provisions a constant action data size per
* entry, which should be the largest data size for all the
* actions enabled for the current table, and attempts to copy
* this many bytes each time a table entry is added, even if the
* specific action requires less data or even no data at all,
* hence we always have to allocate the max.
*/
new_entry->action_data = calloc(1, l->action_data_size);
if (!new_entry->action_data)
goto error;
if (a->data_size)
memcpy(new_entry->action_data, entry->action_data, a->data_size);
return new_entry;
error:
table_entry_free(new_entry);
return NULL;
}
int
rte_swx_ctl_pipeline_learner_default_entry_add(struct rte_swx_ctl_pipeline *ctl,
const char *learner_name,
struct rte_swx_table_entry *entry)
{
struct learner *l;
struct rte_swx_table_entry *new_entry;
uint32_t learner_id;
CHECK(ctl, EINVAL);
CHECK(learner_name && learner_name[0], EINVAL);
l = learner_find(ctl, learner_name);
CHECK(l, EINVAL);
learner_id = l - ctl->learners;
CHECK(!l->info.default_action_is_const, EINVAL);
CHECK(entry, EINVAL);
CHECK(!learner_default_entry_check(ctl, learner_id, entry), EINVAL);
CHECK(l->actions[entry->action_id].action_is_for_default_entry, EINVAL);
new_entry = learner_default_entry_duplicate(ctl, learner_id, entry);
CHECK(new_entry, ENOMEM);
learner_pending_default_free(l);
l->pending_default = new_entry;
return 0;
}
static void
learner_rollfwd(struct rte_swx_ctl_pipeline *ctl, uint32_t learner_id)
{
struct learner *l = &ctl->learners[learner_id];
struct rte_swx_table_state *ts_next = &ctl->ts_next[ctl->info.n_tables +
ctl->info.n_selectors + learner_id];
struct action *a;
uint8_t *action_data;
uint64_t action_id;
/* Copy the pending default entry. */
if (!l->pending_default)
return;
action_id = l->pending_default->action_id;
action_data = l->pending_default->action_data;
a = &ctl->actions[action_id];
if (a->data_size)
memcpy(ts_next->default_action_data, action_data, a->data_size);
ts_next->default_action_id = action_id;
}
static void
learner_rollfwd_finalize(struct rte_swx_ctl_pipeline *ctl, uint32_t learner_id)
{
struct learner *l = &ctl->learners[learner_id];
/* Free up the pending default entry, as it is now part of the table. */
learner_pending_default_free(l);
}
static void
learner_abort(struct rte_swx_ctl_pipeline *ctl, uint32_t learner_id)
{
struct learner *l = &ctl->learners[learner_id];
/* Free up the pending default entry, as it is no longer going to be added to the table. */
learner_pending_default_free(l);
}
int
rte_swx_ctl_pipeline_commit(struct rte_swx_ctl_pipeline *ctl, int abort_on_fail)
{
struct rte_swx_table_state *ts;
int status = 0;
uint32_t i;
CHECK(ctl, EINVAL);
/* Operate the changes on the current ts_next before it becomes the new ts. First, operate
* all the changes that can fail; if no failure, then operate the changes that cannot fail.
* We must be able to fully revert all the changes that can fail as if they never happened.
*/
for (i = 0; i < ctl->info.n_tables; i++) {
status = table_rollfwd0(ctl, i, 0);
if (status)
goto rollback;
}
for (i = 0; i < ctl->info.n_selectors; i++) {
status = selector_rollfwd(ctl, i);
if (status)
goto rollback;
}
/* Second, operate all the changes that cannot fail. Since nothing can fail from this point
* onwards, the transaction is guaranteed to be successful.
*/
for (i = 0; i < ctl->info.n_tables; i++)
table_rollfwd1(ctl, i);
for (i = 0; i < ctl->info.n_learners; i++)
learner_rollfwd(ctl, i);
/* Swap the table state for the data plane. The current ts and ts_next
* become the new ts_next and ts, respectively.
