381acec2b1
Events sent through single-link queues are naturally in-order and atomic, without reordering or atomic scheduling. Logically the nb_atomic_flows and nb_atomic_order_sequences arguments don't apply to a single link queue, but applications must set these (depending on the queue config type) to bypass the is_valid_{ordered, atomic}_queue_conf() checks in the eventdev layer. This commit updates those is_valid_* functions to ignore queues with the SINGLE_LINK flag, to simplify their configuration. Signed-off-by: Gage Eads <gage.eads@intel.com> Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
1014 lines
27 KiB
C
1014 lines
27 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <getopt.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <signal.h>
|
|
#include <sched.h>
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_eal.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_random.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_eventdev.h>
|
|
|
|
#define MAX_NUM_STAGES 8
|
|
#define BATCH_SIZE 16
|
|
#define MAX_NUM_CORE 64
|
|
|
|
struct prod_data {
|
|
uint8_t dev_id;
|
|
uint8_t port_id;
|
|
int32_t qid;
|
|
unsigned int num_nic_ports;
|
|
} __rte_cache_aligned;
|
|
|
|
struct cons_data {
|
|
uint8_t dev_id;
|
|
uint8_t port_id;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct prod_data prod_data;
|
|
static struct cons_data cons_data;
|
|
|
|
struct worker_data {
|
|
uint8_t dev_id;
|
|
uint8_t port_id;
|
|
} __rte_cache_aligned;
|
|
|
|
struct fastpath_data {
|
|
volatile int done;
|
|
uint32_t rx_lock;
|
|
uint32_t tx_lock;
|
|
uint32_t sched_lock;
|
|
bool rx_single;
|
|
bool tx_single;
|
|
bool sched_single;
|
|
unsigned int rx_core[MAX_NUM_CORE];
|
|
unsigned int tx_core[MAX_NUM_CORE];
|
|
unsigned int sched_core[MAX_NUM_CORE];
|
|
unsigned int worker_core[MAX_NUM_CORE];
|
|
struct rte_eth_dev_tx_buffer *tx_buf[RTE_MAX_ETHPORTS];
|
|
};
|
|
|
|
static struct fastpath_data *fdata;
|
|
|
|
struct config_data {
|
|
unsigned int active_cores;
|
|
unsigned int num_workers;
|
|
int64_t num_packets;
|
|
unsigned int num_fids;
|
|
int queue_type;
|
|
int worker_cycles;
|
|
int enable_queue_priorities;
|
|
int quiet;
|
|
int dump_dev;
|
|
int dump_dev_signal;
|
|
unsigned int num_stages;
|
|
unsigned int worker_cq_depth;
|
|
int16_t next_qid[MAX_NUM_STAGES+2];
|
|
int16_t qid[MAX_NUM_STAGES];
|
|
};
|
|
|
|
static struct config_data cdata = {
|
|
.num_packets = (1L << 25), /* do ~32M packets */
|
|
.num_fids = 512,
|
|
.queue_type = RTE_EVENT_QUEUE_CFG_ATOMIC_ONLY,
|
|
.next_qid = {-1},
|
|
.qid = {-1},
|
|
.num_stages = 1,
|
|
.worker_cq_depth = 16
|
|
};
|
|
|
|
static bool
|
|
core_in_use(unsigned int lcore_id) {
|
|
return (fdata->rx_core[lcore_id] || fdata->sched_core[lcore_id] ||
|
|
fdata->tx_core[lcore_id] || fdata->worker_core[lcore_id]);
|
|
}
|
|
|
|
static void
|
|
eth_tx_buffer_retry(struct rte_mbuf **pkts, uint16_t unsent,
|
|
void *userdata)
|
|
{
|
|
int port_id = (uintptr_t) userdata;
|
|
unsigned int _sent = 0;
|
|
|
|
do {
|
|
/* Note: hard-coded TX queue */
|
|
_sent += rte_eth_tx_burst(port_id, 0, &pkts[_sent],
|
|
unsent - _sent);
|
|
} while (_sent != unsent);
|
|
}
|
|
|
|
static int
|
|
consumer(void)
|
|
{
|
|
const uint64_t freq_khz = rte_get_timer_hz() / 1000;
|
|
struct rte_event packets[BATCH_SIZE];
|
|
|
|
static uint64_t received;
|
|
static uint64_t last_pkts;
|
|
static uint64_t last_time;
|
|
static uint64_t start_time;
|
|
unsigned int i, j;
|
|
uint8_t dev_id = cons_data.dev_id;
|
|
uint8_t port_id = cons_data.port_id;
|
|
|
|
