numam-dpdk/lib/ethdev/rte_flow.c
Gregory Etelson de39080bd6 ethdev: fix variable length flow elements support
RTE flow API defines two flow elements types - common and PMD private.
Common RTE flow types are defined in rte_flow.h while PMD private
types exists inside specific PMD only. Application can create a flow
rule with PMD private items or actions. RTE flow API restricts
private PMD types to negative values.

Current implementation tried to use negative PMD private item type
value as index in the rte_flow_desc_item[] array.

The patch allows access to rte_flow_desc_item[] and
rte_flow_desc_action[] arrays to non-private PMD types only.

Fixes: 6cf7204733 ("ethdev: support flow elements with variable length")

Signed-off-by: Gregory Etelson <getelson@nvidia.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2021-11-04 13:23:29 +01:00

1394 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include <rte_string_fns.h>
#include <rte_mbuf.h>
#include <rte_mbuf_dyn.h>
#include "rte_ethdev.h"
#include "rte_flow_driver.h"
#include "rte_flow.h"
/* Mbuf dynamic field name for metadata. */
int32_t rte_flow_dynf_metadata_offs = -1;
/* Mbuf dynamic field flag bit number for metadata. */
uint64_t rte_flow_dynf_metadata_mask;
/**
* Flow elements description tables.
*/
struct rte_flow_desc_data {
const char *name;
size_t size;
size_t (*desc_fn)(void *dst, const void *src);
};
/**
*
* @param buf
* Destination memory.
* @param data
* Source memory
* @param size
* Requested copy size
* @param desc
* rte_flow_desc_item - for flow item conversion.
* rte_flow_desc_action - for flow action conversion.
* @param type
* Offset into the desc param or negative value for private flow elements.
*/
static inline size_t
rte_flow_conv_copy(void *buf, const void *data, const size_t size,
const struct rte_flow_desc_data *desc, int type)
{
/**
* Allow PMD private flow item
*/
bool rte_type = type >= 0;
size_t sz = rte_type ? desc[type].size : sizeof(void *);
if (buf == NULL || data == NULL)
return 0;
rte_memcpy(buf, data, (size > sz ? sz : size));
if (rte_type && desc[type].desc_fn)
sz += desc[type].desc_fn(size > 0 ? buf : NULL, data);
return sz;
}
static size_t
rte_flow_item_flex_conv(void *buf, const void *data)
{
struct rte_flow_item_flex *dst = buf;
const struct rte_flow_item_flex *src = data;
if (buf) {
dst->pattern = rte_memcpy
((void *)((uintptr_t)(dst + 1)), src->pattern,
src->length);
}
return src->length;
}
/** Generate flow_item[] entry. */
#define MK_FLOW_ITEM(t, s) \
[RTE_FLOW_ITEM_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
.desc_fn = NULL,\
}
#define MK_FLOW_ITEM_FN(t, s, fn) \
[RTE_FLOW_ITEM_TYPE_ ## t] = {\
.name = # t, \
.size = s, \
.desc_fn = fn, \
}
/** Information about known flow pattern items. */
static const struct rte_flow_desc_data rte_flow_desc_item[] = {
MK_FLOW_ITEM(END, 0),
MK_FLOW_ITEM(VOID, 0),
MK_FLOW_ITEM(INVERT, 0),
MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
MK_FLOW_ITEM(PF, 0),
MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
MK_FLOW_ITEM(IPV6_FRAG_EXT, sizeof(struct rte_flow_item_ipv6_frag_ext)),
MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
MK_FLOW_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
MK_FLOW_ITEM(META, sizeof(struct rte_flow_item_meta)),
MK_FLOW_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
MK_FLOW_ITEM(GRE_KEY, sizeof(rte_be32_t)),
MK_FLOW_ITEM(GTP_PSC, sizeof(struct rte_flow_item_gtp_psc)),
MK_FLOW_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
MK_FLOW_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
MK_FLOW_ITEM(PPPOE_PROTO_ID,
sizeof(struct rte_flow_item_pppoe_proto_id)),
MK_FLOW_ITEM(NSH, sizeof(struct rte_flow_item_nsh)),
MK_FLOW_ITEM(IGMP, sizeof(struct rte_flow_item_igmp)),
