numam-dpdk/app/test/test_mbuf.c
Konstantin Ananyev 8d9c2c3a1f mbuf: add function to generate raw Tx offload value
Operations to set/update bit-fields often cause compilers
to generate suboptimal code.
To help avoid such situation for tx_offload fields:
introduce new enum for tx_offload bit-fields lengths and offsets,
and new function to generate raw tx_offload value.
Add new test-case into UT for introduced function.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
2019-04-02 16:50:24 +02:00

1237 lines
29 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include "test.h"
#define MBUF_DATA_SIZE 2048
#define NB_MBUF 128
#define MBUF_TEST_DATA_LEN 1464
#define MBUF_TEST_DATA_LEN2 50
#define MBUF_TEST_HDR1_LEN 20
#define MBUF_TEST_HDR2_LEN 30
#define MBUF_TEST_ALL_HDRS_LEN (MBUF_TEST_HDR1_LEN+MBUF_TEST_HDR2_LEN)
/* size of private data for mbuf in pktmbuf_pool2 */
#define MBUF2_PRIV_SIZE 128
#define REFCNT_MAX_ITER 64
#define REFCNT_MAX_TIMEOUT 10
#define REFCNT_MAX_REF (RTE_MAX_LCORE)
#define REFCNT_MBUF_NUM 64
#define REFCNT_RING_SIZE (REFCNT_MBUF_NUM * REFCNT_MAX_REF)
#define MAGIC_DATA 0x42424242
#define MAKE_STRING(x) # x
#ifdef RTE_MBUF_REFCNT_ATOMIC
static volatile uint32_t refcnt_stop_slaves;
static unsigned refcnt_lcore[RTE_MAX_LCORE];
#endif
/*
* MBUF
* ====
*
* #. Allocate a mbuf pool.
*
* - The pool contains NB_MBUF elements, where each mbuf is MBUF_SIZE
* bytes long.
*
* #. Test multiple allocations of mbufs from this pool.
*
* - Allocate NB_MBUF and store pointers in a table.
* - If an allocation fails, return an error.
* - Free all these mbufs.
* - Repeat the same test to check that mbufs were freed correctly.
*
* #. Test data manipulation in pktmbuf.
*
* - Alloc an mbuf.
* - Append data using rte_pktmbuf_append().
* - Test for error in rte_pktmbuf_append() when len is too large.
* - Trim data at the end of mbuf using rte_pktmbuf_trim().
* - Test for error in rte_pktmbuf_trim() when len is too large.
* - Prepend a header using rte_pktmbuf_prepend().
* - Test for error in rte_pktmbuf_prepend() when len is too large.
* - Remove data at the beginning of mbuf using rte_pktmbuf_adj().
* - Test for error in rte_pktmbuf_adj() when len is too large.
* - Check that appended data is not corrupt.
* - Free the mbuf.
* - Between all these tests, check data_len and pkt_len, and
* that the mbuf is contiguous.
* - Repeat the test to check that allocation operations
* reinitialize the mbuf correctly.
*
* #. Test packet cloning
* - Clone a mbuf and verify the data
* - Clone the cloned mbuf and verify the data
* - Attach a mbuf to another that does not have the same priv_size.