uint16_t n = rte_event_dequeue_burst(dev_id, port_id,
|
|
packets, RTE_DIM(packets), 0);
|
|
|
|
if (n == 0) {
|
|
for (j = 0; j < rte_eth_dev_count(); j++)
|
|
rte_eth_tx_buffer_flush(j, 0, fdata->tx_buf[j]);
|
|
return 0;
|
|
}
|
|
if (start_time == 0)
|
|
last_time = start_time = rte_get_timer_cycles();
|
|
|
|
received += n;
|
|
for (i = 0; i < n; i++) {
|
|
uint8_t outport = packets[i].mbuf->port;
|
|
rte_eth_tx_buffer(outport, 0, fdata->tx_buf[outport],
|
|
packets[i].mbuf);
|
|
}
|
|
|
|
/* Print out mpps every 1<22 packets */
|
|
if (!cdata.quiet && received >= last_pkts + (1<<22)) {
|
|
const uint64_t now = rte_get_timer_cycles();
|
|
const uint64_t total_ms = (now - start_time) / freq_khz;
|
|
const uint64_t delta_ms = (now - last_time) / freq_khz;
|
|
uint64_t delta_pkts = received - last_pkts;
|
|
|
|
printf("# consumer RX=%"PRIu64", time %"PRIu64 "ms, "
|
|
"avg %.3f mpps [current %.3f mpps]\n",
|
|
received,
|
|
total_ms,
|
|
received / (total_ms * 1000.0),
|
|
delta_pkts / (delta_ms * 1000.0));
|
|
last_pkts = received;
|
|
last_time = now;
|
|
}
|
|
|
|
cdata.num_packets -= n;
|
|
if (cdata.num_packets <= 0)
|
|
fdata->done = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
producer(void)
|
|
{
|
|
static uint8_t eth_port;
|
|
struct rte_mbuf *mbufs[BATCH_SIZE+2];
|
|
struct rte_event ev[BATCH_SIZE+2];
|
|
uint32_t i, num_ports = prod_data.num_nic_ports;
|
|
int32_t qid = prod_data.qid;
|
|
uint8_t dev_id = prod_data.dev_id;
|
|
uint8_t port_id = prod_data.port_id;
|
|
uint32_t prio_idx = 0;
|
|
|
|
const uint16_t nb_rx = rte_eth_rx_burst(eth_port, 0, mbufs, BATCH_SIZE);
|
|
if (++eth_port == num_ports)
|
|
eth_port = 0;
|
|
if (nb_rx == 0) {
|
|
rte_pause();
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
ev[i].flow_id = mbufs[i]->hash.rss;
|
|
ev[i].op = RTE_EVENT_OP_NEW;
|
|
ev[i].sched_type = cdata.queue_type;
|
|
ev[i].queue_id = qid;
|
|
ev[i].event_type = RTE_EVENT_TYPE_ETHDEV;
|
|
ev[i].sub_event_type = 0;
|
|
ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
|
|
ev[i].mbuf = mbufs[i];
|
|
RTE_SET_USED(prio_idx);
|
|
}
|
|
|
|
const int nb_tx = rte_event_enqueue_burst(dev_id, port_id, ev, nb_rx);
|
|
if (nb_tx != nb_rx) {
|
|
for (i = nb_tx; i < nb_rx; i++)
|
|
rte_pktmbuf_free(mbufs[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
schedule_devices(uint8_t dev_id, unsigned int lcore_id)
|
|
{
|
|
if (fdata->rx_core[lcore_id] && (fdata->rx_single ||
|
|
rte_atomic32_cmpset(&(fdata->rx_lock), 0, 1))) {
|
|
producer();
|
|
rte_atomic32_clear((rte_atomic32_t *)&(fdata->rx_lock));
|
|
}
|
|
|
|
if (fdata->sched_core[lcore_id] && (fdata->sched_single ||
|
|
rte_atomic32_cmpset(&(fdata->sched_lock), 0, 1))) {
|
|
rte_event_schedule(dev_id);
|
|
if (cdata.dump_dev_signal) {
|
|
rte_event_dev_dump(0, stdout);
|
|
cdata.dump_dev_signal = 0;
|
|
}
|
|
rte_atomic32_clear((rte_atomic32_t *)&(fdata->sched_lock));
|
|
}
|
|
|
|
if (fdata->tx_core[lcore_id] && (fdata->tx_single ||
|
|
rte_atomic32_cmpset(&(fdata->tx_lock), 0, 1))) {
|
|
consumer();
|
|
rte_atomic32_clear((rte_atomic32_t *)&(fdata->tx_lock));
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
work(struct rte_mbuf *m)
|
|
{
|
|
struct ether_hdr *eth;
|
|
struct ether_addr addr;
|
|
|
|
/* change mac addresses on packet (to use mbuf data) */
|
|
/*
|
|
* FIXME Swap mac address properly and also handle the
|
|
* case for both odd and even number of stages that the
|
|
* addresses end up the same at the end of the pipeline
|
|
*/
|
|
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
ether_addr_copy(ð->d_addr, &addr);