MK_FLOW_ITEM(AH, sizeof(struct rte_flow_item_ah)),
MK_FLOW_ITEM(HIGIG2, sizeof(struct rte_flow_item_higig2_hdr)),
MK_FLOW_ITEM(L2TPV3OIP, sizeof(struct rte_flow_item_l2tpv3oip)),
MK_FLOW_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
MK_FLOW_ITEM(ECPRI, sizeof(struct rte_flow_item_ecpri)),
MK_FLOW_ITEM(GENEVE_OPT, sizeof(struct rte_flow_item_geneve_opt)),
MK_FLOW_ITEM(INTEGRITY, sizeof(struct rte_flow_item_integrity)),
MK_FLOW_ITEM(CONNTRACK, sizeof(uint32_t)),
MK_FLOW_ITEM(PORT_REPRESENTOR, sizeof(struct rte_flow_item_ethdev)),
MK_FLOW_ITEM(REPRESENTED_PORT, sizeof(struct rte_flow_item_ethdev)),
MK_FLOW_ITEM_FN(FLEX, sizeof(struct rte_flow_item_flex),
rte_flow_item_flex_conv),
MK_FLOW_ITEM(L2TPV2, sizeof(struct rte_flow_item_l2tpv2)),
MK_FLOW_ITEM(PPP, sizeof(struct rte_flow_item_ppp)),
};
/** Generate flow_action[] entry. */
#define MK_FLOW_ACTION(t, s) \
[RTE_FLOW_ACTION_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
.desc_fn = NULL,\
}
#define MK_FLOW_ACTION_FN(t, fn) \
[RTE_FLOW_ACTION_TYPE_ ## t] = { \
.name = # t, \
.size = 0, \
.desc_fn = fn,\
}
/** Information about known flow actions. */
static const struct rte_flow_desc_data rte_flow_desc_action[] = {
MK_FLOW_ACTION(END, 0),
MK_FLOW_ACTION(VOID, 0),
MK_FLOW_ACTION(PASSTHRU, 0),
MK_FLOW_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
MK_FLOW_ACTION(FLAG, 0),
MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
MK_FLOW_ACTION(DROP, 0),
MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
MK_FLOW_ACTION(PF, 0),
MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
MK_FLOW_ACTION(SECURITY, sizeof(struct rte_flow_action_security)),
MK_FLOW_ACTION(OF_SET_MPLS_TTL,
sizeof(struct rte_flow_action_of_set_mpls_ttl)),
MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
MK_FLOW_ACTION(OF_SET_NW_TTL,
sizeof(struct rte_flow_action_of_set_nw_ttl)),
MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
MK_FLOW_ACTION(OF_POP_VLAN, 0),
MK_FLOW_ACTION(OF_PUSH_VLAN,
sizeof(struct rte_flow_action_of_push_vlan)),
MK_FLOW_ACTION(OF_SET_VLAN_VID,
sizeof(struct rte_flow_action_of_set_vlan_vid)),
MK_FLOW_ACTION(OF_SET_VLAN_PCP,
sizeof(struct rte_flow_action_of_set_vlan_pcp)),
MK_FLOW_ACTION(OF_POP_MPLS,
sizeof(struct rte_flow_action_of_pop_mpls)),
MK_FLOW_ACTION(OF_PUSH_MPLS,
sizeof(struct rte_flow_action_of_push_mpls)),
MK_FLOW_ACTION(VXLAN_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
MK_FLOW_ACTION(VXLAN_DECAP, 0),
MK_FLOW_ACTION(NVGRE_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
MK_FLOW_ACTION(NVGRE_DECAP, 0),
MK_FLOW_ACTION(RAW_ENCAP, sizeof(struct rte_flow_action_raw_encap)),
MK_FLOW_ACTION(RAW_DECAP, sizeof(struct rte_flow_action_raw_decap)),
MK_FLOW_ACTION(SET_IPV4_SRC,
sizeof(struct rte_flow_action_set_ipv4)),
MK_FLOW_ACTION(SET_IPV4_DST,
sizeof(struct rte_flow_action_set_ipv4)),
MK_FLOW_ACTION(SET_IPV6_SRC,
sizeof(struct rte_flow_action_set_ipv6)),
MK_FLOW_ACTION(SET_IPV6_DST,
sizeof(struct rte_flow_action_set_ipv6)),
MK_FLOW_ACTION(SET_TP_SRC,
sizeof(struct rte_flow_action_set_tp)),
MK_FLOW_ACTION(SET_TP_DST,
sizeof(struct rte_flow_action_set_tp)),
MK_FLOW_ACTION(MAC_SWAP, 0),
MK_FLOW_ACTION(DEC_TTL, 0),
MK_FLOW_ACTION(SET_TTL, sizeof(struct rte_flow_action_set_ttl)),
MK_FLOW_ACTION(SET_MAC_SRC, sizeof(struct rte_flow_action_set_mac)),
MK_FLOW_ACTION(SET_MAC_DST, sizeof(struct rte_flow_action_set_mac)),
MK_FLOW_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
MK_FLOW_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
MK_FLOW_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
MK_FLOW_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
MK_FLOW_ACTION(SET_TAG, sizeof(struct rte_flow_action_set_tag)),
MK_FLOW_ACTION(SET_META, sizeof(struct rte_flow_action_set_meta)),
