numam-dpdk/drivers/net/virtio/virtio_pci.c
Zhiyong Yang 0373ab9bfc net/virtio: replace magic number with PCI constant
To use macro instead of magic number in order to enhance code
readability.

Signed-off-by: Zhiyong Yang <zhiyong.yang@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Acked-by: Yuanhan Liu <yliu@fridaylinux.org>
2017-10-10 15:48:53 +02:00

713 lines
18 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#ifdef RTE_EXEC_ENV_LINUXAPP
#include <dirent.h>
#include <fcntl.h>
#endif
#include <rte_io.h>
#include <rte_bus.h>
#include "virtio_pci.h"
#include "virtio_logs.h"
#include "virtqueue.h"
/*
* Following macros are derived from linux/pci_regs.h, however,
* we can't simply include that header here, as there is no such
* file for non-Linux platform.
*/
#define PCI_CAPABILITY_LIST 0x34
#define PCI_CAP_ID_VNDR 0x09
#define PCI_CAP_ID_MSIX 0x11
/*
* The remaining space is defined by each driver as the per-driver
* configuration space.
*/
#define VIRTIO_PCI_CONFIG(hw) (((hw)->use_msix) ? 24 : 20)
static inline int
check_vq_phys_addr_ok(struct virtqueue *vq)
{
/* Virtio PCI device VIRTIO_PCI_QUEUE_PF register is 32bit,
* and only accepts 32 bit page frame number.
* Check if the allocated physical memory exceeds 16TB.
*/
if ((vq->vq_ring_mem + vq->vq_ring_size - 1) >>
(VIRTIO_PCI_QUEUE_ADDR_SHIFT + 32)) {
PMD_INIT_LOG(ERR, "vring address shouldn't be above 16TB!");
return 0;
}
return 1;
}
/*
* Since we are in legacy mode:
* http://ozlabs.org/~rusty/virtio-spec/virtio-0.9.5.pdf
*
* "Note that this is possible because while the virtio header is PCI (i.e.
* little) endian, the device-specific region is encoded in the native endian of
* the guest (where such distinction is applicable)."
*
* For powerpc which supports both, qemu supposes that cpu is big endian and
* enforces this for the virtio-net stuff.
*/
static void
legacy_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
#ifdef RTE_ARCH_PPC_64
int size;
while (length > 0) {
if (length >= 4) {
size = 4;
rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
VIRTIO_PCI_CONFIG(hw) + offset);
*(uint32_t *)dst = rte_be_to_cpu_32(*(uint32_t *)dst);
} else if (length >= 2) {
size = 2;
rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
VIRTIO_PCI_CONFIG(hw) + offset);
*(uint16_t *)dst = rte_be_to_cpu_16(*(uint16_t *)dst);
} else {
size = 1;
rte_pci_ioport_read(VTPCI_IO(hw), dst, size,
VIRTIO_PCI_CONFIG(hw) + offset);
}
dst = (char *)dst + size;
offset += size;
length -= size;
}
#else
rte_pci_ioport_read(VTPCI_IO(hw), dst, length,
VIRTIO_PCI_CONFIG(hw) + offset);
#endif
}
static void
legacy_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
#ifdef RTE_ARCH_PPC_64
union {
uint32_t u32;
uint16_t u16;
} tmp;
int size;
while (length > 0) {
if (length >= 4) {
size = 4;
tmp.u32 = rte_cpu_to_be_32(*(const uint32_t *)src);
rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u32, size,
VIRTIO_PCI_CONFIG(hw) + offset);
} else if (length >= 2) {
size = 2;
tmp.u16 = rte_cpu_to_be_16(*(const uint16_t *)src);
rte_pci_ioport_write(VTPCI_IO(hw), &tmp.u16, size,
VIRTIO_PCI_CONFIG(hw) + offset);
} else {
size = 1;
rte_pci_ioport_write(VTPCI_IO(hw), src, size,
VIRTIO_PCI_CONFIG(hw) + offset);
}
src = (const char *)src + size;
offset += size;
length -= size;
}
#else
rte_pci_ioport_write(VTPCI_IO(hw), src, length,
VIRTIO_PCI_CONFIG(hw) + offset);
#endif
}
static uint64_t
legacy_get_features(struct virtio_hw *hw)
{
uint32_t dst;
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 4, VIRTIO_PCI_HOST_FEATURES);
return dst;
}
static void
legacy_set_features(struct virtio_hw *hw, uint64_t features)
{