|
|
ether_addr_copy(&addr, ð->d_addr);
|
|
|
|
/* do a number of cycles of work per packet */
|
|
volatile uint64_t start_tsc = rte_rdtsc();
|
|
while (rte_rdtsc() < start_tsc + cdata.worker_cycles)
|
|
rte_pause();
|
|
}
|
|
|
|
static int
|
|
worker(void *arg)
|
|
{
|
|
struct rte_event events[BATCH_SIZE];
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
uint8_t dev_id = data->dev_id;
|
|
uint8_t port_id = data->port_id;
|
|
size_t sent = 0, received = 0;
|
|
unsigned int lcore_id = rte_lcore_id();
|
|
|
|
while (!fdata->done) {
|
|
uint16_t i;
|
|
|
|
schedule_devices(dev_id, lcore_id);
|
|
|
|
if (!fdata->worker_core[lcore_id]) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
const uint16_t nb_rx = rte_event_dequeue_burst(dev_id, port_id,
|
|
events, RTE_DIM(events), 0);
|
|
|
|
if (nb_rx == 0) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
received += nb_rx;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
|
|
/* The first worker stage does classification */
|
|
if (events[i].queue_id == cdata.qid[0])
|
|
events[i].flow_id = events[i].mbuf->hash.rss
|
|
% cdata.num_fids;
|
|
|
|
events[i].queue_id = cdata.next_qid[events[i].queue_id];
|
|
events[i].op = RTE_EVENT_OP_FORWARD;
|
|
events[i].sched_type = cdata.queue_type;
|
|
|
|
work(events[i].mbuf);
|
|
}
|
|
uint16_t nb_tx = rte_event_enqueue_burst(dev_id, port_id,
|
|
events, nb_rx);
|
|
while (nb_tx < nb_rx && !fdata->done)
|
|
nb_tx += rte_event_enqueue_burst(dev_id, port_id,
|
|
events + nb_tx,
|
|
nb_rx - nb_tx);
|
|
sent += nb_tx;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, sent);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Parse the coremask given as argument (hexadecimal string) and fill
|
|
* the global configuration (core role and core count) with the parsed
|
|
* value.
|
|
*/
|
|
static int xdigit2val(unsigned char c)
|
|
{
|
|
int val;
|
|
|
|
if (isdigit(c))
|
|
val = c - '0';
|
|
else if (isupper(c))
|
|
val = c - 'A' + 10;
|
|
else
|
|
val = c - 'a' + 10;
|
|
return val;
|
|
}
|
|
|
|
static uint64_t
|
|
parse_coremask(const char *coremask)
|
|
{
|
|
int i, j, idx = 0;
|
|
unsigned int count = 0;
|
|
char c;
|
|
int val;
|
|
uint64_t mask = 0;
|
|
const int32_t BITS_HEX = 4;
|
|
|
|
if (coremask == NULL)
|
|
return -1;
|
|
/* Remove all blank characters ahead and after .
|
|
* Remove 0x/0X if exists.
|
|
*/
|
|
while (isblank(*coremask))
|
|
coremask++;
|
|
if (coremask[0] == '0' && ((coremask[1] == 'x')
|
|
|| (coremask[1] == 'X')))
|
|
coremask += 2;
|
|
i = strlen(coremask);
|
|
while ((i > 0) && isblank(coremask[i - 1]))
|
|
i--;
|
|
if (i == 0)
|
|
return -1;
|
|
|
|
for (i = i - 1; i >= 0 && idx < MAX_NUM_CORE; i--) {
|
|
c = coremask[i];
|
|
if (isxdigit(c) == 0) {
|
|
/* invalid characters */
|
|
return -1;
|
|
}
|
|
val = xdigit2val(c);
|
|
for (j = 0; j < BITS_HEX && idx < MAX_NUM_CORE; j++, idx++) {
|
|
if ((1 << j) & val) {
|
|
mask |= (1UL << idx);
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
for (; i >= 0; i--)
|
|
if (coremask[i] != '0')
|
|
return -1;
|
|
if (count == 0)
|
|
return -1;
|
|
return mask;
|
|
}
|
|
|
|
static struct option long_options[] = {
|
|
{"workers", required_argument, 0, 'w'},
|
|
{"packets", required_argument, 0, 'n'},
|
|
{"atomic-flows", required_argument, 0, 'f'},
|
|
{"num_stages", required_argument, 0, 's'},
|
|
{"rx-mask", required_argument, 0, 'r'},
|
|
{"tx-mask", required_argument, 0, 't'},
|
|
{"sched-mask", required_argument, 0, 'e'},
|
|
{"cq-depth", required_argument, 0, 'c'},
|
|
{"work-cycles", required_argument, 0, 'W'},
