numam-dpdk/drivers/net/vmxnet3/vmxnet3_rxtx.c
Wei Dai a4996bd89c ethdev: new Rx/Tx offloads API
This patch check if a input requested offloading is valid or not.
Any reuqested offloading must be supported in the device capabilities.
Any offloading is disabled by default if it is not set in the parameter
dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and
[rt]x_conf->offloads to rte_eth_[rt]x_queue_setup().
If any offloading is enabled in rte_eth_dev_configure() by application,
it is enabled on all queues no matter whether it is per-queue or
per-port type and no matter whether it is set or cleared in
[rt]x_conf->offloads to rte_eth_[rt]x_queue_setup().
If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(),
it can be enabled or disabled for individual queue in
ret_eth_[rt]x_queue_setup().
A new added offloading is the one which hasn't been enabled in
rte_eth_dev_configure() and is reuqested to be enabled in
rte_eth_[rt]x_queue_setup(), it must be per-queue type,
otherwise trigger an error log.
The underlying PMD must be aware that the requested offloadings
to PMD specific queue_setup() function only carries those
new added offloadings of per-queue type.

This patch can make above such checking in a common way in rte_ethdev
layer to avoid same checking in underlying PMD.

This patch assumes that all PMDs in 18.05-rc2 have already
converted to offload API defined in 17.11 . It also assumes
that all PMDs can return correct offloading capabilities
in rte_eth_dev_infos_get().

In the beginning of [rt]x_queue_setup() of underlying PMD,
add offloads = [rt]xconf->offloads |
dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API
defined in 17.11 to avoid upper application broken due to offload
API change.
PMD can use the info that input [rt]xconf->offloads only carry
the new added per-queue offloads to do some optimization or some
code change on base of this patch.

Signed-off-by: Wei Dai <wei.dai@intel.com>
Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-14 22:31:51 +01:00

1346 lines
35 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_prefetch.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_net.h>
#include "base/vmxnet3_defs.h"
#include "vmxnet3_ring.h"
#include "vmxnet3_logs.h"
#include "vmxnet3_ethdev.h"
#define VMXNET3_TX_OFFLOAD_MASK ( \
PKT_TX_VLAN_PKT | \
PKT_TX_L4_MASK | \
PKT_TX_TCP_SEG)
#define VMXNET3_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ VMXNET3_TX_OFFLOAD_MASK)
static const uint32_t rxprod_reg[2] = {VMXNET3_REG_RXPROD, VMXNET3_REG_RXPROD2};
static int vmxnet3_post_rx_bufs(vmxnet3_rx_queue_t*, uint8_t);
static void vmxnet3_tq_tx_complete(vmxnet3_tx_queue_t *);
#ifdef RTE_LIBRTE_VMXNET3_DEBUG_DRIVER_NOT_USED
static void vmxnet3_rxq_dump(struct vmxnet3_rx_queue *);
static void vmxnet3_txq_dump(struct vmxnet3_tx_queue *);
#endif
#ifdef RTE_LIBRTE_VMXNET3_DEBUG_DRIVER_NOT_USED
static void
vmxnet3_rxq_dump(struct vmxnet3_rx_queue *rxq)
{
uint32_t avail = 0;
if (rxq == NULL)
return;
PMD_RX_LOG(DEBUG,
"RXQ: cmd0 base : %p cmd1 base : %p comp ring base : %p.",
rxq->cmd_ring[0].base, rxq->cmd_ring[1].base, rxq->comp_ring.base);
PMD_RX_LOG(DEBUG,
"RXQ: cmd0 basePA : 0x%lx cmd1 basePA : 0x%lx comp ring basePA : 0x%lx.",
(unsigned long)rxq->cmd_ring[0].basePA,