if ((features >> 32) != 0) {
PMD_DRV_LOG(ERR,
"only 32 bit features are allowed for legacy virtio!");
return;
}
rte_pci_ioport_write(VTPCI_IO(hw), &features, 4,
VIRTIO_PCI_GUEST_FEATURES);
}
static uint8_t
legacy_get_status(struct virtio_hw *hw)
{
uint8_t dst;
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_STATUS);
return dst;
}
static void
legacy_set_status(struct virtio_hw *hw, uint8_t status)
{
rte_pci_ioport_write(VTPCI_IO(hw), &status, 1, VIRTIO_PCI_STATUS);
}
static void
legacy_reset(struct virtio_hw *hw)
{
legacy_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
}
static uint8_t
legacy_get_isr(struct virtio_hw *hw)
{
uint8_t dst;
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 1, VIRTIO_PCI_ISR);
return dst;
}
/* Enable one vector (0) for Link State Intrerrupt */
static uint16_t
legacy_set_config_irq(struct virtio_hw *hw, uint16_t vec)
{
uint16_t dst;
rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_CONFIG_VECTOR);
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_CONFIG_VECTOR);
return dst;
}
static uint16_t
legacy_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
{
uint16_t dst;
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_write(VTPCI_IO(hw), &vec, 2, VIRTIO_MSI_QUEUE_VECTOR);
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_MSI_QUEUE_VECTOR);
return dst;
}
static uint16_t
legacy_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
{
uint16_t dst;
rte_pci_ioport_write(VTPCI_IO(hw), &queue_id, 2, VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_read(VTPCI_IO(hw), &dst, 2, VIRTIO_PCI_QUEUE_NUM);
return dst;
}
static int
legacy_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint32_t src;
if (!check_vq_phys_addr_ok(vq))
return -1;
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
src = vq->vq_ring_mem >> VIRTIO_PCI_QUEUE_ADDR_SHIFT;
rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
return 0;
}
static void
legacy_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint32_t src = 0;
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_SEL);
rte_pci_ioport_write(VTPCI_IO(hw), &src, 4, VIRTIO_PCI_QUEUE_PFN);
}
static void
legacy_notify_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
rte_pci_ioport_write(VTPCI_IO(hw), &vq->vq_queue_index, 2,
VIRTIO_PCI_QUEUE_NOTIFY);
}
const struct virtio_pci_ops legacy_ops = {
.read_dev_cfg = legacy_read_dev_config,
.write_dev_cfg = legacy_write_dev_config,
.reset = legacy_reset,
.get_status = legacy_get_status,
.set_status = legacy_set_status,
.get_features = legacy_get_features,
.set_features = legacy_set_features,
.get_isr = legacy_get_isr,
.set_config_irq = legacy_set_config_irq,
.set_queue_irq = legacy_set_queue_irq,
.get_queue_num = legacy_get_queue_num,
.setup_queue = legacy_setup_queue,
.del_queue = legacy_del_queue,
.notify_queue = legacy_notify_queue,
};
static inline void
io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
{
rte_write32(val & ((1ULL << 32) - 1), lo);
rte_write32(val >> 32, hi);
}
static void
modern_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
int i;
uint8_t *p;
uint8_t old_gen, new_gen;
do {
old_gen = rte_read8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = rte_read8((uint8_t *)hw->dev_cfg + offset + i);
new_gen = rte_read8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
static void
modern_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
int i;
const uint8_t *p = src;
for (i = 0; i < length; i++)
rte_write8((*p++), (((uint8_t *)hw->dev_cfg) + offset + i));
}
static uint64_t
modern_get_features(struct virtio_hw *hw)
{
uint32_t features_lo, features_hi;
rte_write32(0, &hw->common_cfg->device_feature_select);