|
|
{"queue-priority", no_argument, 0, 'P'},
|
|
{"parallel", no_argument, 0, 'p'},
|
|
{"ordered", no_argument, 0, 'o'},
|
|
{"quiet", no_argument, 0, 'q'},
|
|
{"dump", no_argument, 0, 'D'},
|
|
{0, 0, 0, 0}
|
|
};
|
|
|
|
static void
|
|
usage(void)
|
|
{
|
|
const char *usage_str =
|
|
" Usage: eventdev_demo [options]\n"
|
|
" Options:\n"
|
|
" -n, --packets=N Send N packets (default ~32M), 0 implies no limit\n"
|
|
" -f, --atomic-flows=N Use N random flows from 1 to N (default 16)\n"
|
|
" -s, --num_stages=N Use N atomic stages (default 1)\n"
|
|
" -r, --rx-mask=core mask Run NIC rx on CPUs in core mask\n"
|
|
" -w, --worker-mask=core mask Run worker on CPUs in core mask\n"
|
|
" -t, --tx-mask=core mask Run NIC tx on CPUs in core mask\n"
|
|
" -e --sched-mask=core mask Run scheduler on CPUs in core mask\n"
|
|
" -c --cq-depth=N Worker CQ depth (default 16)\n"
|
|
" -W --work-cycles=N Worker cycles (default 0)\n"
|
|
" -P --queue-priority Enable scheduler queue prioritization\n"
|
|
" -o, --ordered Use ordered scheduling\n"
|
|
" -p, --parallel Use parallel scheduling\n"
|
|
" -q, --quiet Minimize printed output\n"
|
|
" -D, --dump Print detailed statistics before exit"
|
|
"\n";
|
|
fprintf(stderr, "%s", usage_str);
|
|
exit(1);
|
|
}
|
|
|
|
static void
|
|
parse_app_args(int argc, char **argv)
|
|
{
|
|
/* Parse cli options*/
|
|
int option_index;
|
|
int c;
|
|
opterr = 0;
|
|
uint64_t rx_lcore_mask = 0;
|
|
uint64_t tx_lcore_mask = 0;
|
|
uint64_t sched_lcore_mask = 0;
|
|
uint64_t worker_lcore_mask = 0;
|
|
int i;
|
|
|
|
for (;;) {
|
|
c = getopt_long(argc, argv, "r:t:e:c:w:n:f:s:poPqDW:",
|
|
long_options, &option_index);
|
|
if (c == -1)
|
|
break;
|
|
|
|
int popcnt = 0;
|
|
switch (c) {
|
|
case 'n':
|
|
cdata.num_packets = (int64_t)atol(optarg);
|
|
if (cdata.num_packets == 0)
|
|
cdata.num_packets = INT64_MAX;
|
|
break;
|
|
case 'f':
|
|
cdata.num_fids = (unsigned int)atoi(optarg);
|
|
break;
|
|
case 's':
|
|
cdata.num_stages = (unsigned int)atoi(optarg);
|
|
break;
|
|
case 'c':
|
|
cdata.worker_cq_depth = (unsigned int)atoi(optarg);
|
|
break;
|
|
case 'W':
|
|
cdata.worker_cycles = (unsigned int)atoi(optarg);
|
|
break;
|
|
case 'P':
|
|
cdata.enable_queue_priorities = 1;
|
|
break;
|
|
case 'o':
|
|
cdata.queue_type = RTE_EVENT_QUEUE_CFG_ORDERED_ONLY;
|
|
break;
|
|
case 'p':
|
|
cdata.queue_type = RTE_EVENT_QUEUE_CFG_PARALLEL_ONLY;
|
|
break;
|
|
case 'q':
|
|
cdata.quiet = 1;
|
|
break;
|
|
case 'D':
|
|
cdata.dump_dev = 1;
|
|
break;
|
|
case 'w':
|
|
worker_lcore_mask = parse_coremask(optarg);
|
|
break;
|
|
case 'r':
|
|
rx_lcore_mask = parse_coremask(optarg);
|
|
popcnt = __builtin_popcountll(rx_lcore_mask);
|
|
fdata->rx_single = (popcnt == 1);
|
|
break;
|
|
case 't':
|
|
tx_lcore_mask = parse_coremask(optarg);
|
|
popcnt = __builtin_popcountll(tx_lcore_mask);
|
|
fdata->tx_single = (popcnt == 1);
|
|
break;
|
|
case 'e':
|
|
sched_lcore_mask = parse_coremask(optarg);
|
|
popcnt = __builtin_popcountll(sched_lcore_mask);
|
|
fdata->sched_single = (popcnt == 1);
|
|
break;
|
|
default:
|
|
usage();
|
|
}
|
|
}
|
|
|
|
if (worker_lcore_mask == 0 || rx_lcore_mask == 0 ||
|
|
sched_lcore_mask == 0 || tx_lcore_mask == 0) {
|
|
printf("Core part of pipeline was not assigned any cores. "
|
|
"This will stall the pipeline, please check core masks "
|
|
"(use -h for details on setting core masks):\n"
|
|
"\trx: %"PRIu64"\n\ttx: %"PRIu64"\n\tsched: %"PRIu64
|
|
"\n\tworkers: %"PRIu64"\n",
|
|
rx_lcore_mask, tx_lcore_mask, sched_lcore_mask,
|
|
worker_lcore_mask);
|
|