*/
rte_swx_pipeline_table_state_set(ctl->p, ctl->ts_next);
usleep(100);
ts = ctl->ts;
ctl->ts = ctl->ts_next;
ctl->ts_next = ts;
/* Operate the changes on the current ts_next, which is the previous ts, in order to get
* the current ts_next in sync with the current ts. Since the changes that can fail did
* not fail on the previous ts_next, it is guaranteed that they will not fail on the
* current ts_next, hence no error checking is needed.
*/
for (i = 0; i < ctl->info.n_tables; i++) {
table_rollfwd0(ctl, i, 1);
table_rollfwd1(ctl, i);
table_rollfwd2(ctl, i);
}
for (i = 0; i < ctl->info.n_selectors; i++) {
selector_rollfwd(ctl, i);
selector_rollfwd_finalize(ctl, i);
}
for (i = 0; i < ctl->info.n_learners; i++) {
learner_rollfwd(ctl, i);
learner_rollfwd_finalize(ctl, i);
}
return 0;
rollback:
for (i = 0; i < ctl->info.n_tables; i++) {
table_rollback(ctl, i);
if (abort_on_fail)
table_abort(ctl, i);
}
for (i = 0; i < ctl->info.n_selectors; i++) {
selector_rollback(ctl, i);
if (abort_on_fail)
selector_abort(ctl, i);
}
if (abort_on_fail)
for (i = 0; i < ctl->info.n_learners; i++)
learner_abort(ctl, i);
return status;
}
void
rte_swx_ctl_pipeline_abort(struct rte_swx_ctl_pipeline *ctl)
{
uint32_t i;
if (!ctl)
return;
for (i = 0; i < ctl->info.n_tables; i++)
table_abort(ctl, i);
for (i = 0; i < ctl->info.n_selectors; i++)
selector_abort(ctl, i);
for (i = 0; i < ctl->info.n_learners; i++)
learner_abort(ctl, i);
}
static int
mask_to_prefix(uint64_t mask, uint32_t mask_length, uint32_t *prefix_length)
{
uint32_t n_trailing_zeros = 0, n_ones = 0, i;
if (!mask) {
*prefix_length = 0;
return 0;
}
/* Count trailing zero bits. */
for (i = 0; i < 64; i++) {
if (mask & (1LLU << i))
break;
n_trailing_zeros++;
}
/* Count the one bits that follow. */
for ( ; i < 64; i++) {
if (!(mask & (1LLU << i)))
break;
n_ones++;
}
/* Check that no more one bits are present */
for ( ; i < 64; i++)
if (mask & (1LLU << i))
return -EINVAL;
/* Check that the input mask is a prefix or the right length. */
if (n_ones + n_trailing_zeros != mask_length)
return -EINVAL;
*prefix_length = n_ones;
return 0;
}
static int
large_mask_to_prefix(uint8_t *mask, uint32_t n_mask_bytes, uint32_t *prefix_length)
{
uint32_t pl, i;
/* Check input arguments. */
if (!mask || !n_mask_bytes || !prefix_length)
return -EINVAL;
/* Count leading bits of one. */
for (i = 0; i < n_mask_bytes * 8; i++) {
uint32_t byte_id = i / 8;
uint32_t bit_id = i & 7;
uint32_t byte = mask[byte_id];
uint32_t bit = byte & (1 << (7 - bit_id));
if (!bit)
break;
}
/* Save the potential prefix length. */
pl = i;
/* Check that all remaining bits are zeros. */
for ( ; i < n_mask_bytes * 8; i++) {
uint32_t byte_id = i / 8;
uint32_t bit_id = i & 7;
uint32_t byte = mask[byte_id];
uint32_t bit = byte & (1 << (7 - bit_id));
if (bit)
break;
}
if (i < n_mask_bytes * 8)
return -EINVAL;
*prefix_length = pl;
return 0;
}
static int
char_to_hex(char c, uint8_t *val)
{