(unsigned long)rxq->cmd_ring[1].basePA,
(unsigned long)rxq->comp_ring.basePA);
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[0]);
PMD_RX_LOG(DEBUG,
"RXQ:cmd0: size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)rxq->cmd_ring[0].size, avail,
rxq->comp_ring.next2proc,
rxq->cmd_ring[0].size - avail);
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[1]);
PMD_RX_LOG(DEBUG, "RXQ:cmd1 size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)rxq->cmd_ring[1].size, avail, rxq->comp_ring.next2proc,
rxq->cmd_ring[1].size - avail);
}
static void
vmxnet3_txq_dump(struct vmxnet3_tx_queue *txq)
{
uint32_t avail = 0;
if (txq == NULL)
return;
PMD_TX_LOG(DEBUG, "TXQ: cmd base : %p comp ring base : %p data ring base : %p.",
txq->cmd_ring.base, txq->comp_ring.base, txq->data_ring.base);
PMD_TX_LOG(DEBUG, "TXQ: cmd basePA : 0x%lx comp ring basePA : 0x%lx data ring basePA : 0x%lx.",
(unsigned long)txq->cmd_ring.basePA,
(unsigned long)txq->comp_ring.basePA,
(unsigned long)txq->data_ring.basePA);
avail = vmxnet3_cmd_ring_desc_avail(&txq->cmd_ring);
PMD_TX_LOG(DEBUG, "TXQ: size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)txq->cmd_ring.size, avail,
txq->comp_ring.next2proc, txq->cmd_ring.size - avail);
}
#endif
static void
vmxnet3_tx_cmd_ring_release_mbufs(vmxnet3_cmd_ring_t *ring)
{
while (ring->next2comp != ring->next2fill) {
/* No need to worry about desc ownership, device is quiesced by now. */
vmxnet3_buf_info_t *buf_info = ring->buf_info + ring->next2comp;
if (buf_info->m) {
rte_pktmbuf_free(buf_info->m);
buf_info->m = NULL;
buf_info->bufPA = 0;
buf_info->len = 0;
}
vmxnet3_cmd_ring_adv_next2comp(ring);
}
}
static void
vmxnet3_rx_cmd_ring_release_mbufs(vmxnet3_cmd_ring_t *ring)
{
uint32_t i;
for (i = 0; i < ring->size; i++) {
/* No need to worry about desc ownership, device is quiesced by now. */
vmxnet3_buf_info_t *buf_info = &ring->buf_info[i];
if (buf_info->m) {
rte_pktmbuf_free_seg(buf_info->m);
buf_info->m = NULL;
buf_info->bufPA = 0;
buf_info->len = 0;
}
vmxnet3_cmd_ring_adv_next2comp(ring);
}
}
static void
vmxnet3_cmd_ring_release(vmxnet3_cmd_ring_t *ring)
{
rte_free(ring->buf_info);
ring->buf_info = NULL;
}
void
vmxnet3_dev_tx_queue_release(void *txq)
{
vmxnet3_tx_queue_t *tq = txq;
if (tq != NULL) {
/* Release mbufs */
vmxnet3_tx_cmd_ring_release_mbufs(&tq->cmd_ring);
/* Release the cmd_ring */
vmxnet3_cmd_ring_release(&tq->cmd_ring);
/* Release the memzone */
rte_memzone_free(tq->mz);
/* Release the queue */
rte_free(tq);
}
}
void
vmxnet3_dev_rx_queue_release(void *rxq)
{
int i;
vmxnet3_rx_queue_t *rq = rxq;
if (rq != NULL) {
/* Release mbufs */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_rx_cmd_ring_release_mbufs(&rq->cmd_ring[i]);
/* Release both the cmd_rings */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_cmd_ring_release(&rq->cmd_ring[i]);
/* Release the memzone */
rte_memzone_free(rq->mz);
/* Release the queue */
rte_free(rq);
}
}
static void
vmxnet3_dev_tx_queue_reset(void *txq)
{
vmxnet3_tx_queue_t *tq = txq;
struct vmxnet3_cmd_ring *ring = &tq->cmd_ring;
struct vmxnet3_comp_ring *comp_ring = &tq->comp_ring;
struct vmxnet3_data_ring *data_ring = &tq->data_ring;
int size;
if (tq != NULL) {
/* Release the cmd_ring mbufs */
vmxnet3_tx_cmd_ring_release_mbufs(&tq->cmd_ring);