rte_exit(-1, "Fix core masks\n");
|
|
}
|
|
if (cdata.num_stages == 0 || cdata.num_stages > MAX_NUM_STAGES)
|
|
usage();
|
|
|
|
for (i = 0; i < MAX_NUM_CORE; i++) {
|
|
fdata->rx_core[i] = !!(rx_lcore_mask & (1UL << i));
|
|
fdata->tx_core[i] = !!(tx_lcore_mask & (1UL << i));
|
|
fdata->sched_core[i] = !!(sched_lcore_mask & (1UL << i));
|
|
fdata->worker_core[i] = !!(worker_lcore_mask & (1UL << i));
|
|
|
|
if (fdata->worker_core[i])
|
|
cdata.num_workers++;
|
|
if (core_in_use(i))
|
|
cdata.active_cores++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initializes a given port using global settings and with the RX buffers
|
|
* coming from the mbuf_pool passed as a parameter.
|
|
*/
|
|
static inline int
|
|
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
|
|
{
|
|
static const struct rte_eth_conf port_conf_default = {
|
|
.rxmode = {
|
|
.mq_mode = ETH_MQ_RX_RSS,
|
|
.max_rx_pkt_len = ETHER_MAX_LEN
|
|
},
|
|
.rx_adv_conf = {
|
|
.rss_conf = {
|
|
.rss_hf = ETH_RSS_IP |
|
|
ETH_RSS_TCP |
|
|
ETH_RSS_UDP,
|
|
}
|
|
}
|
|
};
|
|
const uint16_t rx_rings = 1, tx_rings = 1;
|
|
const uint16_t rx_ring_size = 512, tx_ring_size = 512;
|
|
struct rte_eth_conf port_conf = port_conf_default;
|
|
int retval;
|
|
uint16_t q;
|
|
|
|
if (port >= rte_eth_dev_count())
|
|
return -1;
|
|
|
|
/* Configure the Ethernet device. */
|
|
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
|
|
if (retval != 0)
|
|
return retval;
|
|
|
|
/* Allocate and set up 1 RX queue per Ethernet port. */
|
|
for (q = 0; q < rx_rings; q++) {
|
|
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
|
|
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
|
|
if (retval < 0)
|
|
return retval;
|
|
}
|
|
|
|
/* Allocate and set up 1 TX queue per Ethernet port. */
|
|
for (q = 0; q < tx_rings; q++) {
|
|
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
|
|
rte_eth_dev_socket_id(port), NULL);
|
|
if (retval < 0)
|
|
return retval;
|
|
}
|
|
|
|
/* Start the Ethernet port. */
|
|
retval = rte_eth_dev_start(port);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
/* Display the port MAC address. */
|
|
struct ether_addr addr;
|
|
rte_eth_macaddr_get(port, &addr);
|
|
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
|
|
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
|
|
(unsigned int)port,
|
|
addr.addr_bytes[0], addr.addr_bytes[1],
|
|
addr.addr_bytes[2], addr.addr_bytes[3],
|
|
addr.addr_bytes[4], addr.addr_bytes[5]);
|
|
|
|
/* Enable RX in promiscuous mode for the Ethernet device. */
|
|
rte_eth_promiscuous_enable(port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
init_ports(unsigned int num_ports)
|
|
{
|
|
uint8_t portid;
|
|
unsigned int i;
|
|
|
|
struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
|
|
/* mbufs */ 16384 * num_ports,
|
|
/* cache_size */ 512,
|
|
/* priv_size*/ 0,
|
|
/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
|
|
rte_socket_id());
|
|
|
|
for (portid = 0; portid < num_ports; portid++)
|
|
if (port_init(portid, mp) != 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
|
|
portid);
|
|
|
|
for (i = 0; i < num_ports; i++) {
|
|
void *userdata = (void *)(uintptr_t) i;
|
|
fdata->tx_buf[i] =
|
|
rte_malloc(NULL, RTE_ETH_TX_BUFFER_SIZE(32), 0);
|
|
if (fdata->tx_buf[i] == NULL)
|
|
rte_panic("Out of memory\n");
|
|
rte_eth_tx_buffer_init(fdata->tx_buf[i], 32);
|
|
rte_eth_tx_buffer_set_err_callback(fdata->tx_buf[i],
|
|
eth_tx_buffer_retry,
|
|
userdata);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct port_link {
|
|
uint8_t queue_id;
|
|
uint8_t priority;
|
|
};