if (c >= '0' && c <= '9') {
*val = c - '0';
return 0;
}
if (c >= 'A' && c <= 'F') {
*val = c - 'A' + 10;
return 0;
}
if (c >= 'a' && c <= 'f') {
*val = c - 'a' + 10;
return 0;
}
return -EINVAL;
}
static int
hex_string_parse(char *src, uint8_t *dst, uint32_t n_dst_bytes)
{
uint32_t i;
/* Check input arguments. */
if (!src || !src[0] || !dst || !n_dst_bytes)
return -EINVAL;
/* Skip any leading "0x" or "0X" in the src string. */
if ((src[0] == '0') && (src[1] == 'x' || src[1] == 'X'))
src += 2;
/* Convert each group of two hex characters in the src string to one byte in dst array. */
for (i = 0; i < n_dst_bytes; i++) {
uint8_t a, b;
int status;
status = char_to_hex(*src, &a);
if (status)
return status;
src++;
status = char_to_hex(*src, &b);
if (status)
return status;
src++;
dst[i] = a * 16 + b;
}
/* Check for the end of the src string. */
if (*src)
return -EINVAL;
return 0;
}
static int
table_entry_match_field_read(struct table *table,
struct rte_swx_table_entry *entry,
uint32_t mf_id,
char *mf_val,
char *mf_mask,
int *lpm,
uint32_t *lpm_prefix_length_max,
uint32_t *lpm_prefix_length)
{
struct rte_swx_ctl_table_match_field_info *mf = &table->mf[mf_id];
uint64_t val, mask = UINT64_MAX;
uint32_t offset = (mf->offset - table->mf_first->offset) / 8;
/*
* Mask.
*/
if (mf_mask) {
/* Parse. */
mask = strtoull(mf_mask, &mf_mask, 0);
if (mf_mask[0])
return -EINVAL;
/* LPM. */
if (mf->match_type == RTE_SWX_TABLE_MATCH_LPM) {
int status;
*lpm = 1;
*lpm_prefix_length_max = mf->n_bits;
status = mask_to_prefix(mask, mf->n_bits, lpm_prefix_length);
if (status)
return status;
}
/* Endianness conversion. */
if (mf->is_header)
mask = field_hton(mask, mf->n_bits);
}
/* Copy to entry. */
if (entry->key_mask)
memcpy(&entry->key_mask[offset], (uint8_t *)&mask, mf->n_bits / 8);
/*
* Value.
*/
/* Parse. */
val = strtoull(mf_val, &mf_val, 0);
if (mf_val[0])
return -EINVAL;
/* Endianness conversion. */
if (mf->is_header)
val = field_hton(val, mf->n_bits);
/* Copy to entry. */
memcpy(&entry->key[offset], (uint8_t *)&val, mf->n_bits / 8);
return 0;
}
static int
table_entry_action_argument_read(struct action *action,
struct rte_swx_table_entry *entry,
uint32_t arg_id,
uint32_t arg_offset,
char *arg_val)
{
struct rte_swx_ctl_action_arg_info *arg = &action->args[arg_id];
uint64_t val;
val = strtoull(arg_val, &arg_val, 0);
if (arg_val[0])
return -EINVAL;
/* Endianness conversion. */
if (arg->is_network_byte_order)
val = field_hton(val, arg->n_bits);
/* Copy to entry. */
memcpy(&entry->action_data[arg_offset],
(uint8_t *)&val,
arg->n_bits / 8);
return 0;
}
static int
table_entry_large_match_field_read(struct table *table,
struct rte_swx_table_entry *entry,
uint32_t mf_id,
char *mf_val,
char *mf_mask,
int *lpm,
uint32_t *lpm_prefix_length_max,
uint32_t *lpm_prefix_length)
{
struct rte_swx_ctl_table_match_field_info *mf = &table->mf[mf_id];
uint32_t offset = (mf->offset - table->mf_first->offset) / 8;
int status;
/*
* Mask.
