numam-dpdk/app/test-eventdev/test_perf_common.c
Pavan Nikhilesh 535c630c2d app/eventdev: fix port dequeue depth configuration
The port dequeue depth value has to be compared against the maximum
allowed dequeue depth reported by the event drivers.

Fixes: 3617aae53f ("app/eventdev: add event Rx adapter setup")

Signed-off-by: Pavan Nikhilesh <pbhagavatula@caviumnetworks.com>
Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
2018-01-31 07:18:57 +01:00

618 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#include "test_perf_common.h"
int
perf_test_result(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
int i;
uint64_t total = 0;
struct test_perf *t = evt_test_priv(test);
printf("Packet distribution across worker cores :\n");
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].processed_pkts;
for (i = 0; i < t->nb_workers; i++)
printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
CLGRN" %3.2f\n"CLNRM, i,
t->worker[i].processed_pkts,
(((double)t->worker[i].processed_pkts)/total)
* 100);
return t->result;
}
static inline int
perf_producer(void *arg)
{
struct prod_data *p = arg;
struct test_perf *t = p->t;
struct evt_options *opt = t->opt;
const uint8_t dev_id = p->dev_id;
const uint8_t port = p->port_id;
struct rte_mempool *pool = t->pool;
const uint64_t nb_pkts = t->nb_pkts;
const uint32_t nb_flows = t->nb_flows;
uint32_t flow_counter = 0;
uint64_t count = 0;
struct perf_elt *m;
struct rte_event ev;
if (opt->verbose_level > 1)
printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
rte_lcore_id(), dev_id, port, p->queue_id);
ev.event = 0;
ev.op = RTE_EVENT_OP_NEW;
ev.queue_id = p->queue_id;
ev.sched_type = t->opt->sched_type_list[0];
ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
ev.event_type = RTE_EVENT_TYPE_CPU;
ev.sub_event_type = 0; /* stage 0 */
while (count < nb_pkts && t->done == false) {
if (rte_mempool_get(pool, (void **)&m) < 0)
continue;
ev.flow_id = flow_counter++ % nb_flows;
ev.event_ptr = m;
m->timestamp = rte_get_timer_cycles();
while (rte_event_enqueue_burst(dev_id, port, &ev, 1) != 1) {
if (t->done)
break;
rte_pause();
m->timestamp = rte_get_timer_cycles();
}
count++;
}
return 0;
}
static int
perf_producer_wrapper(void *arg)
{
struct prod_data *p = arg;
struct test_perf *t = p->t;
/* Launch the producer function only in case of synthetic producer. */
if (t->opt->prod_type == EVT_PROD_TYPE_SYNT)
return perf_producer(arg);
return 0;
}
static inline uint64_t
processed_pkts(struct test_perf *t)
{
uint8_t i;
uint64_t total = 0;
rte_smp_rmb();
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].processed_pkts;
return total;
}
static inline uint64_t
total_latency(struct test_perf *t)
{
uint8_t i;
uint64_t total = 0;
rte_smp_rmb();
for (i = 0; i < t->nb_workers; i++)
total += t->worker[i].latency;
return total;
}
int
perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
int (*worker)(void *))
{
int ret, lcore_id;
struct test_perf *t = evt_test_priv(test);
int port_idx = 0;
/* launch workers */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (!(opt->wlcores[lcore_id]))
continue;
ret = rte_eal_remote_launch(worker,
&t->worker[port_idx], lcore_id);
if (ret) {
evt_err("failed to launch worker %d", lcore_id);
return ret;
}
port_idx++;
}
/* launch producers */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (!(opt->plcores[lcore_id]))
continue;
ret = rte_eal_remote_launch(perf_producer_wrapper,
&t->prod[port_idx], lcore_id);
if (ret) {
evt_err("failed to launch perf_producer %d", lcore_id);
return ret;
}
port_idx++;
}
const uint64_t total_pkts = opt->nb_pkts *
evt_nr_active_lcores(opt->plcores);
uint64_t dead_lock_cycles = rte_get_timer_cycles();
int64_t dead_lock_remaining = total_pkts;
const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;
uint64_t perf_cycles = rte_get_timer_cycles();
int64_t perf_remaining = total_pkts;
const uint64_t perf_sample = rte_get_timer_hz();
static float total_mpps;
static uint64_t samples;
const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
int64_t remaining = t->outstand_pkts - processed_pkts(t);
while (t->done == false) {
const uint64_t new_cycles = rte_get_timer_cycles();
if ((new_cycles - perf_cycles) > perf_sample) {
const uint64_t latency = total_latency(t);
const uint64_t pkts = processed_pkts(t);
remaining = t->outstand_pkts - pkts;
float mpps = (float)(perf_remaining-remaining)/1000000;
perf_remaining = remaining;
perf_cycles = new_cycles;
total_mpps += mpps;
++samples;
if (opt->fwd_latency && pkts > 0) {
printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
mpps, total_mpps/samples,
(float)(latency/pkts)/freq_mhz);
} else {
printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
mpps, total_mpps/samples);
}
fflush(stdout);
if (remaining <= 0) {
t->result = EVT_TEST_SUCCESS;
if (opt->prod_type == EVT_PROD_TYPE_SYNT) {
t->done = true;
rte_smp_wmb();
break;
}
}
}
if (new_cycles - dead_lock_cycles > dead_lock_sample &&
opt->prod_type == EVT_PROD_TYPE_SYNT) {
remaining = t->outstand_pkts - processed_pkts(t);
if (dead_lock_remaining == remaining) {
rte_event_dev_dump(opt->dev_id, stdout);
evt_err("No schedules for seconds, deadlock");
t->done = true;
rte_smp_wmb();
break;
}
dead_lock_remaining = remaining;
dead_lock_cycles = new_cycles;
}
}
printf("\n");
return 0;
}
static int
perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
struct rte_event_port_conf prod_conf)
{
int ret = 0;
uint16_t prod;
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
memset(&queue_conf, 0,
sizeof(struct rte_event_eth_rx_adapter_queue_conf));
queue_conf.ev.sched_type = opt->sched_type_list[0];
for (prod = 0; prod < rte_eth_dev_count(); prod++) {
uint32_t cap;
ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
prod, &cap);
if (ret) {
evt_err("failed to get event rx adapter[%d]"
" capabilities",
opt->dev_id);
return ret;
}
queue_conf.ev.queue_id = prod * stride;
ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
&prod_conf);
if (ret) {
evt_err("failed to create rx adapter[%d]", prod);
return ret;
}
ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
&queue_conf);
if (ret) {
evt_err("failed to add rx queues to adapter[%d]", prod);
return ret;
}
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
uint32_t service_id;
rte_event_eth_rx_adapter_service_id_get(prod,
&service_id);
ret = evt_service_setup(service_id);
if (ret) {
evt_err("Failed to setup service core"
" for Rx adapter\n");
return ret;
}
}
ret = rte_eth_dev_start(prod);
if (ret) {
evt_err("Ethernet dev [%d] failed to start."
" Using synthetic producer", prod);
return ret;
}
ret = rte_event_eth_rx_adapter_start(prod);
if (ret) {
evt_err("Rx adapter[%d] start failed", prod);
return ret;
}
printf("%s: Port[%d] using Rx adapter[%d] started\n", __func__,
prod, prod);
}
return ret;
}
int
perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
uint8_t stride, uint8_t nb_queues,
const struct rte_event_port_conf *port_conf)
{
struct test_perf *t = evt_test_priv(test);
uint16_t port, prod;
int ret = -1;
/* setup one port per worker, linking to all queues */
for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
port++) {
struct worker_data *w = &t->worker[port];
w->dev_id = opt->dev_id;
w->port_id = port;
w->t = t;
w->processed_pkts = 0;
w->latency = 0;
ret = rte_event_port_setup(opt->dev_id, port, port_conf);
if (ret) {
evt_err("failed to setup port %d", port);
return ret;
}
ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
if (ret != nb_queues) {
evt_err("failed to link all queues to port %d", port);
return -EINVAL;
}
}
/* port for producers, no links */
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
for ( ; port < perf_nb_event_ports(opt); port++) {
struct prod_data *p = &t->prod[port];
p->t = t;
}
ret = perf_event_rx_adapter_setup(opt, stride, *port_conf);
if (ret)
return ret;
} else {
prod = 0;
for ( ; port < perf_nb_event_ports(opt); port++) {
struct prod_data *p = &t->prod[port];
p->dev_id = opt->dev_id;
p->port_id = port;
p->queue_id = prod * stride;
p->t = t;
ret = rte_event_port_setup(opt->dev_id, port,
port_conf);
if (ret) {
evt_err("failed to setup port %d", port);
return ret;
}
prod++;
}
}
return ret;
}
int
perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
{
unsigned int lcores;
/* N producer + N worker + 1 master when producer cores are used
* Else N worker + 1 master when Rx adapter is used
*/
lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;
if (rte_lcore_count() < lcores) {
evt_err("test need minimum %d lcores", lcores);
return -1;
}
/* Validate worker lcores */
if (evt_lcores_has_overlap(opt->wlcores, rte_get_master_lcore())) {
evt_err("worker lcores overlaps with master lcore");
return -1;
}
if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
evt_err("worker lcores overlaps producer lcores");
return -1;
}
if (evt_has_disabled_lcore(opt->wlcores)) {
evt_err("one or more workers lcores are not enabled");
return -1;
}
if (!evt_has_active_lcore(opt->wlcores)) {
evt_err("minimum one worker is required");
return -1;
}
if (opt->prod_type == EVT_PROD_TYPE_SYNT) {
/* Validate producer lcores */
if (evt_lcores_has_overlap(opt->plcores,
rte_get_master_lcore())) {
evt_err("producer lcores overlaps with master lcore");
return -1;
}
if (evt_has_disabled_lcore(opt->plcores)) {