}
/* Tx vmxnet rings structure initialization*/
ring->next2fill = 0;
ring->next2comp = 0;
ring->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_TxDesc) * ring->size;
size += sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size;
size += tq->txdata_desc_size * data_ring->size;
memset(ring->base, 0, size);
}
static void
vmxnet3_dev_rx_queue_reset(void *rxq)
{
int i;
vmxnet3_rx_queue_t *rq = rxq;
struct vmxnet3_hw *hw = rq->hw;
struct vmxnet3_cmd_ring *ring0, *ring1;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_rx_data_ring *data_ring = &rq->data_ring;
int size;
/* Release both the cmd_rings mbufs */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_rx_cmd_ring_release_mbufs(&rq->cmd_ring[i]);
ring0 = &rq->cmd_ring[0];
ring1 = &rq->cmd_ring[1];
comp_ring = &rq->comp_ring;
/* Rx vmxnet rings structure initialization */
ring0->next2fill = 0;
ring1->next2fill = 0;
ring0->next2comp = 0;
ring1->next2comp = 0;
ring0->gen = VMXNET3_INIT_GEN;
ring1->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_RxDesc) * (ring0->size + ring1->size);
size += sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
if (VMXNET3_VERSION_GE_3(hw) && rq->data_desc_size)
size += rq->data_desc_size * data_ring->size;
memset(ring0->base, 0, size);
}
void
vmxnet3_dev_clear_queues(struct rte_eth_dev *dev)
{
unsigned i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct vmxnet3_tx_queue *txq = dev->data->tx_queues[i];
if (txq != NULL) {
txq->stopped = TRUE;
vmxnet3_dev_tx_queue_reset(txq);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct vmxnet3_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
rxq->stopped = TRUE;
vmxnet3_dev_rx_queue_reset(rxq);
}
}
}
static int
vmxnet3_unmap_pkt(uint16_t eop_idx, vmxnet3_tx_queue_t *txq)
{
int completed = 0;
struct rte_mbuf *mbuf;
/* Release cmd_ring descriptor and free mbuf */
RTE_ASSERT(txq->cmd_ring.base[eop_idx].txd.eop == 1);
mbuf = txq->cmd_ring.buf_info[eop_idx].m;
if (mbuf == NULL)
rte_panic("EOP desc does not point to a valid mbuf");
rte_pktmbuf_free(mbuf);
txq->cmd_ring.buf_info[eop_idx].m = NULL;
while (txq->cmd_ring.next2comp != eop_idx) {
/* no out-of-order completion */
RTE_ASSERT(txq->cmd_ring.base[txq->cmd_ring.next2comp].txd.cq == 0);
vmxnet3_cmd_ring_adv_next2comp(&txq->cmd_ring);
completed++;
}
/* Mark the txd for which tcd was generated as completed */
vmxnet3_cmd_ring_adv_next2comp(&txq->cmd_ring);
return completed + 1;
}
static void
vmxnet3_tq_tx_complete(vmxnet3_tx_queue_t *txq)
{
int completed = 0;
vmxnet3_comp_ring_t *comp_ring = &txq->comp_ring;
struct Vmxnet3_TxCompDesc *tcd = (struct Vmxnet3_TxCompDesc *)
(comp_ring->base + comp_ring->next2proc);
while (tcd->gen == comp_ring->gen) {
completed += vmxnet3_unmap_pkt(tcd->txdIdx, txq);
vmxnet3_comp_ring_adv_next2proc(comp_ring);
tcd = (struct Vmxnet3_TxCompDesc *)(comp_ring->base +
comp_ring->next2proc);
}
PMD_TX_LOG(DEBUG, "Processed %d tx comps & command descs.", completed);
}
uint16_t
vmxnet3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int32_t ret;
uint32_t i;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i != nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Non-TSO packet cannot occupy more than
* VMXNET3_MAX_TXD_PER_PKT TX descriptors.