MK_FLOW_ACTION(SET_IPV4_DSCP, sizeof(struct rte_flow_action_set_dscp)),
MK_FLOW_ACTION(SET_IPV6_DSCP, sizeof(struct rte_flow_action_set_dscp)),
MK_FLOW_ACTION(AGE, sizeof(struct rte_flow_action_age)),
MK_FLOW_ACTION(SAMPLE, sizeof(struct rte_flow_action_sample)),
MK_FLOW_ACTION(MODIFY_FIELD,
sizeof(struct rte_flow_action_modify_field)),
/**
* Indirect action represented as handle of type
* (struct rte_flow_action_handle *) stored in conf field (see
* struct rte_flow_action); no need for additional structure to * store
* indirect action handle.
*/
MK_FLOW_ACTION(INDIRECT, 0),
MK_FLOW_ACTION(CONNTRACK, sizeof(struct rte_flow_action_conntrack)),
MK_FLOW_ACTION(PORT_REPRESENTOR, sizeof(struct rte_flow_action_ethdev)),
MK_FLOW_ACTION(REPRESENTED_PORT, sizeof(struct rte_flow_action_ethdev)),
};
int
rte_flow_dynf_metadata_register(void)
{
int offset;
int flag;
static const struct rte_mbuf_dynfield desc_offs = {
.name = RTE_MBUF_DYNFIELD_METADATA_NAME,
.size = sizeof(uint32_t),
.align = __alignof__(uint32_t),
};
static const struct rte_mbuf_dynflag desc_flag = {
.name = RTE_MBUF_DYNFLAG_METADATA_NAME,
};
offset = rte_mbuf_dynfield_register(&desc_offs);
if (offset < 0)
goto error;
flag = rte_mbuf_dynflag_register(&desc_flag);
if (flag < 0)
goto error;
rte_flow_dynf_metadata_offs = offset;
rte_flow_dynf_metadata_mask = RTE_BIT64(flag);
return 0;
error:
rte_flow_dynf_metadata_offs = -1;
rte_flow_dynf_metadata_mask = UINT64_C(0);
return -rte_errno;
}
static inline void
fts_enter(struct rte_eth_dev *dev)
{
if (!(dev->data->dev_flags & RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE))
pthread_mutex_lock(&dev->data->flow_ops_mutex);
}
static inline void
fts_exit(struct rte_eth_dev *dev)
{
if (!(dev->data->dev_flags & RTE_ETH_DEV_FLOW_OPS_THREAD_SAFE))
pthread_mutex_unlock(&dev->data->flow_ops_mutex);
}
static int
flow_err(uint16_t port_id, int ret, struct rte_flow_error *error)
{
if (ret == 0)
return 0;
if (rte_eth_dev_is_removed(port_id))
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(EIO));
return ret;
}
/* Get generic flow operations structure from a port. */
const struct rte_flow_ops *
rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops;
int code;
if (unlikely(!rte_eth_dev_is_valid_port(port_id)))
code = ENODEV;
else if (unlikely(dev->dev_ops->flow_ops_get == NULL))
/* flow API not supported with this driver dev_ops */
code = ENOSYS;
else
code = dev->dev_ops->flow_ops_get(dev, &ops);
if (code == 0 && ops == NULL)
/* flow API not supported with this device */
code = ENOSYS;
if (code != 0) {
rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(code));
return NULL;
}
return ops;
}
/* Check whether a flow rule can be created on a given port. */
int
rte_flow_validate(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
int ret;
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->validate)) {
fts_enter(dev);
ret = ops->validate(dev, attr, pattern, actions, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Create a flow rule on a given port. */
struct rte_flow *
rte_flow_create(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
struct rte_flow *flow;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return NULL;
if (likely(!!ops->create)) {
fts_enter(dev);
flow = ops->create(dev, attr, pattern, actions, error);
fts_exit(dev);
if (flow == NULL)
flow_err(port_id, -rte_errno, error);
return flow;
}
rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
return NULL;
}
/* Destroy a flow rule on a given port. */
int
rte_flow_destroy(uint16_t port_id,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
int ret;
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->destroy)) {
fts_enter(dev);
ret = ops->destroy(dev, flow, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Destroy all flow rules associated with a port. */