*/
#define GOTO_FAIL(str, ...) do { \
printf("mbuf test FAILED (l.%d): <" str ">\n", \
__LINE__, ##__VA_ARGS__); \
goto fail; \
} while(0)
/*
* test data manipulation in mbuf with non-ascii data
*/
static int
test_pktmbuf_with_non_ascii_data(struct rte_mempool *pktmbuf_pool)
{
struct rte_mbuf *m = NULL;
char *data;
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("Cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
if (data == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
memset(data, 0xff, rte_pktmbuf_pkt_len(m));
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
rte_pktmbuf_free(m);
return 0;
fail:
if(m) {
rte_pktmbuf_free(m);
}
return -1;
}
/*
* test data manipulation in mbuf
*/
static int
test_one_pktmbuf(struct rte_mempool *pktmbuf_pool)
{
struct rte_mbuf *m = NULL;
char *data, *data2, *hdr;
unsigned i;
printf("Test pktmbuf API\n");
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("Cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
rte_pktmbuf_dump(stdout, m, 0);
/* append data */
data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN);
if (data == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
memset(data, 0x66, rte_pktmbuf_pkt_len(m));
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN);
rte_pktmbuf_dump(stdout, m, 2*MBUF_TEST_DATA_LEN);
/* this append should fail */
data2 = rte_pktmbuf_append(m, (uint16_t)(rte_pktmbuf_tailroom(m) + 1));
if (data2 != NULL)
GOTO_FAIL("Append should not succeed");
/* append some more data */
data2 = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN2);
if (data2 == NULL)
GOTO_FAIL("Cannot append data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* trim data at the end of mbuf */
if (rte_pktmbuf_trim(m, MBUF_TEST_DATA_LEN2) < 0)
GOTO_FAIL("Cannot trim data");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* this trim should fail */
if (rte_pktmbuf_trim(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) == 0)
GOTO_FAIL("trim should not succeed");
/* prepend one header */
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR1_LEN);
if (hdr == NULL)
GOTO_FAIL("Cannot prepend");
if (data - hdr != MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Prepend failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
memset(hdr, 0x55, MBUF_TEST_HDR1_LEN);
/* prepend another header */
hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR2_LEN);
if (hdr == NULL)
GOTO_FAIL("Cannot prepend");
if (data - hdr != MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Prepend failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
memset(hdr, 0x55, MBUF_TEST_HDR2_LEN);
rte_mbuf_sanity_check(m, 1);
rte_mbuf_sanity_check(m, 0);
rte_pktmbuf_dump(stdout, m, 0);
/* this prepend should fail */
hdr = rte_pktmbuf_prepend(m, (uint16_t)(rte_pktmbuf_headroom(m) + 1));
if (hdr != NULL)
GOTO_FAIL("prepend should not succeed");
/* remove data at beginning of mbuf (adj) */
if (data != rte_pktmbuf_adj(m, MBUF_TEST_ALL_HDRS_LEN))
GOTO_FAIL("rte_pktmbuf_adj failed");
if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad pkt length");
if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN)
GOTO_FAIL("Bad data length");
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
/* this adj should fail */
if (rte_pktmbuf_adj(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) != NULL)
GOTO_FAIL("rte_pktmbuf_adj should not succeed");
/* check data */
if (!rte_pktmbuf_is_contiguous(m))
GOTO_FAIL("Buffer should be continuous");
for (i=0; i<MBUF_TEST_DATA_LEN; i++) {
if (data[i] != 0x66)
GOTO_FAIL("Data corrupted at offset %u", i);
}
/* free mbuf */
rte_pktmbuf_free(m);