*/
if ((ol_flags & PKT_TX_TCP_SEG) == 0 &&
m->nb_segs > VMXNET3_MAX_TXD_PER_PKT) {
rte_errno = -EINVAL;
return i;
}
/* check that only supported TX offloads are requested. */
if ((ol_flags & VMXNET3_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
(ol_flags & PKT_TX_L4_MASK) ==
PKT_TX_SCTP_CKSUM) {
rte_errno = -ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
uint16_t
vmxnet3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx;
vmxnet3_tx_queue_t *txq = tx_queue;
struct vmxnet3_hw *hw = txq->hw;
Vmxnet3_TxQueueCtrl *txq_ctrl = &txq->shared->ctrl;
uint32_t deferred = rte_le_to_cpu_32(txq_ctrl->txNumDeferred);
if (unlikely(txq->stopped)) {
PMD_TX_LOG(DEBUG, "Tx queue is stopped.");
return 0;
}
/* Free up the comp_descriptors aggressively */
vmxnet3_tq_tx_complete(txq);
nb_tx = 0;
while (nb_tx < nb_pkts) {
Vmxnet3_GenericDesc *gdesc;
vmxnet3_buf_info_t *tbi;
uint32_t first2fill, avail, dw2;
struct rte_mbuf *txm = tx_pkts[nb_tx];
struct rte_mbuf *m_seg = txm;
int copy_size = 0;
bool tso = (txm->ol_flags & PKT_TX_TCP_SEG) != 0;
/* # of descriptors needed for a packet. */
unsigned count = txm->nb_segs;
avail = vmxnet3_cmd_ring_desc_avail(&txq->cmd_ring);
if (count > avail) {
/* Is command ring full? */
if (unlikely(avail == 0)) {
PMD_TX_LOG(DEBUG, "No free ring descriptors");
txq->stats.tx_ring_full++;
txq->stats.drop_total += (nb_pkts - nb_tx);
break;
}
/* Command ring is not full but cannot handle the
* multi-segmented packet. Let's try the next packet
* in this case.
*/
PMD_TX_LOG(DEBUG, "Running out of ring descriptors "
"(avail %d needed %d)", avail, count);
txq->stats.drop_total++;
if (tso)
txq->stats.drop_tso++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
/* Drop non-TSO packet that is excessively fragmented */
if (unlikely(!tso && count > VMXNET3_MAX_TXD_PER_PKT)) {
PMD_TX_LOG(ERR, "Non-TSO packet cannot occupy more than %d tx "
"descriptors. Packet dropped.", VMXNET3_MAX_TXD_PER_PKT);
txq->stats.drop_too_many_segs++;
txq->stats.drop_total++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
if (txm->nb_segs == 1 &&
rte_pktmbuf_pkt_len(txm) <= txq->txdata_desc_size) {
struct Vmxnet3_TxDataDesc *tdd;
/* Skip empty packets */
if (unlikely(rte_pktmbuf_pkt_len(txm) == 0)) {
txq->stats.drop_total++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
tdd = (struct Vmxnet3_TxDataDesc *)
((uint8 *)txq->data_ring.base +
txq->cmd_ring.next2fill *
txq->txdata_desc_size);
copy_size = rte_pktmbuf_pkt_len(txm);
rte_memcpy(tdd->data, rte_pktmbuf_mtod(txm, char *), copy_size);
}
/* use the previous gen bit for the SOP desc */
dw2 = (txq->cmd_ring.gen ^ 0x1) << VMXNET3_TXD_GEN_SHIFT;
first2fill = txq->cmd_ring.next2fill;
do {
/* Remember the transmit buffer for cleanup */
tbi = txq->cmd_ring.buf_info + txq->cmd_ring.next2fill;
/* NB: the following assumes that VMXNET3 maximum
* transmit buffer size (16K) is greater than
* maximum size of mbuf segment size.