int
rte_flow_flush(uint16_t port_id,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
int ret;
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->flush)) {
fts_enter(dev);
ret = ops->flush(dev, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Query an existing flow rule. */
int
rte_flow_query(uint16_t port_id,
struct rte_flow *flow,
const struct rte_flow_action *action,
void *data,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
int ret;
if (!ops)
return -rte_errno;
if (likely(!!ops->query)) {
fts_enter(dev);
ret = ops->query(dev, flow, action, data, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Restrict ingress traffic to the defined flow rules. */
int
rte_flow_isolate(uint16_t port_id,
int set,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
int ret;
if (!ops)
return -rte_errno;
if (likely(!!ops->isolate)) {
fts_enter(dev);
ret = ops->isolate(dev, set, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Initialize flow error structure. */
int
rte_flow_error_set(struct rte_flow_error *error,
int code,
enum rte_flow_error_type type,
const void *cause,
const char *message)
{
if (error) {
*error = (struct rte_flow_error){
.type = type,
.cause = cause,
.message = message,
};
}
rte_errno = code;
return -code;
}
/** Pattern item specification types. */
enum rte_flow_conv_item_spec_type {
RTE_FLOW_CONV_ITEM_SPEC,
RTE_FLOW_CONV_ITEM_LAST,
RTE_FLOW_CONV_ITEM_MASK,
};
/**
* Copy pattern item specification.
*
* @param[out] buf
* Output buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p buf in bytes.
* @param[in] item
* Pattern item to copy specification from.
* @param type
* Specification selector for either @p spec, @p last or @p mask.
*
* @return
* Number of bytes needed to store pattern item specification regardless
* of @p size. @p buf contents are truncated to @p size if not large
* enough.
*/
static size_t
rte_flow_conv_item_spec(void *buf, const size_t size,
const struct rte_flow_item *item,
enum rte_flow_conv_item_spec_type type)
{
size_t off;
const void *data =
type == RTE_FLOW_CONV_ITEM_SPEC ? item->spec :
type == RTE_FLOW_CONV_ITEM_LAST ? item->last :
type == RTE_FLOW_CONV_ITEM_MASK ? item->mask :
NULL;
switch (item->type) {
union {
const struct rte_flow_item_raw *raw;
} spec;
union {
const struct rte_flow_item_raw *raw;
} last;
union {
const struct rte_flow_item_raw *raw;
} mask;
union {
const struct rte_flow_item_raw *raw;
} src;
union {
struct rte_flow_item_raw *raw;
} dst;
size_t tmp;
case RTE_FLOW_ITEM_TYPE_RAW:
spec.raw = item->spec;
last.raw = item->last ? item->last : item->spec;
mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
src.raw = data;
dst.raw = buf;
rte_memcpy(dst.raw,
(&(struct rte_flow_item_raw){
.relative = src.raw->relative,
.search = src.raw->search,
.reserved = src.raw->reserved,
.offset = src.raw->offset,
.limit = src.raw->limit,
.length = src.raw->length,
}),
size > sizeof(*dst.raw) ? sizeof(*dst.raw) : size);
off = sizeof(*dst.raw);
if (type == RTE_FLOW_CONV_ITEM_SPEC ||
(type == RTE_FLOW_CONV_ITEM_MASK &&
((spec.raw->length & mask.raw->length) >=
(last.raw->length & mask.raw->length))))
tmp = spec.raw->length & mask.raw->length;
else
tmp = last.raw->length & mask.raw->length;
if (tmp) {
off = RTE_ALIGN_CEIL(off, sizeof(*dst.raw->pattern));
if (size >= off + tmp)
dst.raw->pattern = rte_memcpy
((void *)((uintptr_t)dst.raw + off),
src.raw->pattern, tmp);
off += tmp;
}
break;
default:
off = rte_flow_conv_copy(buf, data, size,
rte_flow_desc_item, item->type);
break;
}
return off;
}
/**
* Copy action configuration.
*
* @param[out] buf
* Output buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p buf in bytes.
* @param[in] action
* Action to copy configuration from.
