Vladimir Medvedkin 5a5793a5ff rib: add RIB library
Add RIB (Routing Information Base) library. This library
implements an IPv4 routing table optimized for control plane
operations. It implements a control plane struct containing routes
in a tree and provides fast add/del operations for routes.
Also it allows to perform fast subtree traversals
(i.e. retrieve existing subroutes for a given prefix).
This structure will be used as a control plane helper structure
for FIB implementation. Also it might be used standalone in other
different places such as bitmaps for example.
Internal implementation is level compressed binary trie.

Signed-off-by: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
2019-11-06 00:08:56 +01:00

533 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Vladimir Medvedkin <medvedkinv@gmail.com>
* Copyright(c) 2019 Intel Corporation
*/
#include <stdbool.h>
#include <stdint.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_rwlock.h>
#include <rte_string_fns.h>
#include <rte_tailq.h>
#include <rte_rib.h>
TAILQ_HEAD(rte_rib_list, rte_tailq_entry);
static struct rte_tailq_elem rte_rib_tailq = {
.name = "RTE_RIB",
};
EAL_REGISTER_TAILQ(rte_rib_tailq)
#define RTE_RIB_VALID_NODE 1
/* Maximum depth value possible for IPv4 RIB. */
#define RIB_MAXDEPTH 32
/* Maximum length of a RIB name. */
#define RTE_RIB_NAMESIZE 64
struct rte_rib_node {
struct rte_rib_node *left;
struct rte_rib_node *right;
struct rte_rib_node *parent;
uint32_t ip;
uint8_t depth;
uint8_t flag;
uint64_t nh;
__extension__ uint64_t ext[0];
};
struct rte_rib {
char name[RTE_RIB_NAMESIZE];
struct rte_rib_node *tree;
struct rte_mempool *node_pool;
uint32_t cur_nodes;
uint32_t cur_routes;
uint32_t max_nodes;
};
static inline bool
is_valid_node(struct rte_rib_node *node)
{
return (node->flag & RTE_RIB_VALID_NODE) == RTE_RIB_VALID_NODE;
}
static inline bool
is_right_node(struct rte_rib_node *node)
{
return node->parent->right == node;
}
/*
* Check if ip1 is covered by ip2/depth prefix
*/
static inline bool
is_covered(uint32_t ip1, uint32_t ip2, uint8_t depth)
{
return ((ip1 ^ ip2) & rte_rib_depth_to_mask(depth)) == 0;
}
static inline struct rte_rib_node *
get_nxt_node(struct rte_rib_node *node, uint32_t ip)
{
return (ip & (1 << (31 - node->depth))) ? node->right : node->left;
}
static struct rte_rib_node *
node_alloc(struct rte_rib *rib)
{
struct rte_rib_node *ent;
int ret;
ret = rte_mempool_get(rib->node_pool, (void *)&ent);
if (unlikely(ret != 0))
return NULL;
++rib->cur_nodes;
return ent;
}
static void
node_free(struct rte_rib *rib, struct rte_rib_node *ent)
{
--rib->cur_nodes;
rte_mempool_put(rib->node_pool, ent);
}
struct rte_rib_node *
rte_rib_lookup(struct rte_rib *rib, uint32_t ip)
{
struct rte_rib_node *cur, *prev = NULL;
if (rib == NULL) {
rte_errno = EINVAL;
return NULL;
}
cur = rib->tree;
while ((cur != NULL) && is_covered(ip, cur->ip, cur->depth)) {
if (is_valid_node(cur))
prev = cur;
cur = get_nxt_node(cur, ip);
}
return prev;
}
struct rte_rib_node *
rte_rib_lookup_parent(struct rte_rib_node *ent)
{
struct rte_rib_node *tmp;
if (ent == NULL)
return NULL;
tmp = ent->parent;
while ((tmp != NULL) && !is_valid_node(tmp))
tmp = tmp->parent;
return tmp;
}
static struct rte_rib_node *
__rib_lookup_exact(struct rte_rib *rib, uint32_t ip, uint8_t depth)
{
struct rte_rib_node *cur;
cur = rib->tree;
while (cur != NULL) {
if ((cur->ip == ip) && (cur->depth == depth) &&
is_valid_node(cur))
return cur;
if ((cur->depth > depth) ||
!is_covered(ip, cur->ip, cur->depth))
break;
cur = get_nxt_node(cur, ip);
}
return NULL;
}
struct rte_rib_node *
rte_rib_lookup_exact(struct rte_rib *rib, uint32_t ip, uint8_t depth)
{
if ((rib == NULL) || (depth > RIB_MAXDEPTH)) {
rte_errno = EINVAL;
return NULL;
}
ip &= rte_rib_depth_to_mask(depth);
return __rib_lookup_exact(rib, ip, depth);
}
/*
* Traverses on subtree and retrieves more specific routes