m = NULL;
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
return -1;
}
static int
testclone_testupdate_testdetach(struct rte_mempool *pktmbuf_pool)
{
struct rte_mbuf *m = NULL;
struct rte_mbuf *clone = NULL;
struct rte_mbuf *clone2 = NULL;
unaligned_uint32_t *data;
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("ooops not allocating mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
rte_pktmbuf_append(m, sizeof(uint32_t));
data = rte_pktmbuf_mtod(m, unaligned_uint32_t *);
*data = MAGIC_DATA;
/* clone the allocated mbuf */
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
if (clone == NULL)
GOTO_FAIL("cannot clone data\n");
data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
/* free the clone */
rte_pktmbuf_free(clone);
clone = NULL;
/* same test with a chained mbuf */
m->next = rte_pktmbuf_alloc(pktmbuf_pool);
if (m->next == NULL)
GOTO_FAIL("Next Pkt Null\n");
rte_pktmbuf_append(m->next, sizeof(uint32_t));
data = rte_pktmbuf_mtod(m->next, unaligned_uint32_t *);
*data = MAGIC_DATA;
clone = rte_pktmbuf_clone(m, pktmbuf_pool);
if (clone == NULL)
GOTO_FAIL("cannot clone data\n");
data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone\n");
data = rte_pktmbuf_mtod(clone->next, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone->next\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
if (rte_mbuf_refcnt_read(m->next) != 2)
GOTO_FAIL("invalid refcnt in m->next\n");
/* try to clone the clone */
clone2 = rte_pktmbuf_clone(clone, pktmbuf_pool);
if (clone2 == NULL)
GOTO_FAIL("cannot clone the clone\n");
data = rte_pktmbuf_mtod(clone2, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone2\n");
data = rte_pktmbuf_mtod(clone2->next, unaligned_uint32_t *);
if (*data != MAGIC_DATA)
GOTO_FAIL("invalid data in clone2->next\n");
if (rte_mbuf_refcnt_read(m) != 3)
GOTO_FAIL("invalid refcnt in m\n");
if (rte_mbuf_refcnt_read(m->next) != 3)
GOTO_FAIL("invalid refcnt in m->next\n");
/* free mbuf */
rte_pktmbuf_free(m);
rte_pktmbuf_free(clone);
rte_pktmbuf_free(clone2);
m = NULL;
clone = NULL;
clone2 = NULL;
printf("%s ok\n", __func__);
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
if (clone)
rte_pktmbuf_free(clone);
if (clone2)
rte_pktmbuf_free(clone2);
return -1;
}
static int
test_attach_from_different_pool(struct rte_mempool *pktmbuf_pool,
struct rte_mempool *pktmbuf_pool2)
{
struct rte_mbuf *m = NULL;
struct rte_mbuf *clone = NULL;
struct rte_mbuf *clone2 = NULL;
char *data, *c_data, *c_data2;
/* alloc a mbuf */
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)
GOTO_FAIL("cannot allocate mbuf");
if (rte_pktmbuf_pkt_len(m) != 0)
GOTO_FAIL("Bad length");
data = rte_pktmbuf_mtod(m, char *);
/* allocate a new mbuf from the second pool, and attach it to the first
* mbuf */
clone = rte_pktmbuf_alloc(pktmbuf_pool2);
if (clone == NULL)
GOTO_FAIL("cannot allocate mbuf from second pool\n");
/* check data room size and priv size, and erase priv */
if (rte_pktmbuf_data_room_size(clone->pool) != 0)
GOTO_FAIL("data room size should be 0\n");
if (rte_pktmbuf_priv_size(clone->pool) != MBUF2_PRIV_SIZE)
GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE);
memset(clone + 1, 0, MBUF2_PRIV_SIZE);
/* save data pointer to compare it after detach() */
c_data = rte_pktmbuf_mtod(clone, char *);
if (c_data != (char *)clone + sizeof(*clone) + MBUF2_PRIV_SIZE)
GOTO_FAIL("bad data pointer in clone");
if (rte_pktmbuf_headroom(clone) != 0)
GOTO_FAIL("bad headroom in clone");
rte_pktmbuf_attach(clone, m);
if (rte_pktmbuf_mtod(clone, char *) != data)
GOTO_FAIL("clone was not attached properly\n");