*/
gdesc = txq->cmd_ring.base + txq->cmd_ring.next2fill;
/* Skip empty segments */
if (unlikely(m_seg->data_len == 0))
continue;
if (copy_size) {
uint64 offset =
(uint64)txq->cmd_ring.next2fill *
txq->txdata_desc_size;
gdesc->txd.addr =
rte_cpu_to_le_64(txq->data_ring.basePA +
offset);
} else {
gdesc->txd.addr = rte_mbuf_data_iova(m_seg);
}
gdesc->dword[2] = dw2 | m_seg->data_len;
gdesc->dword[3] = 0;
/* move to the next2fill descriptor */
vmxnet3_cmd_ring_adv_next2fill(&txq->cmd_ring);
/* use the right gen for non-SOP desc */
dw2 = txq->cmd_ring.gen << VMXNET3_TXD_GEN_SHIFT;
} while ((m_seg = m_seg->next) != NULL);
/* set the last buf_info for the pkt */
tbi->m = txm;
/* Update the EOP descriptor */
gdesc->dword[3] |= VMXNET3_TXD_EOP | VMXNET3_TXD_CQ;
/* Add VLAN tag if present */
gdesc = txq->cmd_ring.base + first2fill;
if (txm->ol_flags & PKT_TX_VLAN_PKT) {
gdesc->txd.ti = 1;
gdesc->txd.tci = txm->vlan_tci;
}
if (tso) {
uint16_t mss = txm->tso_segsz;
RTE_ASSERT(mss > 0);
gdesc->txd.hlen = txm->l2_len + txm->l3_len + txm->l4_len;
gdesc->txd.om = VMXNET3_OM_TSO;
gdesc->txd.msscof = mss;
deferred += (rte_pktmbuf_pkt_len(txm) - gdesc->txd.hlen + mss - 1) / mss;
} else if (txm->ol_flags & PKT_TX_L4_MASK) {
gdesc->txd.om = VMXNET3_OM_CSUM;
gdesc->txd.hlen = txm->l2_len + txm->l3_len;
switch (txm->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
gdesc->txd.msscof = gdesc->txd.hlen + offsetof(struct tcp_hdr, cksum);
break;
case PKT_TX_UDP_CKSUM:
gdesc->txd.msscof = gdesc->txd.hlen + offsetof(struct udp_hdr, dgram_cksum);
break;
default:
PMD_TX_LOG(WARNING, "requested cksum offload not supported %#llx",
txm->ol_flags & PKT_TX_L4_MASK);
abort();
}
deferred++;
} else {
gdesc->txd.hlen = 0;
gdesc->txd.om = VMXNET3_OM_NONE;
gdesc->txd.msscof = 0;
deferred++;
}
/* flip the GEN bit on the SOP */
rte_compiler_barrier();
gdesc->dword[2] ^= VMXNET3_TXD_GEN;
txq_ctrl->txNumDeferred = rte_cpu_to_le_32(deferred);
nb_tx++;
}
PMD_TX_LOG(DEBUG, "vmxnet3 txThreshold: %u", rte_le_to_cpu_32(txq_ctrl->txThreshold));
if (deferred >= rte_le_to_cpu_32(txq_ctrl->txThreshold)) {
txq_ctrl->txNumDeferred = 0;
/* Notify vSwitch that packets are available. */
VMXNET3_WRITE_BAR0_REG(hw, (VMXNET3_REG_TXPROD + txq->queue_id * VMXNET3_REG_ALIGN),
txq->cmd_ring.next2fill);
}
return nb_tx;
}
static inline void
vmxnet3_renew_desc(vmxnet3_rx_queue_t *rxq, uint8_t ring_id,
struct rte_mbuf *mbuf)
{
uint32_t val;
struct vmxnet3_cmd_ring *ring = &rxq->cmd_ring[ring_id];
struct Vmxnet3_RxDesc *rxd =
(struct Vmxnet3_RxDesc *)(ring->base + ring->next2fill);
vmxnet3_buf_info_t *buf_info = &ring->buf_info[ring->next2fill];
if (ring_id == 0) {
/* Usually: One HEAD type buf per packet
* val = (ring->next2fill % rxq->hw->bufs_per_pkt) ?