features_lo = rte_read32(&hw->common_cfg->device_feature);
rte_write32(1, &hw->common_cfg->device_feature_select);
features_hi = rte_read32(&hw->common_cfg->device_feature);
return ((uint64_t)features_hi << 32) | features_lo;
}
static void
modern_set_features(struct virtio_hw *hw, uint64_t features)
{
rte_write32(0, &hw->common_cfg->guest_feature_select);
rte_write32(features & ((1ULL << 32) - 1),
&hw->common_cfg->guest_feature);
rte_write32(1, &hw->common_cfg->guest_feature_select);
rte_write32(features >> 32,
&hw->common_cfg->guest_feature);
}
static uint8_t
modern_get_status(struct virtio_hw *hw)
{
return rte_read8(&hw->common_cfg->device_status);
}
static void
modern_set_status(struct virtio_hw *hw, uint8_t status)
{
rte_write8(status, &hw->common_cfg->device_status);
}
static void
modern_reset(struct virtio_hw *hw)
{
modern_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
modern_get_status(hw);
}
static uint8_t
modern_get_isr(struct virtio_hw *hw)
{
return rte_read8(hw->isr);
}
static uint16_t
modern_set_config_irq(struct virtio_hw *hw, uint16_t vec)
{
rte_write16(vec, &hw->common_cfg->msix_config);
return rte_read16(&hw->common_cfg->msix_config);
}
static uint16_t
modern_set_queue_irq(struct virtio_hw *hw, struct virtqueue *vq, uint16_t vec)
{
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
rte_write16(vec, &hw->common_cfg->queue_msix_vector);
return rte_read16(&hw->common_cfg->queue_msix_vector);
}
static uint16_t
modern_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
{
rte_write16(queue_id, &hw->common_cfg->queue_select);
return rte_read16(&hw->common_cfg->queue_size);
}
static int
modern_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint64_t desc_addr, avail_addr, used_addr;
uint16_t notify_off;
if (!check_vq_phys_addr_ok(vq))
return -1;
desc_addr = vq->vq_ring_mem;
avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
ring[vq->vq_nentries]),
VIRTIO_PCI_VRING_ALIGN);
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
notify_off = rte_read16(&hw->common_cfg->queue_notify_off);
vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
notify_off * hw->notify_off_multiplier);
rte_write16(1, &hw->common_cfg->queue_enable);
PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
vq->notify_addr, notify_off);
return 0;
}
static void
modern_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
rte_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
rte_write16(0, &hw->common_cfg->queue_enable);
}
static void
modern_notify_queue(struct virtio_hw *hw __rte_unused, struct virtqueue *vq)
{
rte_write16(vq->vq_queue_index, vq->notify_addr);
}
const struct virtio_pci_ops modern_ops = {
.read_dev_cfg = modern_read_dev_config,
.write_dev_cfg = modern_write_dev_config,
.reset = modern_reset,
.get_status = modern_get_status,
.set_status = modern_set_status,
.get_features = modern_get_features,
.set_features = modern_set_features,
.get_isr = modern_get_isr,
.set_config_irq = modern_set_config_irq,
.set_queue_irq = modern_set_queue_irq,
.get_queue_num = modern_get_queue_num,
.setup_queue = modern_setup_queue,
.del_queue = modern_del_queue,
.notify_queue = modern_notify_queue,
};
void
vtpci_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
VTPCI_OPS(hw)->read_dev_cfg(hw, offset, dst, length);
}
void
vtpci_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
VTPCI_OPS(hw)->write_dev_cfg(hw, offset, src, length);
}
uint64_t
vtpci_negotiate_features(struct virtio_hw *hw, uint64_t host_features)
{
uint64_t features;
/*
* Limit negotiated features to what the driver, virtqueue, and
* host all support.