* for a given in args ip/depth prefix
* last = NULL means the first invocation
*/
struct rte_rib_node *
rte_rib_get_nxt(struct rte_rib *rib, uint32_t ip,
uint8_t depth, struct rte_rib_node *last, int flag)
{
struct rte_rib_node *tmp, *prev = NULL;
if ((rib == NULL) || (depth > RIB_MAXDEPTH)) {
rte_errno = EINVAL;
return NULL;
}
if (last == NULL) {
tmp = rib->tree;
while ((tmp) && (tmp->depth < depth))
tmp = get_nxt_node(tmp, ip);
} else {
tmp = last;
while ((tmp->parent != NULL) && (is_right_node(tmp) ||
(tmp->parent->right == NULL))) {
tmp = tmp->parent;
if (is_valid_node(tmp) &&
(is_covered(tmp->ip, ip, depth) &&
(tmp->depth > depth)))
return tmp;
}
tmp = (tmp->parent) ? tmp->parent->right : NULL;
}
while (tmp) {
if (is_valid_node(tmp) &&
(is_covered(tmp->ip, ip, depth) &&
(tmp->depth > depth))) {
prev = tmp;
if (flag == RTE_RIB_GET_NXT_COVER)
return prev;
}
tmp = (tmp->left) ? tmp->left : tmp->right;
}
return prev;
}
void
rte_rib_remove(struct rte_rib *rib, uint32_t ip, uint8_t depth)
{
struct rte_rib_node *cur, *prev, *child;
cur = rte_rib_lookup_exact(rib, ip, depth);
if (cur == NULL)
return;
--rib->cur_routes;
cur->flag &= ~RTE_RIB_VALID_NODE;
while (!is_valid_node(cur)) {
if ((cur->left != NULL) && (cur->right != NULL))
return;
child = (cur->left == NULL) ? cur->right : cur->left;
if (child != NULL)
child->parent = cur->parent;
if (cur->parent == NULL) {
rib->tree = child;
node_free(rib, cur);
return;
}
if (cur->parent->left == cur)
cur->parent->left = child;
else
cur->parent->right = child;
prev = cur;
cur = cur->parent;
node_free(rib, prev);
}
}
struct rte_rib_node *
rte_rib_insert(struct rte_rib *rib, uint32_t ip, uint8_t depth)
{
struct rte_rib_node **tmp;
struct rte_rib_node *prev = NULL;
struct rte_rib_node *new_node = NULL;
struct rte_rib_node *common_node = NULL;
int d = 0;
uint32_t common_prefix;
uint8_t common_depth;
if ((rib == NULL) || (depth > RIB_MAXDEPTH)) {
rte_errno = EINVAL;
return NULL;
}
tmp = &rib->tree;
ip &= rte_rib_depth_to_mask(depth);
new_node = __rib_lookup_exact(rib, ip, depth);
if (new_node != NULL) {
rte_errno = EEXIST;
return NULL;
}
new_node = node_alloc(rib);
if (new_node == NULL) {
rte_errno = ENOMEM;
return NULL;
}
new_node->left = NULL;
new_node->right = NULL;
new_node->parent = NULL;
new_node->ip = ip;
new_node->depth = depth;
new_node->flag = RTE_RIB_VALID_NODE;
/* traverse down the tree to find matching node or closest matching */
while (1) {
/* insert as the last node in the branch */
if (*tmp == NULL) {
*tmp = new_node;
new_node->parent = prev;
++rib->cur_routes;
return *tmp;
}
/*
* Intermediate node found.
* Previous rte_rib_lookup_exact() returned NULL
* but node with proper search criteria is found.
* Validate intermediate node and return.
*/
if ((ip == (*tmp)->ip) && (depth == (*tmp)->depth)) {
node_free(rib, new_node);
(*tmp)->flag |= RTE_RIB_VALID_NODE;
++rib->cur_routes;
return *tmp;
}
d = (*tmp)->depth;
if ((d >= depth) || !is_covered(ip, (*tmp)->ip, d))
break;
prev = *tmp;
tmp = (ip & (1 << (31 - d))) ? &(*tmp)->right : &(*tmp)->left;
}
/* closest node found, new_node should be inserted in the middle */
common_depth = RTE_MIN(depth, (*tmp)->depth);
common_prefix = ip ^ (*tmp)->ip;
d = __builtin_clz(common_prefix);
common_depth = RTE_MIN(d, common_depth);
common_prefix = ip & rte_rib_depth_to_mask(common_depth);
if ((common_prefix == ip) && (common_depth == depth)) {
/* insert as a parent */
if ((*tmp)->ip & (1 << (31 - depth)))
new_node->right = *tmp;
else
new_node->left = *tmp;
new_node->parent = (*tmp)->parent;
(*tmp)->parent = new_node;
*tmp = new_node;
} else {
/* create intermediate node */
common_node = node_alloc(rib);
if (common_node == NULL) {
node_free(rib, new_node);
rte_errno = ENOMEM;
return NULL;
}
common_node->ip = common_prefix;
common_node->depth = common_depth;
common_node->flag = 0;
common_node->parent = (*tmp)->parent;
new_node->parent = common_node;