* VMXNET3_RXD_BTYPE_BODY : VMXNET3_RXD_BTYPE_HEAD;
*/
/* We use single packet buffer so all heads here */
val = VMXNET3_RXD_BTYPE_HEAD;
} else {
/* All BODY type buffers for 2nd ring */
val = VMXNET3_RXD_BTYPE_BODY;
}
/*
* Load mbuf pointer into buf_info[ring_size]
* buf_info structure is equivalent to cookie for virtio-virtqueue
*/
buf_info->m = mbuf;
buf_info->len = (uint16_t)(mbuf->buf_len - RTE_PKTMBUF_HEADROOM);
buf_info->bufPA = rte_mbuf_data_iova_default(mbuf);
/* Load Rx Descriptor with the buffer's GPA */
rxd->addr = buf_info->bufPA;
/* After this point rxd->addr MUST not be NULL */
rxd->btype = val;
rxd->len = buf_info->len;
/* Flip gen bit at the end to change ownership */
rxd->gen = ring->gen;
vmxnet3_cmd_ring_adv_next2fill(ring);
}
/*
* Allocates mbufs and clusters. Post rx descriptors with buffer details
* so that device can receive packets in those buffers.
* Ring layout:
* Among the two rings, 1st ring contains buffers of type 0 and type 1.
* bufs_per_pkt is set such that for non-LRO cases all the buffers required
* by a frame will fit in 1st ring (1st buf of type0 and rest of type1).
* 2nd ring contains buffers of type 1 alone. Second ring mostly be used
* only for LRO.
*/
static int
vmxnet3_post_rx_bufs(vmxnet3_rx_queue_t *rxq, uint8_t ring_id)
{
int err = 0;
uint32_t i = 0;
struct vmxnet3_cmd_ring *ring = &rxq->cmd_ring[ring_id];
while (vmxnet3_cmd_ring_desc_avail(ring) > 0) {
struct rte_mbuf *mbuf;
/* Allocate blank mbuf for the current Rx Descriptor */
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(mbuf == NULL)) {
PMD_RX_LOG(ERR, "Error allocating mbuf");
rxq->stats.rx_buf_alloc_failure++;
err = ENOMEM;
break;
}
vmxnet3_renew_desc(rxq, ring_id, mbuf);
i++;
}
/* Return error only if no buffers are posted at present */
if (vmxnet3_cmd_ring_desc_avail(ring) >= (ring->size - 1))
return -err;
else
return i;
}
/* MSS not provided by vmxnet3, guess one with available information */
static uint16_t
vmxnet3_guess_mss(struct vmxnet3_hw *hw, const Vmxnet3_RxCompDesc *rcd,
struct rte_mbuf *rxm)
{
uint32_t hlen, slen;
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
struct tcp_hdr *tcp_hdr;
char *ptr;
RTE_ASSERT(rcd->tcp);
ptr = rte_pktmbuf_mtod(rxm, char *);
slen = rte_pktmbuf_data_len(rxm);
hlen = sizeof(struct ether_hdr);
if (rcd->v4) {
if (unlikely(slen < hlen + sizeof(struct ipv4_hdr)))
return hw->mtu - sizeof(struct ipv4_hdr)
- sizeof(struct tcp_hdr);
ipv4_hdr = (struct ipv4_hdr *)(ptr + hlen);
hlen += (ipv4_hdr->version_ihl & IPV4_HDR_IHL_MASK) *
IPV4_IHL_MULTIPLIER;
} else if (rcd->v6) {
if (unlikely(slen < hlen + sizeof(struct ipv6_hdr)))
return hw->mtu - sizeof(struct ipv6_hdr) -
sizeof(struct tcp_hdr);
ipv6_hdr = (struct ipv6_hdr *)(ptr + hlen);
hlen += sizeof(struct ipv6_hdr);
if (unlikely(ipv6_hdr->proto != IPPROTO_TCP)) {
int frag;
rte_net_skip_ip6_ext(ipv6_hdr->proto, rxm,
&hlen, &frag);
}
}
if (unlikely(slen < hlen + sizeof(struct tcp_hdr)))