if (rte_pktmbuf_headroom(clone) != RTE_PKTMBUF_HEADROOM)
GOTO_FAIL("bad headroom in clone after attach");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
/* allocate a new mbuf from the second pool, and attach it to the first
* cloned mbuf */
clone2 = rte_pktmbuf_alloc(pktmbuf_pool2);
if (clone2 == NULL)
GOTO_FAIL("cannot allocate clone2 from second pool\n");
/* check data room size and priv size, and erase priv */
if (rte_pktmbuf_data_room_size(clone2->pool) != 0)
GOTO_FAIL("data room size should be 0\n");
if (rte_pktmbuf_priv_size(clone2->pool) != MBUF2_PRIV_SIZE)
GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE);
memset(clone2 + 1, 0, MBUF2_PRIV_SIZE);
/* save data pointer to compare it after detach() */
c_data2 = rte_pktmbuf_mtod(clone2, char *);
if (c_data2 != (char *)clone2 + sizeof(*clone2) + MBUF2_PRIV_SIZE)
GOTO_FAIL("bad data pointer in clone2");
if (rte_pktmbuf_headroom(clone2) != 0)
GOTO_FAIL("bad headroom in clone2");
rte_pktmbuf_attach(clone2, clone);
if (rte_pktmbuf_mtod(clone2, char *) != data)
GOTO_FAIL("clone2 was not attached properly\n");
if (rte_pktmbuf_headroom(clone2) != RTE_PKTMBUF_HEADROOM)
GOTO_FAIL("bad headroom in clone2 after attach");
if (rte_mbuf_refcnt_read(m) != 3)
GOTO_FAIL("invalid refcnt in m\n");
/* detach the clones */
rte_pktmbuf_detach(clone);
if (c_data != rte_pktmbuf_mtod(clone, char *))
GOTO_FAIL("clone was not detached properly\n");
if (rte_mbuf_refcnt_read(m) != 2)
GOTO_FAIL("invalid refcnt in m\n");
rte_pktmbuf_detach(clone2);
if (c_data2 != rte_pktmbuf_mtod(clone2, char *))
GOTO_FAIL("clone2 was not detached properly\n");
if (rte_mbuf_refcnt_read(m) != 1)
GOTO_FAIL("invalid refcnt in m\n");
/* free the clones and the initial mbuf */
rte_pktmbuf_free(clone2);
rte_pktmbuf_free(clone);
rte_pktmbuf_free(m);
printf("%s ok\n", __func__);
return 0;
fail:
if (m)
rte_pktmbuf_free(m);
if (clone)
rte_pktmbuf_free(clone);
if (clone2)
rte_pktmbuf_free(clone2);
return -1;
}
#undef GOTO_FAIL
/*
* test allocation and free of mbufs
*/
static int
test_pktmbuf_pool(struct rte_mempool *pktmbuf_pool)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
}
struct rte_mbuf *extra = NULL;
extra = rte_pktmbuf_alloc(pktmbuf_pool);
if(extra != NULL) {
printf("Error pool not empty");
ret = -1;
}
extra = rte_pktmbuf_clone(m[0], pktmbuf_pool);
if(extra != NULL) {
printf("Error pool not empty");
ret = -1;
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
return ret;
}
/*
* test that the pointer to the data on a packet mbuf is set properly
*/
static int
test_pktmbuf_pool_ptr(struct rte_mempool *pktmbuf_pool)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
break;
}
m[i]->data_off += 64;
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
break;
}
if (m[i]->data_off != RTE_PKTMBUF_HEADROOM) {
printf("invalid data_off\n");
ret = -1;
}
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL)
rte_pktmbuf_free(m[i]);
}
return ret;
}
static int
test_pktmbuf_free_segment(struct rte_mempool *pktmbuf_pool)
{
unsigned i;
struct rte_mbuf *m[NB_MBUF];
int ret = 0;
for (i=0; i<NB_MBUF; i++)
m[i] = NULL;
/* alloc NB_MBUF mbufs */
for (i=0; i<NB_MBUF; i++) {
m[i] = rte_pktmbuf_alloc(pktmbuf_pool);
if (m[i] == NULL) {
printf("rte_pktmbuf_alloc() failed (%u)\n", i);
ret = -1;
}
}
/* free them */
for (i=0; i<NB_MBUF; i++) {
if (m[i] != NULL) {
struct rte_mbuf *mb, *mt;
mb = m[i];
while(mb != NULL) {
mt = mb;
mb = mb->next;
rte_pktmbuf_free_seg(mt);
}
}
}
return ret;
}
/*
* Stress test for rte_mbuf atomic refcnt.
* Implies that RTE_MBUF_REFCNT_ATOMIC is defined.
* For more efficiency, recommended to run with RTE_LIBRTE_MBUF_DEBUG defined.