*/
if (!entry->key_mask)
goto value;
if (!mf_mask) {
/* Set mask to all-ones. */
memset(&entry->key_mask[offset], 0xFF, mf->n_bits / 8);
goto value;
}
/* Parse. */
status = hex_string_parse(mf_mask, &entry->key_mask[offset], mf->n_bits / 8);
if (status)
return -EINVAL;
/* LPM. */
if (mf->match_type == RTE_SWX_TABLE_MATCH_LPM) {
*lpm = 1;
*lpm_prefix_length_max = mf->n_bits;
status = large_mask_to_prefix(&entry->key_mask[offset],
mf->n_bits / 8,
lpm_prefix_length);
if (status)
return status;
}
/*
* Value.
*/
value:
/* Parse. */
status = hex_string_parse(mf_val, &entry->key[offset], mf->n_bits / 8);
if (status)
return -EINVAL;
return 0;
}
static int
table_entry_large_action_argument_read(struct action *action,
struct rte_swx_table_entry *entry,
uint32_t arg_id,
uint32_t arg_offset,
char *arg_val)
{
struct rte_swx_ctl_action_arg_info *arg = &action->args[arg_id];
int status;
status = hex_string_parse(arg_val, &entry->action_data[arg_offset], arg->n_bits / 8);
if (status)
return -EINVAL;
return 0;
}
static int
token_is_comment(const char *token)
{
if ((token[0] == '#') ||
(token[0] == ';') ||
((token[0] == '/') && (token[1] == '/')))
return 1; /* TRUE. */
return 0; /* FALSE. */
}
#define RTE_SWX_CTL_ENTRY_TOKENS_MAX 256
struct rte_swx_table_entry *
rte_swx_ctl_pipeline_table_entry_read(struct rte_swx_ctl_pipeline *ctl,
const char *table_name,
const char *string,
int *is_blank_or_comment)
{
char *token_array[RTE_SWX_CTL_ENTRY_TOKENS_MAX], **tokens;
struct table *table;
struct action *action;
struct rte_swx_table_entry *entry = NULL;
char *s0 = NULL, *s;
uint32_t n_tokens = 0, arg_offset = 0, lpm_prefix_length_max = 0, lpm_prefix_length = 0, i;
int lpm = 0, blank_or_comment = 0;
/* Check input arguments. */
if (!ctl)
goto error;
if (!table_name || !table_name[0])
goto error;
table = table_find(ctl, table_name);
if (!table)
goto error;
if (!string || !string[0])
goto error;
/* Memory allocation. */
s0 = strdup(string);
if (!s0)
goto error;
entry = table_entry_alloc(table);
if (!entry)
goto error;
/* Parse the string into tokens. */
for (s = s0; ; ) {
char *token;
token = strtok_r(s, " \f\n\r\t\v", &s);
if (!token || token_is_comment(token))
break;
if (n_tokens >= RTE_SWX_CTL_ENTRY_TOKENS_MAX)
goto error;
token_array[n_tokens] = token;
n_tokens++;
}
if (!n_tokens) {
blank_or_comment = 1;
goto error;
}
tokens = token_array;
/*
* Match.
*/
if (!(n_tokens && !strcmp(tokens[0], "match")))
goto action;
if (n_tokens < 1 + table->info.n_match_fields)
goto error;
for (i = 0; i < table->info.n_match_fields; i++) {
struct rte_swx_ctl_table_match_field_info *mf = &table->mf[i];
char *mf_val = tokens[1 + i], *mf_mask = NULL;
int status;
mf_mask = strchr(mf_val, '/');
if (mf_mask) {
*mf_mask = 0;
mf_mask++;
}
if (mf->n_bits <= 64)
status = table_entry_match_field_read(table,
entry,
i,
mf_val,
mf_mask,
&lpm,
&lpm_prefix_length_max,
&lpm_prefix_length);
else
status = table_entry_large_match_field_read(table,
entry,
i,
mf_val,
mf_mask,
&lpm,
&lpm_prefix_length_max,
&lpm_prefix_length);
if (status)
goto error;
}
tokens += 1 + table->info.n_match_fields;
n_tokens -= 1 + table->info.n_match_fields;
/*
* Match priority.