|
|
|
|
static int
|
|
setup_eventdev(struct prod_data *prod_data,
|
|
struct cons_data *cons_data,
|
|
struct worker_data *worker_data)
|
|
{
|
|
const uint8_t dev_id = 0;
|
|
/* +1 stages is for a SINGLE_LINK TX stage */
|
|
const uint8_t nb_queues = cdata.num_stages + 1;
|
|
/* + 2 is one port for producer and one for consumer */
|
|
const uint8_t nb_ports = cdata.num_workers + 2;
|
|
struct rte_event_dev_config config = {
|
|
.nb_event_queues = nb_queues,
|
|
.nb_event_ports = nb_ports,
|
|
.nb_events_limit = 4096,
|
|
.nb_event_queue_flows = 1024,
|
|
.nb_event_port_dequeue_depth = 128,
|
|
.nb_event_port_enqueue_depth = 128,
|
|
};
|
|
struct rte_event_port_conf wkr_p_conf = {
|
|
.dequeue_depth = cdata.worker_cq_depth,
|
|
.enqueue_depth = 64,
|
|
.new_event_threshold = 4096,
|
|
};
|
|
struct rte_event_queue_conf wkr_q_conf = {
|
|
.event_queue_cfg = cdata.queue_type,
|
|
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
|
|
.nb_atomic_flows = 1024,
|
|
.nb_atomic_order_sequences = 1024,
|
|
};
|
|
struct rte_event_port_conf tx_p_conf = {
|
|
.dequeue_depth = 128,
|
|
.enqueue_depth = 128,
|
|
.new_event_threshold = 4096,
|
|
};
|
|
const struct rte_event_queue_conf tx_q_conf = {
|
|
.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST,
|
|
.event_queue_cfg = RTE_EVENT_QUEUE_CFG_SINGLE_LINK,
|
|
};
|
|
|
|
struct port_link worker_queues[MAX_NUM_STAGES];
|
|
struct port_link tx_queue;
|
|
unsigned int i;
|
|
|
|
int ret, ndev = rte_event_dev_count();
|
|
if (ndev < 1) {
|
|
printf("%d: No Eventdev Devices Found\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
struct rte_event_dev_info dev_info;
|
|
ret = rte_event_dev_info_get(dev_id, &dev_info);
|
|
printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
|
|
|
|
if (dev_info.max_event_port_dequeue_depth <
|
|
config.nb_event_port_dequeue_depth)
|
|
config.nb_event_port_dequeue_depth =
|
|
dev_info.max_event_port_dequeue_depth;
|
|
if (dev_info.max_event_port_enqueue_depth <
|
|
config.nb_event_port_enqueue_depth)
|
|
config.nb_event_port_enqueue_depth =
|
|
dev_info.max_event_port_enqueue_depth;
|
|
|
|
ret = rte_event_dev_configure(dev_id, &config);
|
|
if (ret < 0) {
|
|
printf("%d: Error configuring device\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
/* Q creation - one load balanced per pipeline stage*/
|
|
printf(" Stages:\n");
|
|
for (i = 0; i < cdata.num_stages; i++) {
|
|
if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
|
|
printf("%d: error creating qid %d\n", __LINE__, i);
|
|
return -1;
|
|
}
|
|
cdata.qid[i] = i;
|
|
cdata.next_qid[i] = i+1;
|
|
worker_queues[i].queue_id = i;
|
|
if (cdata.enable_queue_priorities) {
|
|
/* calculate priority stepping for each stage, leaving
|
|
* headroom of 1 for the SINGLE_LINK TX below
|
|
*/
|
|
const uint32_t prio_delta =
|
|
(RTE_EVENT_DEV_PRIORITY_LOWEST-1) / nb_queues;
|
|
|
|
/* higher priority for queues closer to tx */
|
|
wkr_q_conf.priority =
|
|
RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta * i;
|
|
}
|
|
|
|
const char *type_str = "Atomic";
|
|
switch (wkr_q_conf.event_queue_cfg) {
|
|
case RTE_EVENT_QUEUE_CFG_ORDERED_ONLY:
|
|
type_str = "Ordered";
|
|
break;
|
|
case RTE_EVENT_QUEUE_CFG_PARALLEL_ONLY:
|
|
type_str = "Parallel";
|
|
break;
|
|
}
|
|
printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
|
|
wkr_q_conf.priority);
|
|
}
|
|
printf("\n");
|
|
|
|
/* final queue for sending to TX core */
|
|
if (rte_event_queue_setup(dev_id, i, &tx_q_conf) < 0) {
|
|
printf("%d: error creating qid %d\n", __LINE__, i);
|
|
return -1;
|
|