*/
#ifdef RTE_MBUF_REFCNT_ATOMIC
static int
test_refcnt_slave(void *arg)
{
unsigned lcore, free;
void *mp = 0;
struct rte_ring *refcnt_mbuf_ring = arg;
lcore = rte_lcore_id();
printf("%s started at lcore %u\n", __func__, lcore);
free = 0;
while (refcnt_stop_slaves == 0) {
if (rte_ring_dequeue(refcnt_mbuf_ring, &mp) == 0) {
free++;
rte_pktmbuf_free(mp);
}
}
refcnt_lcore[lcore] += free;
printf("%s finished at lcore %u, "
"number of freed mbufs: %u\n",
__func__, lcore, free);
return 0;
}
static void
test_refcnt_iter(unsigned int lcore, unsigned int iter,
struct rte_mempool *refcnt_pool,
struct rte_ring *refcnt_mbuf_ring)
{
uint16_t ref;
unsigned i, n, tref, wn;
struct rte_mbuf *m;
tref = 0;
/* For each mbuf in the pool:
* - allocate mbuf,
* - increment it's reference up to N+1,
* - enqueue it N times into the ring for slave cores to free.
*/
for (i = 0, n = rte_mempool_avail_count(refcnt_pool);
i != n && (m = rte_pktmbuf_alloc(refcnt_pool)) != NULL;
i++) {
ref = RTE_MAX(rte_rand() % REFCNT_MAX_REF, 1UL);
tref += ref;
if ((ref & 1) != 0) {
rte_pktmbuf_refcnt_update(m, ref);
while (ref-- != 0)
rte_ring_enqueue(refcnt_mbuf_ring, m);
} else {
while (ref-- != 0) {
rte_pktmbuf_refcnt_update(m, 1);
rte_ring_enqueue(refcnt_mbuf_ring, m);
}
}
rte_pktmbuf_free(m);
}
if (i != n)
rte_panic("(lcore=%u, iter=%u): was able to allocate only "
"%u from %u mbufs\n", lcore, iter, i, n);
/* wait till slave lcores will consume all mbufs */
while (!rte_ring_empty(refcnt_mbuf_ring))
;
/* check that all mbufs are back into mempool by now */
for (wn = 0; wn != REFCNT_MAX_TIMEOUT; wn++) {
if ((i = rte_mempool_avail_count(refcnt_pool)) == n) {
refcnt_lcore[lcore] += tref;
printf("%s(lcore=%u, iter=%u) completed, "
"%u references processed\n",
__func__, lcore, iter, tref);
return;
}
rte_delay_ms(100);
}
rte_panic("(lcore=%u, iter=%u): after %us only "
"%u of %u mbufs left free\n", lcore, iter, wn, i, n);
}
static int
test_refcnt_master(struct rte_mempool *refcnt_pool,
struct rte_ring *refcnt_mbuf_ring)
{
unsigned i, lcore;
lcore = rte_lcore_id();
printf("%s started at lcore %u\n", __func__, lcore);
for (i = 0; i != REFCNT_MAX_ITER; i++)
test_refcnt_iter(lcore, i, refcnt_pool, refcnt_mbuf_ring);
refcnt_stop_slaves = 1;
rte_wmb();
printf("%s finished at lcore %u\n", __func__, lcore);
return 0;
}
#endif
static int
test_refcnt_mbuf(void)
{
#ifdef RTE_MBUF_REFCNT_ATOMIC
unsigned lnum, master, slave, tref;
int ret = -1;
struct rte_mempool *refcnt_pool = NULL;
struct rte_ring *refcnt_mbuf_ring = NULL;
if ((lnum = rte_lcore_count()) == 1) {
printf("skipping %s, number of lcores: %u is not enough\n",
__func__, lnum);
return 0;
}
printf("starting %s, at %u lcores\n", __func__, lnum);
/* create refcnt pool & ring if they don't exist */
refcnt_pool = rte_pktmbuf_pool_create(MAKE_STRING(refcnt_pool),
REFCNT_MBUF_NUM, 0, 0, 0,
SOCKET_ID_ANY);
if (refcnt_pool == NULL) {
printf("%s: cannot allocate " MAKE_STRING(refcnt_pool) "\n",
__func__);
return -1;
}
refcnt_mbuf_ring = rte_ring_create("refcnt_mbuf_ring",
rte_align32pow2(REFCNT_RING_SIZE), SOCKET_ID_ANY,