return hw->mtu - hlen - sizeof(struct tcp_hdr) +
sizeof(struct ether_hdr);
tcp_hdr = (struct tcp_hdr *)(ptr + hlen);
hlen += (tcp_hdr->data_off & 0xf0) >> 2;
if (rxm->udata64 > 1)
return (rte_pktmbuf_pkt_len(rxm) - hlen +
rxm->udata64 - 1) / rxm->udata64;
else
return hw->mtu - hlen + sizeof(struct ether_hdr);
}
/* Receive side checksum and other offloads */
static inline void
vmxnet3_rx_offload(struct vmxnet3_hw *hw, const Vmxnet3_RxCompDesc *rcd,
struct rte_mbuf *rxm, const uint8_t sop)
{
uint64_t ol_flags = rxm->ol_flags;
uint32_t packet_type = rxm->packet_type;
/* Offloads set in sop */
if (sop) {
/* Set packet type */
packet_type |= RTE_PTYPE_L2_ETHER;
/* Check large packet receive */
if (VMXNET3_VERSION_GE_2(hw) &&
rcd->type == VMXNET3_CDTYPE_RXCOMP_LRO) {
const Vmxnet3_RxCompDescExt *rcde =
(const Vmxnet3_RxCompDescExt *)rcd;
rxm->tso_segsz = rcde->mss;
rxm->udata64 = rcde->segCnt;
ol_flags |= PKT_RX_LRO;
}
} else { /* Offloads set in eop */
/* Check for RSS */
if (rcd->rssType != VMXNET3_RCD_RSS_TYPE_NONE) {
ol_flags |= PKT_RX_RSS_HASH;
rxm->hash.rss = rcd->rssHash;
}
/* Check for hardware stripped VLAN tag */
if (rcd->ts) {
ol_flags |= (PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
rxm->vlan_tci = rte_le_to_cpu_16((uint16_t)rcd->tci);
}
/* Check packet type, checksum errors, etc. */
if (rcd->cnc) {
ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
} else {
if (rcd->v4) {
packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
if (rcd->ipc)
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
else
ol_flags |= PKT_RX_IP_CKSUM_BAD;
if (rcd->tuc) {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (rcd->tcp)
packet_type |= RTE_PTYPE_L4_TCP;
else
packet_type |= RTE_PTYPE_L4_UDP;
} else {
if (rcd->tcp) {
packet_type |= RTE_PTYPE_L4_TCP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else if (rcd->udp) {
packet_type |= RTE_PTYPE_L4_UDP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
}
} else if (rcd->v6) {
packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
if (rcd->tuc) {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (rcd->tcp)
packet_type |= RTE_PTYPE_L4_TCP;
else
packet_type |= RTE_PTYPE_L4_UDP;
} else {
if (rcd->tcp) {
packet_type |= RTE_PTYPE_L4_TCP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else if (rcd->udp) {
packet_type |= RTE_PTYPE_L4_UDP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
}
} else {
packet_type |= RTE_PTYPE_UNKNOWN;
}
/* Old variants of vmxnet3 do not provide MSS */
if ((ol_flags & PKT_RX_LRO) && rxm->tso_segsz == 0)
rxm->tso_segsz = vmxnet3_guess_mss(hw,
rcd, rxm);
}
}
rxm->ol_flags = ol_flags;
rxm->packet_type = packet_type;
}
/*
* Process the Rx Completion Ring of given vmxnet3_rx_queue
* for nb_pkts burst and return the number of packets received
*/
uint16_t
vmxnet3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
uint16_t nb_rx;
uint32_t nb_rxd, idx;
uint8_t ring_idx;
vmxnet3_rx_queue_t *rxq;
Vmxnet3_RxCompDesc *rcd;