*/
if (n_tokens && !strcmp(tokens[0], "priority")) {
char *priority = tokens[1];
uint32_t val;
if (n_tokens < 2)
goto error;
/* Parse. */
val = strtoul(priority, &priority, 0);
if (priority[0])
goto error;
/* Copy to entry. */
entry->key_priority = val;
tokens += 2;
n_tokens -= 2;
}
/* LPM. */
if (lpm)
entry->key_priority = lpm_prefix_length_max - lpm_prefix_length;
/*
* Action.
*/
action:
if (!(n_tokens && !strcmp(tokens[0], "action")))
goto other;
if (n_tokens < 2)
goto error;
action = action_find(ctl, tokens[1]);
if (!action)
goto error;
if (n_tokens < 2 + action->info.n_args * 2)
goto error;
/* action_id. */
entry->action_id = action - ctl->actions;
/* action_data. */
for (i = 0; i < action->info.n_args; i++) {
struct rte_swx_ctl_action_arg_info *arg = &action->args[i];
char *arg_name, *arg_val;
int status;
arg_name = tokens[2 + i * 2];
arg_val = tokens[2 + i * 2 + 1];
if (strcmp(arg_name, arg->name))
goto error;
if (arg->n_bits <= 64)
status = table_entry_action_argument_read(action,
entry,
i,
arg_offset,
arg_val);
else
status = table_entry_large_action_argument_read(action,
entry,
i,
arg_offset,
arg_val);
if (status)
goto error;
arg_offset += arg->n_bits / 8;
}
tokens += 2 + action->info.n_args * 2;
n_tokens -= 2 + action->info.n_args * 2;
other:
if (n_tokens)
goto error;
free(s0);
return entry;
error:
table_entry_free(entry);
free(s0);
if (is_blank_or_comment)
*is_blank_or_comment = blank_or_comment;
return NULL;
}
struct rte_swx_table_entry *
rte_swx_ctl_pipeline_learner_default_entry_read(struct rte_swx_ctl_pipeline *ctl,
const char *learner_name,
const char *string,
int *is_blank_or_comment)
{
char *token_array[RTE_SWX_CTL_ENTRY_TOKENS_MAX], **tokens;
struct learner *l;
struct action *action;
struct rte_swx_table_entry *entry = NULL;
char *s0 = NULL, *s;
uint32_t n_tokens = 0, arg_offset = 0, i;
int blank_or_comment = 0;
/* Check input arguments. */
if (!ctl)
goto error;
if (!learner_name || !learner_name[0])
goto error;
l = learner_find(ctl, learner_name);
if (!l)
goto error;
if (!string || !string[0])
goto error;
/* Memory allocation. */
s0 = strdup(string);
if (!s0)
goto error;
entry = learner_default_entry_alloc(l);
if (!entry)
goto error;
/* Parse the string into tokens. */
for (s = s0; ; ) {
char *token;
token = strtok_r(s, " \f\n\r\t\v", &s);
if (!token || token_is_comment(token))
break;
if (n_tokens >= RTE_SWX_CTL_ENTRY_TOKENS_MAX)
goto error;
token_array[n_tokens] = token;
n_tokens++;
}
if (!n_tokens) {
blank_or_comment = 1;
goto error;
}
tokens = token_array;
/*
* Action.