RING_F_SP_ENQ);
if (refcnt_mbuf_ring == NULL) {
printf("%s: cannot allocate " MAKE_STRING(refcnt_mbuf_ring)
"\n", __func__);
goto err;
}
refcnt_stop_slaves = 0;
memset(refcnt_lcore, 0, sizeof (refcnt_lcore));
rte_eal_mp_remote_launch(test_refcnt_slave, refcnt_mbuf_ring,
SKIP_MASTER);
test_refcnt_master(refcnt_pool, refcnt_mbuf_ring);
rte_eal_mp_wait_lcore();
/* check that we porcessed all references */
tref = 0;
master = rte_get_master_lcore();
RTE_LCORE_FOREACH_SLAVE(slave)
tref += refcnt_lcore[slave];
if (tref != refcnt_lcore[master])
rte_panic("refernced mbufs: %u, freed mbufs: %u\n",
tref, refcnt_lcore[master]);
rte_mempool_dump(stdout, refcnt_pool);
rte_ring_dump(stdout, refcnt_mbuf_ring);
ret = 0;
err:
rte_mempool_free(refcnt_pool);
rte_ring_free(refcnt_mbuf_ring);
return ret;
#else
return 0;
#endif
}
#include <unistd.h>
#include <sys/wait.h>
/* use fork() to test mbuf errors panic */
static int
verify_mbuf_check_panics(struct rte_mbuf *buf)
{
int pid;
int status;
pid = fork();
if (pid == 0) {
rte_mbuf_sanity_check(buf, 1); /* should panic */
exit(0); /* return normally if it doesn't panic */
} else if (pid < 0){
printf("Fork Failed\n");
return -1;
}
wait(&status);
if(status == 0)
return -1;
return 0;
}
static int
test_failing_mbuf_sanity_check(struct rte_mempool *pktmbuf_pool)
{
struct rte_mbuf *buf;
struct rte_mbuf badbuf;
printf("Checking rte_mbuf_sanity_check for failure conditions\n");
/* get a good mbuf to use to make copies */
buf = rte_pktmbuf_alloc(pktmbuf_pool);
if (buf == NULL)
return -1;
printf("Checking good mbuf initially\n");
if (verify_mbuf_check_panics(buf) != -1)
return -1;
printf("Now checking for error conditions\n");
if (verify_mbuf_check_panics(NULL)) {
printf("Error with NULL mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.pool = NULL;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-pool mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.buf_iova = 0;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-physaddr mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.buf_addr = NULL;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-addr mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.refcnt = 0;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-refcnt(0) mbuf test\n");
return -1;
}
badbuf = *buf;
badbuf.refcnt = UINT16_MAX;
if (verify_mbuf_check_panics(&badbuf)) {
printf("Error with bad-refcnt(MAX) mbuf test\n");
return -1;
}
return 0;
}
static int
test_mbuf_linearize(struct rte_mempool *pktmbuf_pool, int pkt_len,
int nb_segs)
{
struct rte_mbuf *m = NULL, *mbuf = NULL;
uint8_t *data;
int data_len = 0;
int remain;
int seg, seg_len;
int i;
if (pkt_len < 1) {
printf("Packet size must be 1 or more (is %d)\n", pkt_len);
return -1;
}
if (nb_segs < 1) {
printf("Number of segments must be 1 or more (is %d)\n",
nb_segs);
return -1;
}
seg_len = pkt_len / nb_segs;
if (seg_len == 0)
seg_len = 1;
remain = pkt_len;
/* Create chained mbuf_src and fill it generated data */
for (seg = 0; remain > 0; seg++) {
m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL) {