}
|
|
tx_queue.queue_id = i;
|
|
tx_queue.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST;
|
|
|
|
if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
|
|
wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
|
|
if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
|
|
wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
|
|
|
|
/* set up one port per worker, linking to all stage queues */
|
|
for (i = 0; i < cdata.num_workers; i++) {
|
|
struct worker_data *w = &worker_data[i];
|
|
w->dev_id = dev_id;
|
|
if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
|
|
printf("Error setting up port %d\n", i);
|
|
return -1;
|
|
}
|
|
|
|
uint32_t s;
|
|
for (s = 0; s < cdata.num_stages; s++) {
|
|
if (rte_event_port_link(dev_id, i,
|
|
&worker_queues[s].queue_id,
|
|
&worker_queues[s].priority,
|
|
1) != 1) {
|
|
printf("%d: error creating link for port %d\n",
|
|
__LINE__, i);
|
|
return -1;
|
|
}
|
|
}
|
|
w->port_id = i;
|
|
}
|
|
|
|
if (tx_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
|
|
tx_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
|
|
if (tx_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
|
|
tx_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
|
|
|
|
/* port for consumer, linked to TX queue */
|
|
if (rte_event_port_setup(dev_id, i, &tx_p_conf) < 0) {
|
|
printf("Error setting up port %d\n", i);
|
|
return -1;
|
|
}
|
|
if (rte_event_port_link(dev_id, i, &tx_queue.queue_id,
|
|
&tx_queue.priority, 1) != 1) {
|
|
printf("%d: error creating link for port %d\n",
|
|
__LINE__, i);
|
|
return -1;
|
|
}
|
|
/* port for producer, no links */
|
|
struct rte_event_port_conf rx_p_conf = {
|
|
.dequeue_depth = 8,
|
|
.enqueue_depth = 8,
|
|
.new_event_threshold = 1200,
|
|
};
|
|
|
|
if (rx_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
|
|
rx_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
|
|
if (rx_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
|
|
rx_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
|
|
|
|
if (rte_event_port_setup(dev_id, i + 1, &rx_p_conf) < 0) {
|
|
printf("Error setting up port %d\n", i);
|
|
return -1;
|
|
}
|
|
|
|
*prod_data = (struct prod_data){.dev_id = dev_id,
|
|
.port_id = i + 1,
|
|
.qid = cdata.qid[0] };
|
|
*cons_data = (struct cons_data){.dev_id = dev_id,
|
|
.port_id = i };
|
|
|
|
if (rte_event_dev_start(dev_id) < 0) {
|
|
printf("Error starting eventdev\n");
|
|
return -1;
|
|
}
|
|
|
|
return dev_id;
|
|
}
|
|
|
|
static void
|
|
signal_handler(int signum)
|
|
{
|
|
if (fdata->done)
|
|
rte_exit(1, "Exiting on signal %d\n", signum);
|
|
if (signum == SIGINT || signum == SIGTERM) {
|
|
printf("\n\nSignal %d received, preparing to exit...\n",
|
|
signum);
|
|
fdata->done = 1;
|
|
}
|
|
if (signum == SIGTSTP)
|
|
rte_event_dev_dump(0, stdout);
|
|
}
|
|
|
|
static inline uint64_t
|
|
port_stat(int dev_id, int32_t p)
|
|
{
|
|
char statname[64];
|
|
snprintf(statname, sizeof(statname), "port_%u_rx", p);
|
|
return rte_event_dev_xstats_by_name_get(dev_id, statname, NULL);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct worker_data *worker_data;
|
|
unsigned int num_ports;
|
|
int lcore_id;
|
|
int err;
|
|
|
|
signal(SIGINT, signal_handler);
|
|
signal(SIGTERM, signal_handler);
|
|
signal(SIGTSTP, signal_handler);
|
|
|
|
err = rte_eal_init(argc, argv);
|
|
if (err < 0)
|
|
rte_panic("Invalid EAL arguments\n");
|
|
|
|
argc -= err;
|
|
argv += err;
|
|
|
|
fdata = rte_malloc(NULL, sizeof(struct fastpath_data), 0);
|
|
if (fdata == NULL)
|
|
rte_panic("Out of memory\n");
|
|
|
|
/* Parse cli options*/