*/
if (!(n_tokens && !strcmp(tokens[0], "action")))
goto other;
if (n_tokens < 2)
goto error;
action = action_find(ctl, tokens[1]);
if (!action)
goto error;
if (n_tokens < 2 + action->info.n_args * 2)
goto error;
/* action_id. */
entry->action_id = action - ctl->actions;
/* action_data. */
for (i = 0; i < action->info.n_args; i++) {
struct rte_swx_ctl_action_arg_info *arg = &action->args[i];
char *arg_name, *arg_val;
uint64_t val;
arg_name = tokens[2 + i * 2];
arg_val = tokens[2 + i * 2 + 1];
if (strcmp(arg_name, arg->name))
goto error;
val = strtoull(arg_val, &arg_val, 0);
if (arg_val[0])
goto error;
/* Endianness conversion. */
if (arg->is_network_byte_order)
val = field_hton(val, arg->n_bits);
/* Copy to entry. */
memcpy(&entry->action_data[arg_offset],
(uint8_t *)&val,
arg->n_bits / 8);
arg_offset += arg->n_bits / 8;
}
tokens += 2 + action->info.n_args * 2;
n_tokens -= 2 + action->info.n_args * 2;
other:
if (n_tokens)
goto error;
free(s0);
return entry;
error:
table_entry_free(entry);
free(s0);
if (is_blank_or_comment)
*is_blank_or_comment = blank_or_comment;
return NULL;
}
static void
table_entry_printf(FILE *f,
struct rte_swx_ctl_pipeline *ctl,
struct table *table,
struct rte_swx_table_entry *entry)
{
struct action *action = &ctl->actions[entry->action_id];
uint32_t i;
fprintf(f, "match ");
for (i = 0; i < table->params.key_size; i++)
fprintf(f, "%02x", entry->key[i]);
if (entry->key_mask) {
fprintf(f, "/");
for (i = 0; i < table->params.key_size; i++)
fprintf(f, "%02x", entry->key_mask[i]);
}
fprintf(f, " priority %u", entry->key_priority);
fprintf(f, " action %s ", action->info.name);
for (i = 0; i < action->data_size; i++)
fprintf(f, "%02x", entry->action_data[i]);
fprintf(f, "\n");
}
int
rte_swx_ctl_pipeline_table_fprintf(FILE *f,
struct rte_swx_ctl_pipeline *ctl,
const char *table_name)
{
struct table *table;
struct rte_swx_table_entry *entry;
uint32_t n_entries = 0, i;
if (!f || !ctl || !table_name || !table_name[0])
return -EINVAL;
table = table_find(ctl, table_name);
if (!table)
return -EINVAL;
/* Table. */
fprintf(f, "# Table %s: key size %u bytes, key offset %u, key mask [",
table->info.name,
table->params.key_size,
table->params.key_offset);
for (i = 0; i < table->params.key_size; i++)
fprintf(f, "%02x", table->params.key_mask0[i]);
fprintf(f, "], action data size %u bytes\n",
table->params.action_data_size);
/* Table entries. */
TAILQ_FOREACH(entry, &table->entries, node) {
table_entry_printf(f, ctl, table, entry);
n_entries++;
}
TAILQ_FOREACH(entry, &table->pending_modify0, node) {
table_entry_printf(f, ctl, table, entry);
n_entries++;
}
TAILQ_FOREACH(entry, &table->pending_delete, node) {
table_entry_printf(f, ctl, table, entry);
n_entries++;
}
fprintf(f, "# Table %s currently has %u entries.\n",
table_name,
n_entries);
return 0;
}
int
rte_swx_ctl_pipeline_selector_fprintf(FILE *f,
struct rte_swx_ctl_pipeline *ctl,
const char *selector_name)
{
struct selector *s;
uint32_t group_id;
if (!f || !ctl || !selector_name || !selector_name[0])
return -EINVAL;
s = selector_find(ctl, selector_name);
if (!s)
return -EINVAL;
/* Selector. */
fprintf(f, "# Selector %s: max groups %u, max members per group %u\n",
s->info.name,
s->info.n_groups_max,
s->info.n_members_per_group_max);
/* Groups. */
for (group_id = 0; group_id < s->info.n_groups_max; group_id++) {
struct rte_swx_table_selector_group *group = s->groups[group_id];
struct rte_swx_table_selector_member *m;
uint32_t n_members = 0;
fprintf(f, "Group %u = [", group_id);
/* Non-empty group. */
if (group)
TAILQ_FOREACH(m, &group->members, node) {
fprintf(f, "%u:%u ", m->member_id, m->member_weight);
n_members++;
}
/* Empty group. */
if (!n_members)
fprintf(f, "0:1 ");
fprintf(f, "]\n");
}
return 0;
}