printf("Cannot create segment for source mbuf");
goto fail;
}
/* Make sure if tailroom is zeroed */
memset(rte_pktmbuf_mtod(m, uint8_t *), 0,
rte_pktmbuf_tailroom(m));
data_len = remain;
if (data_len > seg_len)
data_len = seg_len;
data = (uint8_t *)rte_pktmbuf_append(m, data_len);
if (data == NULL) {
printf("Cannot append %d bytes to the mbuf\n",
data_len);
goto fail;
}
for (i = 0; i < data_len; i++)
data[i] = (seg * seg_len + i) % 0x0ff;
if (seg == 0)
mbuf = m;
else
rte_pktmbuf_chain(mbuf, m);
remain -= data_len;
}
/* Create destination buffer to store coalesced data */
if (rte_pktmbuf_linearize(mbuf)) {
printf("Mbuf linearization failed\n");
goto fail;
}
if (!rte_pktmbuf_is_contiguous(mbuf)) {
printf("Source buffer should be contiguous after "
"linearization\n");
goto fail;
}
data = rte_pktmbuf_mtod(mbuf, uint8_t *);
for (i = 0; i < pkt_len; i++)
if (data[i] != (i % 0x0ff)) {
printf("Incorrect data in linearized mbuf\n");
goto fail;
}
rte_pktmbuf_free(mbuf);
return 0;
fail:
if (mbuf)
rte_pktmbuf_free(mbuf);
return -1;
}
static int
test_mbuf_linearize_check(struct rte_mempool *pktmbuf_pool)
{
struct test_mbuf_array {
int size;
int nb_segs;
} mbuf_array[] = {
{ 128, 1 },
{ 64, 64 },
{ 512, 10 },
{ 250, 11 },
{ 123, 8 },
};
unsigned int i;
printf("Test mbuf linearize API\n");
for (i = 0; i < RTE_DIM(mbuf_array); i++)
if (test_mbuf_linearize(pktmbuf_pool, mbuf_array[i].size,
mbuf_array[i].nb_segs)) {
printf("Test failed for %d, %d\n", mbuf_array[i].size,
mbuf_array[i].nb_segs);
return -1;
}
return 0;
}
/*
* Helper function for test_tx_ofload
*/
static inline void
set_tx_offload(struct rte_mbuf *mb, uint64_t il2, uint64_t il3, uint64_t il4,
uint64_t tso, uint64_t ol3, uint64_t ol2)
{
mb->l2_len = il2;
mb->l3_len = il3;
mb->l4_len = il4;
mb->tso_segsz = tso;
mb->outer_l3_len = ol3;
mb->outer_l2_len = ol2;
}
static int
test_tx_offload(void)
{
struct rte_mbuf *mb;
uint64_t tm, v1, v2;
size_t sz;
uint32_t i;
static volatile struct {
uint16_t l2;
uint16_t l3;
uint16_t l4;
uint16_t tso;
} txof;
const uint32_t num = 0x10000;
txof.l2 = rte_rand() % (1 << RTE_MBUF_L2_LEN_BITS);
txof.l3 = rte_rand() % (1 << RTE_MBUF_L3_LEN_BITS);
txof.l4 = rte_rand() % (1 << RTE_MBUF_L4_LEN_BITS);
txof.tso = rte_rand() % (1 << RTE_MBUF_TSO_SEGSZ_BITS);
printf("%s started, tx_offload = {\n"
"\tl2_len=%#hx,\n"
"\tl3_len=%#hx,\n"
"\tl4_len=%#hx,\n"
"\ttso_segsz=%#hx,\n"
"\touter_l3_len=%#x,\n"
"\touter_l2_len=%#x,\n"
"};\n",
__func__,
txof.l2, txof.l3, txof.l4, txof.tso, txof.l3, txof.l2);
sz = sizeof(*mb) * num;
mb = rte_zmalloc(NULL, sz, RTE_CACHE_LINE_SIZE);
if (mb == NULL) {
printf("%s failed, out of memory\n", __func__);
return -ENOMEM;
}
memset(mb, 0, sz);
tm = rte_rdtsc_precise();
for (i = 0; i != num; i++)
set_tx_offload(mb + i, txof.l2, txof.l3, txof.l4,
txof.tso, txof.l3, txof.l2);
tm = rte_rdtsc_precise() - tm;
printf("%s set tx_offload by bit-fields: %u iterations, %"
PRIu64 " cycles, %#Lf cycles/iter\n",
__func__, num, tm, (long double)tm / num);
v1 = mb[rte_rand() % num].tx_offload;
memset(mb, 0, sz);