evt_err("one or more producer lcores are not enabled");
return -1;
}
if (!evt_has_active_lcore(opt->plcores)) {
evt_err("minimum one producer is required");
return -1;
}
}
if (evt_has_invalid_stage(opt))
return -1;
if (evt_has_invalid_sched_type(opt))
return -1;
if (nb_queues > EVT_MAX_QUEUES) {
evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
return -1;
}
if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
return -1;
}
/* Fixups */
if (opt->nb_stages == 1 && opt->fwd_latency) {
evt_info("fwd_latency is valid when nb_stages > 1, disabling");
opt->fwd_latency = 0;
}
if (opt->fwd_latency && !opt->q_priority) {
evt_info("enabled queue priority for latency measurement");
opt->q_priority = 1;
}
if (opt->nb_pkts == 0)
opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);
return 0;
}
void
perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
{
evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
evt_dump_producer_lcores(opt);
evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
evt_dump_worker_lcores(opt);
evt_dump_nb_stages(opt);
evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
evt_dump("nb_evdev_queues", "%d", nb_queues);
evt_dump_queue_priority(opt);
evt_dump_sched_type_list(opt);
evt_dump_producer_type(opt);
}
void
perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(test);
rte_event_dev_stop(opt->dev_id);
rte_event_dev_close(opt->dev_id);
}
static inline void
perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
void *obj, unsigned i __rte_unused)
{
memset(obj, 0, mp->elt_size);
}
#define NB_RX_DESC 128
#define NB_TX_DESC 512
int
perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
{
int i;
struct test_perf *t = evt_test_priv(test);
struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = ETH_MQ_RX_RSS,
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0,
.header_split = 0,
.hw_ip_checksum = 0,
.hw_vlan_filter = 0,
.hw_vlan_strip = 0,
.hw_vlan_extend = 0,
.jumbo_frame = 0,
.hw_strip_crc = 1,
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IP,
},
},
};
if (opt->prod_type == EVT_PROD_TYPE_SYNT)
return 0;
if (!rte_eth_dev_count()) {
evt_err("No ethernet ports found.");
return -ENODEV;
}
for (i = 0; i < rte_eth_dev_count(); i++) {
if (rte_eth_dev_configure(i, 1, 1,
&port_conf)
< 0) {
evt_err("Failed to configure eth port [%d]", i);
return -EINVAL;
}
if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
rte_socket_id(), NULL, t->pool) < 0) {
evt_err("Failed to setup eth port [%d] rx_queue: %d.",
i, 0);
return -EINVAL;
}
if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
rte_socket_id(), NULL) < 0) {
evt_err("Failed to setup eth port [%d] tx_queue: %d.",
i, 0);
return -EINVAL;
}
rte_eth_promiscuous_enable(i);
}
return 0;
}
void perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
{
int i;
RTE_SET_USED(test);
if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
for (i = 0; i < rte_eth_dev_count(); i++) {
rte_event_eth_rx_adapter_stop(i);
rte_eth_dev_stop(i);
rte_eth_dev_close(i);
}
}
}
int
perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
{
struct test_perf *t = evt_test_priv(test);
if (opt->prod_type == EVT_PROD_TYPE_SYNT) {
t->pool = rte_mempool_create(test->name, /* mempool name */
opt->pool_sz, /* number of elements*/
sizeof(struct perf_elt), /* element size*/
512, /* cache size*/
0, NULL, NULL,
perf_elt_init, /* obj constructor */
NULL, opt->socket_id, 0); /* flags */
} else {
t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
opt->pool_sz, /* number of elements*/
512, /* cache size*/
0,
RTE_MBUF_DEFAULT_BUF_SIZE,
opt->socket_id); /* flags */
}
if (t->pool == NULL) {
evt_err("failed to create mempool");
return -ENOMEM;
}
return 0;
}
void
perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
struct test_perf *t = evt_test_priv(test);
rte_mempool_free(t->pool);
}
int
perf_test_setup(struct evt_test *test, struct evt_options *opt)
{
void *test_perf;
test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
RTE_CACHE_LINE_SIZE, opt->socket_id);
if (test_perf == NULL) {
evt_err("failed to allocate test_perf memory");
goto nomem;
}
test->test_priv = test_perf;
struct test_perf *t = evt_test_priv(test);
t->outstand_pkts = opt->nb_pkts * evt_nr_active_lcores(opt->plcores);
t->nb_workers = evt_nr_active_lcores(opt->wlcores);
t->done = false;
t->nb_pkts = opt->nb_pkts;
t->nb_flows = opt->nb_flows;
t->result = EVT_TEST_FAILED;
t->opt = opt;
memcpy(t->sched_type_list, opt->sched_type_list,
sizeof(opt->sched_type_list));
return 0;
nomem:
return -ENOMEM;
}
void
perf_test_destroy(struct evt_test *test, struct evt_options *opt)
{
RTE_SET_USED(opt);
rte_free(test->test_priv);
}