(*tmp)->parent = common_node;
if ((new_node->ip & (1 << (31 - common_depth))) == 0) {
common_node->left = new_node;
common_node->right = *tmp;
} else {
common_node->left = *tmp;
common_node->right = new_node;
}
*tmp = common_node;
}
++rib->cur_routes;
return new_node;
}
int
rte_rib_get_ip(struct rte_rib_node *node, uint32_t *ip)
{
if ((node == NULL) || (ip == NULL)) {
rte_errno = EINVAL;
return -1;
}
*ip = node->ip;
return 0;
}
int
rte_rib_get_depth(struct rte_rib_node *node, uint8_t *depth)
{
if ((node == NULL) || (depth == NULL)) {
rte_errno = EINVAL;
return -1;
}
*depth = node->depth;
return 0;
}
void *
rte_rib_get_ext(struct rte_rib_node *node)
{
return (node == NULL) ? NULL : &node->ext[0];
}
int
rte_rib_get_nh(struct rte_rib_node *node, uint64_t *nh)
{
if ((node == NULL) || (nh == NULL)) {
rte_errno = EINVAL;
return -1;
}
*nh = node->nh;
return 0;
}
int
rte_rib_set_nh(struct rte_rib_node *node, uint64_t nh)
{
if (node == NULL) {
rte_errno = EINVAL;
return -1;
}
node->nh = nh;
return 0;
}
struct rte_rib *
rte_rib_create(const char *name, int socket_id, struct rte_rib_conf *conf)
{
char mem_name[RTE_RIB_NAMESIZE];
struct rte_rib *rib = NULL;
struct rte_tailq_entry *te;
struct rte_rib_list *rib_list;
struct rte_mempool *node_pool;
/* Check user arguments. */
if ((name == NULL) || (conf == NULL) ||
(conf->max_nodes == 0)) {
rte_errno = EINVAL;
return NULL;
}
snprintf(mem_name, sizeof(mem_name), "MP_%s", name);
node_pool = rte_mempool_create(mem_name, conf->max_nodes,
sizeof(struct rte_rib_node) + conf->ext_sz, 0, 0,
NULL, NULL, NULL, NULL, socket_id, 0);
if (node_pool == NULL) {
RTE_LOG(ERR, LPM,
"Can not allocate mempool for RIB %s\n", name);
return NULL;
}
snprintf(mem_name, sizeof(mem_name), "RIB_%s", name);
rib_list = RTE_TAILQ_CAST(rte_rib_tailq.head, rte_rib_list);
rte_mcfg_tailq_write_lock();
/* guarantee there's no existing */
TAILQ_FOREACH(te, rib_list, next) {
rib = (struct rte_rib *)te->data;
if (strncmp(name, rib->name, RTE_RIB_NAMESIZE) == 0)
break;
}
rib = NULL;
if (te != NULL) {
rte_errno = EEXIST;
goto exit;
}
/* allocate tailq entry */
te = rte_zmalloc("RIB_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, LPM,
"Can not allocate tailq entry for RIB %s\n", name);
rte_errno = ENOMEM;
goto exit;
}
/* Allocate memory to store the RIB data structures. */
rib = rte_zmalloc_socket(mem_name,
sizeof(struct rte_rib), RTE_CACHE_LINE_SIZE, socket_id);
if (rib == NULL) {
RTE_LOG(ERR, LPM, "RIB %s memory allocation failed\n", name);
rte_errno = ENOMEM;
goto free_te;
}
rte_strlcpy(rib->name, name, sizeof(rib->name));
rib->tree = NULL;
rib->max_nodes = conf->max_nodes;
rib->node_pool = node_pool;
te->data = (void *)rib;
TAILQ_INSERT_TAIL(rib_list, te, next);
rte_mcfg_tailq_write_unlock();
return rib;
free_te:
rte_free(te);
exit:
rte_mcfg_tailq_write_unlock();
rte_mempool_free(node_pool);
return NULL;
}
struct rte_rib *
rte_rib_find_existing(const char *name)
{
struct rte_rib *rib = NULL;
struct rte_tailq_entry *te;
struct rte_rib_list *rib_list;
rib_list = RTE_TAILQ_CAST(rte_rib_tailq.head, rte_rib_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, rib_list, next) {
rib = (struct rte_rib *) te->data;
if (strncmp(name, rib->name, RTE_RIB_NAMESIZE) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return rib;
}
void
rte_rib_free(struct rte_rib *rib)
{
struct rte_tailq_entry *te;
struct rte_rib_list *rib_list;
struct rte_rib_node *tmp = NULL;
if (rib == NULL)
return;
rib_list = RTE_TAILQ_CAST(rte_rib_tailq.head, rte_rib_list);
rte_mcfg_tailq_write_lock();
/* find our tailq entry */
TAILQ_FOREACH(te, rib_list, next) {
if (te->data == (void *)rib)
break;
}
if (te != NULL)
TAILQ_REMOVE(rib_list, te, next);
rte_mcfg_tailq_write_unlock();
while ((tmp = rte_rib_get_nxt(rib, 0, 0, tmp,
RTE_RIB_GET_NXT_ALL)) != NULL)
rte_rib_remove(rib, tmp->ip, tmp->depth);
rte_mempool_free(rib->node_pool);
rte_free(rib);
rte_free(te);
}