tm = rte_rdtsc_precise();
for (i = 0; i != num; i++)
mb[i].tx_offload = rte_mbuf_tx_offload(txof.l2, txof.l3,
txof.l4, txof.tso, txof.l3, txof.l2, 0);
tm = rte_rdtsc_precise() - tm;
printf("%s set raw tx_offload: %u iterations, %"
PRIu64 " cycles, %#Lf cycles/iter\n",
__func__, num, tm, (long double)tm / num);
v2 = mb[rte_rand() % num].tx_offload;
rte_free(mb);
printf("%s finished\n"
"expected tx_offload value: 0x%" PRIx64 ";\n"
"rte_mbuf_tx_offload value: 0x%" PRIx64 ";\n",
__func__, v1, v2);
return (v1 == v2) ? 0 : -EINVAL;
}
static int
test_mbuf(void)
{
int ret = -1;
struct rte_mempool *pktmbuf_pool = NULL;
struct rte_mempool *pktmbuf_pool2 = NULL;
RTE_BUILD_BUG_ON(sizeof(struct rte_mbuf) != RTE_CACHE_LINE_MIN_SIZE * 2);
/* create pktmbuf pool if it does not exist */
pktmbuf_pool = rte_pktmbuf_pool_create("test_pktmbuf_pool",
NB_MBUF, 32, 0, MBUF_DATA_SIZE, SOCKET_ID_ANY);
if (pktmbuf_pool == NULL) {
printf("cannot allocate mbuf pool\n");
goto err;
}
/* create a specific pktmbuf pool with a priv_size != 0 and no data
* room size */
pktmbuf_pool2 = rte_pktmbuf_pool_create("test_pktmbuf_pool2",
NB_MBUF, 32, MBUF2_PRIV_SIZE, 0, SOCKET_ID_ANY);
if (pktmbuf_pool2 == NULL) {
printf("cannot allocate mbuf pool\n");
goto err;
}
/* test multiple mbuf alloc */
if (test_pktmbuf_pool(pktmbuf_pool) < 0) {
printf("test_mbuf_pool() failed\n");
goto err;
}
/* do it another time to check that all mbufs were freed */
if (test_pktmbuf_pool(pktmbuf_pool) < 0) {
printf("test_mbuf_pool() failed (2)\n");
goto err;
}
/* test that the pointer to the data on a packet mbuf is set properly */
if (test_pktmbuf_pool_ptr(pktmbuf_pool) < 0) {
printf("test_pktmbuf_pool_ptr() failed\n");
goto err;
}
/* test data manipulation in mbuf */
if (test_one_pktmbuf(pktmbuf_pool) < 0) {
printf("test_one_mbuf() failed\n");
goto err;
}
/*
* do it another time, to check that allocation reinitialize
* the mbuf correctly
*/
if (test_one_pktmbuf(pktmbuf_pool) < 0) {
printf("test_one_mbuf() failed (2)\n");
goto err;
}
if (test_pktmbuf_with_non_ascii_data(pktmbuf_pool) < 0) {
printf("test_pktmbuf_with_non_ascii_data() failed\n");
goto err;
}
/* test free pktmbuf segment one by one */
if (test_pktmbuf_free_segment(pktmbuf_pool) < 0) {
printf("test_pktmbuf_free_segment() failed.\n");
goto err;
}
if (testclone_testupdate_testdetach(pktmbuf_pool) < 0) {
printf("testclone_and_testupdate() failed \n");
goto err;
}
if (test_attach_from_different_pool(pktmbuf_pool, pktmbuf_pool2) < 0) {
printf("test_attach_from_different_pool() failed\n");
goto err;
}
if (test_refcnt_mbuf()<0){
printf("test_refcnt_mbuf() failed \n");
goto err;
}
if (test_failing_mbuf_sanity_check(pktmbuf_pool) < 0) {
printf("test_failing_mbuf_sanity_check() failed\n");
goto err;
}
if (test_mbuf_linearize_check(pktmbuf_pool) < 0) {
printf("test_mbuf_linearize_check() failed\n");
goto err;
}
if (test_tx_offload() < 0) {
printf("test_tx_offload() failed\n");
goto err;
}
ret = 0;
err:
rte_mempool_free(pktmbuf_pool);
rte_mempool_free(pktmbuf_pool2);
return ret;
}
REGISTER_TEST_COMMAND(mbuf_autotest, test_mbuf);