*
* @return
* Number of bytes needed to store pattern item specification regardless
* of @p size. @p buf contents are truncated to @p size if not large
* enough.
*/
static size_t
rte_flow_conv_action_conf(void *buf, const size_t size,
const struct rte_flow_action *action)
{
size_t off;
switch (action->type) {
union {
const struct rte_flow_action_rss *rss;
const struct rte_flow_action_vxlan_encap *vxlan_encap;
const struct rte_flow_action_nvgre_encap *nvgre_encap;
} src;
union {
struct rte_flow_action_rss *rss;
struct rte_flow_action_vxlan_encap *vxlan_encap;
struct rte_flow_action_nvgre_encap *nvgre_encap;
} dst;
size_t tmp;
int ret;
case RTE_FLOW_ACTION_TYPE_RSS:
src.rss = action->conf;
dst.rss = buf;
rte_memcpy(dst.rss,
(&(struct rte_flow_action_rss){
.func = src.rss->func,
.level = src.rss->level,
.types = src.rss->types,
.key_len = src.rss->key_len,
.queue_num = src.rss->queue_num,
}),
size > sizeof(*dst.rss) ? sizeof(*dst.rss) : size);
off = sizeof(*dst.rss);
if (src.rss->key_len && src.rss->key) {
off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->key));
tmp = sizeof(*src.rss->key) * src.rss->key_len;
if (size >= off + tmp)
dst.rss->key = rte_memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->key, tmp);
off += tmp;
}
if (src.rss->queue_num) {
off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->queue));
tmp = sizeof(*src.rss->queue) * src.rss->queue_num;
if (size >= off + tmp)
dst.rss->queue = rte_memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->queue, tmp);
off += tmp;
}
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
src.vxlan_encap = action->conf;
dst.vxlan_encap = buf;
RTE_BUILD_BUG_ON(sizeof(*src.vxlan_encap) !=
sizeof(*src.nvgre_encap) ||
offsetof(struct rte_flow_action_vxlan_encap,
definition) !=
offsetof(struct rte_flow_action_nvgre_encap,
definition));
off = sizeof(*dst.vxlan_encap);
if (src.vxlan_encap->definition) {
off = RTE_ALIGN_CEIL
(off, sizeof(*dst.vxlan_encap->definition));
ret = rte_flow_conv
(RTE_FLOW_CONV_OP_PATTERN,
(void *)((uintptr_t)dst.vxlan_encap + off),
size > off ? size - off : 0,
src.vxlan_encap->definition, NULL);
if (ret < 0)
return 0;
if (size >= off + ret)
dst.vxlan_encap->definition =
(void *)((uintptr_t)dst.vxlan_encap +
off);
off += ret;
}
break;
default:
off = rte_flow_conv_copy(buf, action->conf, size,
rte_flow_desc_action, action->type);
break;
}
return off;
}
/**
* Copy a list of pattern items.
*
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Source pattern items.
* @param num
* Maximum number of pattern items to process from @p src or 0 to process
* the entire list. In both cases, processing stops after
* RTE_FLOW_ITEM_TYPE_END is encountered.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store
* pattern items regardless of @p size on success (@p buf contents are
* truncated to @p size if not large enough), a negative errno value
* otherwise and rte_errno is set.
*/
static int
rte_flow_conv_pattern(struct rte_flow_item *dst,
const size_t size,
const struct rte_flow_item *src,
unsigned int num,
struct rte_flow_error *error)
{
uintptr_t data = (uintptr_t)dst;
size_t off;
size_t ret;
unsigned int i;
for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
/**
* allow PMD private flow item
*/
if (((int)src->type >= 0) &&
((size_t)src->type >= RTE_DIM(rte_flow_desc_item) ||
!rte_flow_desc_item[src->type].name))
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, src,
"cannot convert unknown item type");
if (size >= off + sizeof(*dst))
*dst = (struct rte_flow_item){
.type = src->type,
};
off += sizeof(*dst);
if (!src->type)
num = i + 1;
}
num = i;
src -= num;
dst -= num;
do {
if (src->spec) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_item_spec
((void *)(data + off),
size > off ? size - off : 0, src,
RTE_FLOW_CONV_ITEM_SPEC);
if (size && size >= off + ret)
dst->spec = (void *)(data + off);
off += ret;
}
if (src->last) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_item_spec
((void *)(data + off),
size > off ? size - off : 0, src,
RTE_FLOW_CONV_ITEM_LAST);
if (size && size >= off + ret)
dst->last = (void *)(data + off);
off += ret;
}
if (src->mask) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_item_spec
((void *)(data + off),
size > off ? size - off : 0, src,
RTE_FLOW_CONV_ITEM_MASK);
if (size && size >= off + ret)
dst->mask = (void *)(data + off);
off += ret;
}
++src;
++dst;
} while (--num);
return off;
}
/**
* Copy a list of actions.