*/
features = host_features & hw->guest_features;
VTPCI_OPS(hw)->set_features(hw, features);
return features;
}
void
vtpci_reset(struct virtio_hw *hw)
{
VTPCI_OPS(hw)->set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
/* flush status write */
VTPCI_OPS(hw)->get_status(hw);
}
void
vtpci_reinit_complete(struct virtio_hw *hw)
{
vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER_OK);
}
void
vtpci_set_status(struct virtio_hw *hw, uint8_t status)
{
if (status != VIRTIO_CONFIG_STATUS_RESET)
status |= VTPCI_OPS(hw)->get_status(hw);
VTPCI_OPS(hw)->set_status(hw, status);
}
uint8_t
vtpci_get_status(struct virtio_hw *hw)
{
return VTPCI_OPS(hw)->get_status(hw);
}
uint8_t
vtpci_isr(struct virtio_hw *hw)
{
return VTPCI_OPS(hw)->get_isr(hw);
}
static void *
get_cfg_addr(struct rte_pci_device *dev, struct virtio_pci_cap *cap)
{
uint8_t bar = cap->bar;
uint32_t length = cap->length;
uint32_t offset = cap->offset;
uint8_t *base;
if (bar >= PCI_MAX_RESOURCE) {
PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
return NULL;
}
if (offset + length < offset) {
PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
offset, length);
return NULL;
}
if (offset + length > dev->mem_resource[bar].len) {
PMD_INIT_LOG(ERR,
"invalid cap: overflows bar space: %u > %" PRIu64,
offset + length, dev->mem_resource[bar].len);
return NULL;
}
base = dev->mem_resource[bar].addr;
if (base == NULL) {
PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
return NULL;
}
return base + offset;
}
#define PCI_MSIX_ENABLE 0x8000
static int
virtio_read_caps(struct rte_pci_device *dev, struct virtio_hw *hw)
{
uint8_t pos;
struct virtio_pci_cap cap;
int ret;
if (rte_pci_map_device(dev)) {
PMD_INIT_LOG(DEBUG, "failed to map pci device!");
return -1;
}
ret = rte_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
if (ret < 0) {
PMD_INIT_LOG(DEBUG, "failed to read pci capability list");
return -1;
}
while (pos) {
ret = rte_pci_read_config(dev, &cap, sizeof(cap), pos);
if (ret < 0) {
PMD_INIT_LOG(ERR,
"failed to read pci cap at pos: %x", pos);
break;
}
if (cap.cap_vndr == PCI_CAP_ID_MSIX) {
/* Transitional devices would also have this capability,
* that's why we also check if msix is enabled.
* 1st byte is cap ID; 2nd byte is the position of next
* cap; next two bytes are the flags.
*/
uint16_t flags = ((uint16_t *)&cap)[1];
if (flags & PCI_MSIX_ENABLE)
hw->use_msix = 1;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
PMD_INIT_LOG(DEBUG,
"[%2x] skipping non VNDR cap id: %02x",
pos, cap.cap_vndr);
goto next;
}
PMD_INIT_LOG(DEBUG,
"[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
rte_pci_read_config(dev, &hw->notify_off_multiplier,
4, pos + sizeof(cap));
hw->notify_base = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->dev_cfg = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cfg_addr(dev, &cap);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->dev_cfg == NULL || hw->isr == NULL) {
PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
return -1;
}
PMD_INIT_LOG(INFO, "found modern virtio pci device.");
PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
hw->notify_base, hw->notify_off_multiplier);
return 0;
}
/*
* Return -1:
* if there is error mapping with VFIO/UIO.
* if port map error when driver type is KDRV_NONE.
* if whitelisted but driver type is KDRV_UNKNOWN.
* Return 1 if kernel driver is managing the device.
* Return 0 on success.
*/
int
vtpci_init(struct rte_pci_device *dev, struct virtio_hw *hw)
{
/*
* Try if we can succeed reading virtio pci caps, which exists
* only on modern pci device. If failed, we fallback to legacy
* virtio handling.
*/
if (virtio_read_caps(dev, hw) == 0) {
PMD_INIT_LOG(INFO, "modern virtio pci detected.");
virtio_hw_internal[hw->port_id].vtpci_ops = &modern_ops;
hw->modern = 1;
return 0;
}
PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
if (rte_pci_ioport_map(dev, 0, VTPCI_IO(hw)) < 0) {
if (dev->kdrv == RTE_KDRV_UNKNOWN &&
(!dev->device.devargs ||
dev->device.devargs->bus !=
rte_bus_find_by_name("pci"))) {
PMD_INIT_LOG(INFO,
"skip kernel managed virtio device.");
return 1;
}
return -1;
}
virtio_hw_internal[hw->port_id].vtpci_ops = &legacy_ops;
hw->modern = 0;
return 0;
}