|
|
parse_app_args(argc, argv);
|
|
|
|
num_ports = rte_eth_dev_count();
|
|
if (num_ports == 0)
|
|
rte_panic("No ethernet ports found\n");
|
|
|
|
const unsigned int cores_needed = cdata.active_cores;
|
|
|
|
if (!cdata.quiet) {
|
|
printf(" Config:\n");
|
|
printf("\tports: %u\n", num_ports);
|
|
printf("\tworkers: %u\n", cdata.num_workers);
|
|
printf("\tpackets: %"PRIi64"\n", cdata.num_packets);
|
|
printf("\tQueue-prio: %u\n", cdata.enable_queue_priorities);
|
|
if (cdata.queue_type == RTE_EVENT_QUEUE_CFG_ORDERED_ONLY)
|
|
printf("\tqid0 type: ordered\n");
|
|
if (cdata.queue_type == RTE_EVENT_QUEUE_CFG_ATOMIC_ONLY)
|
|
printf("\tqid0 type: atomic\n");
|
|
printf("\tCores available: %u\n", rte_lcore_count());
|
|
printf("\tCores used: %u\n", cores_needed);
|
|
}
|
|
|
|
if (rte_lcore_count() < cores_needed)
|
|
rte_panic("Too few cores (%d < %d)\n", rte_lcore_count(),
|
|
cores_needed);
|
|
|
|
const unsigned int ndevs = rte_event_dev_count();
|
|
if (ndevs == 0)
|
|
rte_panic("No dev_id devs found. Pasl in a --vdev eventdev.\n");
|
|
if (ndevs > 1)
|
|
fprintf(stderr, "Warning: More than one eventdev, using idx 0");
|
|
|
|
worker_data = rte_calloc(0, cdata.num_workers,
|
|
sizeof(worker_data[0]), 0);
|
|
if (worker_data == NULL)
|
|
rte_panic("rte_calloc failed\n");
|
|
|
|
int dev_id = setup_eventdev(&prod_data, &cons_data, worker_data);
|
|
if (dev_id < 0)
|
|
rte_exit(EXIT_FAILURE, "Error setting up eventdev\n");
|
|
|
|
prod_data.num_nic_ports = num_ports;
|
|
init_ports(num_ports);
|
|
|
|
int worker_idx = 0;
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (lcore_id >= MAX_NUM_CORE)
|
|
break;
|
|
|
|
if (!fdata->rx_core[lcore_id] &&
|
|
!fdata->worker_core[lcore_id] &&
|
|
!fdata->tx_core[lcore_id] &&
|
|
!fdata->sched_core[lcore_id])
|
|
continue;
|
|
|
|
if (fdata->rx_core[lcore_id])
|
|
printf(
|
|
"[%s()] lcore %d executing NIC Rx, and using eventdev port %u\n",
|
|
__func__, lcore_id, prod_data.port_id);
|
|
|
|
if (fdata->tx_core[lcore_id])
|
|
printf(
|
|
"[%s()] lcore %d executing NIC Tx, and using eventdev port %u\n",
|
|
__func__, lcore_id, cons_data.port_id);
|
|
|
|
if (fdata->sched_core[lcore_id])
|
|
printf("[%s()] lcore %d executing scheduler\n",
|
|
__func__, lcore_id);
|
|
|
|
if (fdata->worker_core[lcore_id])
|
|
printf(
|
|
"[%s()] lcore %d executing worker, using eventdev port %u\n",
|
|
__func__, lcore_id,
|
|
worker_data[worker_idx].port_id);
|
|
|
|
err = rte_eal_remote_launch(worker, &worker_data[worker_idx],
|
|
lcore_id);
|
|
if (err) {
|
|
rte_panic("Failed to launch worker on core %d\n",
|
|
lcore_id);
|
|
continue;
|
|
}
|
|
if (fdata->worker_core[lcore_id])
|
|
worker_idx++;
|
|
}
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
if (core_in_use(lcore_id))
|
|
worker(&worker_data[worker_idx++]);
|
|
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
if (cdata.dump_dev)
|
|
rte_event_dev_dump(dev_id, stdout);
|
|
|
|
if (!cdata.quiet && (port_stat(dev_id, worker_data[0].port_id) !=
|
|
(uint64_t)-ENOTSUP)) {
|
|
printf("\nPort Workload distribution:\n");
|
|
uint32_t i;
|
|
uint64_t tot_pkts = 0;
|
|
uint64_t pkts_per_wkr[RTE_MAX_LCORE] = {0};
|
|
for (i = 0; i < cdata.num_workers; i++) {
|
|
pkts_per_wkr[i] =
|
|
port_stat(dev_id, worker_data[i].port_id);
|
|
tot_pkts += pkts_per_wkr[i];
|
|
}
|
|
for (i = 0; i < cdata.num_workers; i++) {
|
|
float pc = pkts_per_wkr[i] * 100 /
|
|
((float)tot_pkts);
|
|
printf("worker %i :\t%.1f %% (%"PRIu64" pkts)\n",
|
|
i, pc, pkts_per_wkr[i]);
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|