*
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Source actions.
* @param num
* Maximum number of actions to process from @p src or 0 to process the
* entire list. In both cases, processing stops after
* RTE_FLOW_ACTION_TYPE_END is encountered.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store
* actions regardless of @p size on success (@p buf contents are truncated
* to @p size if not large enough), a negative errno value otherwise and
* rte_errno is set.
*/
static int
rte_flow_conv_actions(struct rte_flow_action *dst,
const size_t size,
const struct rte_flow_action *src,
unsigned int num,
struct rte_flow_error *error)
{
uintptr_t data = (uintptr_t)dst;
size_t off;
size_t ret;
unsigned int i;
for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
/**
* allow PMD private flow action
*/
if (((int)src->type >= 0) &&
((size_t)src->type >= RTE_DIM(rte_flow_desc_action) ||
!rte_flow_desc_action[src->type].name))
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
src, "cannot convert unknown action type");
if (size >= off + sizeof(*dst))
*dst = (struct rte_flow_action){
.type = src->type,
};
off += sizeof(*dst);
if (!src->type)
num = i + 1;
}
num = i;
src -= num;
dst -= num;
do {
if (src->conf) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_action_conf
((void *)(data + off),
size > off ? size - off : 0, src);
if (size && size >= off + ret)
dst->conf = (void *)(data + off);
off += ret;
}
++src;
++dst;
} while (--num);
return off;
}
/**
* Copy flow rule components.
*
* This comprises the flow rule descriptor itself, attributes, pattern and
* actions list. NULL components in @p src are skipped.
*
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Source flow rule descriptor.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store all
* components including the descriptor regardless of @p size on success
* (@p buf contents are truncated to @p size if not large enough), a
* negative errno value otherwise and rte_errno is set.
*/
static int
rte_flow_conv_rule(struct rte_flow_conv_rule *dst,
const size_t size,
const struct rte_flow_conv_rule *src,
struct rte_flow_error *error)
{
size_t off;
int ret;
rte_memcpy(dst,
(&(struct rte_flow_conv_rule){
.attr = NULL,
.pattern = NULL,
.actions = NULL,
}),
size > sizeof(*dst) ? sizeof(*dst) : size);
off = sizeof(*dst);
if (src->attr_ro) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
if (size && size >= off + sizeof(*dst->attr))
dst->attr = rte_memcpy
((void *)((uintptr_t)dst + off),
src->attr_ro, sizeof(*dst->attr));
off += sizeof(*dst->attr);
}
if (src->pattern_ro) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_pattern((void *)((uintptr_t)dst + off),
size > off ? size - off : 0,
src->pattern_ro, 0, error);
if (ret < 0)
return ret;
if (size && size >= off + (size_t)ret)
dst->pattern = (void *)((uintptr_t)dst + off);
off += ret;
}
if (src->actions_ro) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_actions((void *)((uintptr_t)dst + off),
size > off ? size - off : 0,
src->actions_ro, 0, error);
if (ret < 0)
return ret;
if (size >= off + (size_t)ret)
dst->actions = (void *)((uintptr_t)dst + off);
off += ret;
}
return off;
}
/**
* Retrieve the name of a pattern item/action type.
*
* @param is_action
* Nonzero when @p src represents an action type instead of a pattern item
* type.
* @param is_ptr
* Nonzero to write string address instead of contents into @p dst.
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Depending on @p is_action, source pattern item or action type cast as a
* pointer.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store the
* name or its address regardless of @p size on success (@p buf contents
* are truncated to @p size if not large enough), a negative errno value
* otherwise and rte_errno is set.
*/
static int
rte_flow_conv_name(int is_action,
int is_ptr,
char *dst,
const size_t size,
const void *src,
struct rte_flow_error *error)
{
struct desc_info {
const struct rte_flow_desc_data *data;
size_t num;
};
static const struct desc_info info_rep[2] = {
{ rte_flow_desc_item, RTE_DIM(rte_flow_desc_item), },
{ rte_flow_desc_action, RTE_DIM(rte_flow_desc_action), },
};
const struct desc_info *const info = &info_rep[!!is_action];
unsigned int type = (uintptr_t)src;
if (type >= info->num)
return rte_flow_error_set
(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unknown object type to retrieve the name of");
if (!is_ptr)
return strlcpy(dst, info->data[type].name, size);
if (size >= sizeof(const char **))
*((const char **)dst) = info->data[type].name;
return sizeof(const char **);
}
/** Helper function to convert flow API objects. */
int
rte_flow_conv(enum rte_flow_conv_op op,
void *dst,
size_t size,
const void *src,
struct rte_flow_error *error)
{
switch (op) {
const struct rte_flow_attr *attr;
case RTE_FLOW_CONV_OP_NONE:
return 0;
case RTE_FLOW_CONV_OP_ATTR:
attr = src;
if (size > sizeof(*attr))
size = sizeof(*attr);
rte_memcpy(dst, attr, size);
return sizeof(*attr);
case RTE_FLOW_CONV_OP_ITEM:
return rte_flow_conv_pattern(dst, size, src, 1, error);
case RTE_FLOW_CONV_OP_ACTION:
return rte_flow_conv_actions(dst, size, src, 1, error);
case RTE_FLOW_CONV_OP_PATTERN:
return rte_flow_conv_pattern(dst, size, src, 0, error);
case RTE_FLOW_CONV_OP_ACTIONS:
return rte_flow_conv_actions(dst, size, src, 0, error);
case RTE_FLOW_CONV_OP_RULE:
return rte_flow_conv_rule(dst, size, src, error);
case RTE_FLOW_CONV_OP_ITEM_NAME:
return rte_flow_conv_name(0, 0, dst, size, src, error);
case RTE_FLOW_CONV_OP_ACTION_NAME:
return rte_flow_conv_name(1, 0, dst, size, src, error);
case RTE_FLOW_CONV_OP_ITEM_NAME_PTR:
return rte_flow_conv_name(0, 1, dst, size, src, error);
case RTE_FLOW_CONV_OP_ACTION_NAME_PTR:
return rte_flow_conv_name(1, 1, dst, size, src, error);
}
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unknown object conversion operation");
}
/** Store a full rte_flow description. */
size_t
rte_flow_copy(struct rte_flow_desc *desc, size_t len,
const struct rte_flow_attr *attr,
const struct rte_flow_item *items,
const struct rte_flow_action *actions)
{
/*
* Overlap struct rte_flow_conv with struct rte_flow_desc in order
* to convert the former to the latter without wasting space.
*/
struct rte_flow_conv_rule *dst =
len ?
(void *)((uintptr_t)desc +
(offsetof(struct rte_flow_desc, actions) -
offsetof(struct rte_flow_conv_rule, actions))) :
NULL;
size_t dst_size =
len > sizeof(*desc) - sizeof(*dst) ?
len - (sizeof(*desc) - sizeof(*dst)) :
0;
struct rte_flow_conv_rule src = {
.attr_ro = NULL,
.pattern_ro = items,
.actions_ro = actions,
};
int ret;
RTE_BUILD_BUG_ON(sizeof(struct rte_flow_desc) <
sizeof(struct rte_flow_conv_rule));
if (dst_size &&
(&dst->pattern != &desc->items ||
&dst->actions != &desc->actions ||
(uintptr_t)(dst + 1) != (uintptr_t)(desc + 1))) {
rte_errno = EINVAL;
return 0;
}
ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, dst, dst_size, &src, NULL);
if (ret < 0)
return 0;
ret += sizeof(*desc) - sizeof(*dst);
rte_memcpy(desc,
(&(struct rte_flow_desc){
.size = ret,
.attr = *attr,
.items = dst_size ? dst->pattern : NULL,
.actions = dst_size ? dst->actions : NULL,
}),
len > sizeof(*desc) ? sizeof(*desc) : len);
return ret;
}
int
rte_flow_dev_dump(uint16_t port_id, struct rte_flow *flow,
FILE *file, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
int ret;
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->dev_dump)) {
fts_enter(dev);
ret = ops->dev_dump(dev, flow, file, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
int
rte_flow_get_aged_flows(uint16_t port_id, void **contexts,
uint32_t nb_contexts, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
int ret;
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->get_aged_flows)) {
fts_enter(dev);
ret = ops->get_aged_flows(dev, contexts, nb_contexts, error);
fts_exit(dev);
return flow_err(port_id, ret, error);
}
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}
struct rte_flow_action_handle *
rte_flow_action_handle_create(uint16_t port_id,
const struct rte_flow_indir_action_conf *conf,
const struct rte_flow_action *action,
struct rte_flow_error *error)
{
struct rte_flow_action_handle *handle;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return NULL;
if (unlikely(!ops->action_handle_create)) {
rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
rte_strerror(ENOSYS));
return NULL;
}
handle = ops->action_handle_create(&rte_eth_devices[port_id],
conf, action, error);
if (handle == NULL)
flow_err(port_id, -rte_errno, error);
return handle;
}
int
rte_flow_action_handle_destroy(uint16_t port_id,
struct rte_flow_action_handle *handle,
struct rte_flow_error *error)
{
int ret;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (unlikely(!ops->action_handle_destroy))
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
ret = ops->action_handle_destroy(&rte_eth_devices[port_id],
handle, error);
return flow_err(port_id, ret, error);
}
int
rte_flow_action_handle_update(uint16_t port_id,
struct rte_flow_action_handle *handle,
const void *update,
struct rte_flow_error *error)
{
int ret;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (unlikely(!ops->action_handle_update))
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
ret = ops->action_handle_update(&rte_eth_devices[port_id], handle,
update, error);
return flow_err(port_id, ret, error);
}
int
rte_flow_action_handle_query(uint16_t port_id,
const struct rte_flow_action_handle *handle,
void *data,
struct rte_flow_error *error)
{
int ret;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (unlikely(!ops->action_handle_query))
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
ret = ops->action_handle_query(&rte_eth_devices[port_id], handle,
data, error);
return flow_err(port_id, ret, error);
}
int
rte_flow_tunnel_decap_set(uint16_t port_id,
struct rte_flow_tunnel *tunnel,
struct rte_flow_action **actions,
uint32_t *num_of_actions,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->tunnel_decap_set)) {
return flow_err(port_id,
ops->tunnel_decap_set(dev, tunnel, actions,
num_of_actions, error),
error);
}
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}
int
rte_flow_tunnel_match(uint16_t port_id,
struct rte_flow_tunnel *tunnel,
struct rte_flow_item **items,
uint32_t *num_of_items,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->tunnel_match)) {
return flow_err(port_id,
ops->tunnel_match(dev, tunnel, items,
num_of_items, error),
error);
}
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}
int
rte_flow_get_restore_info(uint16_t port_id,
struct rte_mbuf *m,
struct rte_flow_restore_info *restore_info,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->get_restore_info)) {
return flow_err(port_id,
ops->get_restore_info(dev, m, restore_info,
error),
error);
}
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}
int
rte_flow_tunnel_action_decap_release(uint16_t port_id,
struct rte_flow_action *actions,
uint32_t num_of_actions,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->tunnel_action_decap_release)) {
return flow_err(port_id,
ops->tunnel_action_decap_release(dev, actions,
num_of_actions,
error),
error);
}
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}
int
rte_flow_tunnel_item_release(uint16_t port_id,
struct rte_flow_item *items,
uint32_t num_of_items,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->tunnel_item_release)) {
return flow_err(port_id,
ops->tunnel_item_release(dev, items,
num_of_items, error),
error);
}
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}
int
rte_flow_pick_transfer_proxy(uint16_t port_id, uint16_t *proxy_port_id,
struct rte_flow_error *error)
{
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
struct rte_eth_dev *dev;
if (unlikely(ops == NULL))
return -rte_errno;
if (ops->pick_transfer_proxy == NULL) {
*proxy_port_id = port_id;
return 0;
}
dev = &rte_eth_devices[port_id];
return flow_err(port_id,
ops->pick_transfer_proxy(dev, proxy_port_id, error),
error);
}
struct rte_flow_item_flex_handle *
rte_flow_flex_item_create(uint16_t port_id,
const struct rte_flow_item_flex_conf *conf,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
struct rte_flow_item_flex_handle *handle;
if (unlikely(!ops))
return NULL;
if (unlikely(!ops->flex_item_create)) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
return NULL;
}
handle = ops->flex_item_create(dev, conf, error);
if (handle == NULL)
flow_err(port_id, -rte_errno, error);
return handle;
}
int
rte_flow_flex_item_release(uint16_t port_id,
const struct rte_flow_item_flex_handle *handle,
struct rte_flow_error *error)
{
int ret;
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops || !ops->flex_item_release))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
ret = ops->flex_item_release(dev, handle, error);
return flow_err(port_id, ret, error);
}