vmxnet3_buf_info_t *rbi;
Vmxnet3_RxDesc *rxd;
struct rte_mbuf *rxm = NULL;
struct vmxnet3_hw *hw;
nb_rx = 0;
ring_idx = 0;
nb_rxd = 0;
idx = 0;
rxq = rx_queue;
hw = rxq->hw;
rcd = &rxq->comp_ring.base[rxq->comp_ring.next2proc].rcd;
if (unlikely(rxq->stopped)) {
PMD_RX_LOG(DEBUG, "Rx queue is stopped.");
return 0;
}
while (rcd->gen == rxq->comp_ring.gen) {
struct rte_mbuf *newm;
if (nb_rx >= nb_pkts)
break;
newm = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(newm == NULL)) {
PMD_RX_LOG(ERR, "Error allocating mbuf");
rxq->stats.rx_buf_alloc_failure++;
break;
}
idx = rcd->rxdIdx;
ring_idx = vmxnet3_get_ring_idx(hw, rcd->rqID);
rxd = (Vmxnet3_RxDesc *)rxq->cmd_ring[ring_idx].base + idx;
RTE_SET_USED(rxd); /* used only for assert when enabled */
rbi = rxq->cmd_ring[ring_idx].buf_info + idx;
PMD_RX_LOG(DEBUG, "rxd idx: %d ring idx: %d.", idx, ring_idx);
RTE_ASSERT(rcd->len <= rxd->len);
RTE_ASSERT(rbi->m);
/* Get the packet buffer pointer from buf_info */
rxm = rbi->m;
/* Clear descriptor associated buf_info to be reused */
rbi->m = NULL;
rbi->bufPA = 0;
/* Update the index that we received a packet */
rxq->cmd_ring[ring_idx].next2comp = idx;
/* For RCD with EOP set, check if there is frame error */
if (unlikely(rcd->eop && rcd->err)) {
rxq->stats.drop_total++;
rxq->stats.drop_err++;
if (!rcd->fcs) {
rxq->stats.drop_fcs++;
PMD_RX_LOG(ERR, "Recv packet dropped due to frame err.");
}
PMD_RX_LOG(ERR, "Error in received packet rcd#:%d rxd:%d",
(int)(rcd - (struct Vmxnet3_RxCompDesc *)
rxq->comp_ring.base), rcd->rxdIdx);
rte_pktmbuf_free_seg(rxm);
if (rxq->start_seg) {
struct rte_mbuf *start = rxq->start_seg;
rxq->start_seg = NULL;
rte_pktmbuf_free(start);
}
goto rcd_done;
}
/* Initialize newly received packet buffer */
rxm->port = rxq->port_id;
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = (uint16_t)rcd->len;
rxm->data_len = (uint16_t)rcd->len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->packet_type = 0;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (rcd->sop) {
RTE_ASSERT(rxd->btype == VMXNET3_RXD_BTYPE_HEAD);
if (unlikely(rcd->len == 0)) {
RTE_ASSERT(rcd->eop);
PMD_RX_LOG(DEBUG,
"Rx buf was skipped. rxring[%d][%d])",
ring_idx, idx);
rte_pktmbuf_free_seg(rxm);
goto rcd_done;
}
if (vmxnet3_rx_data_ring(hw, rcd->rqID)) {
uint8_t *rdd = rxq->data_ring.base +
idx * rxq->data_desc_size;
RTE_ASSERT(VMXNET3_VERSION_GE_3(hw));
rte_memcpy(rte_pktmbuf_mtod(rxm, char *),
rdd, rcd->len);
}
rxq->start_seg = rxm;
rxq->last_seg = rxm;
vmxnet3_rx_offload(hw, rcd, rxm, 1);
} else {
struct rte_mbuf *start = rxq->start_seg;
RTE_ASSERT(rxd->btype == VMXNET3_RXD_BTYPE_BODY);
if (rxm->data_len) {
start->pkt_len += rxm->data_len;
start->nb_segs++;
rxq->last_seg->next = rxm;
rxq->last_seg = rxm;
} else {
rte_pktmbuf_free_seg(rxm);
}
}
if (rcd->eop) {
struct rte_mbuf *start = rxq->start_seg;
vmxnet3_rx_offload(hw, rcd, start, 0);
rx_pkts[nb_rx++] = start;
rxq->start_seg = NULL;
}
rcd_done:
rxq->cmd_ring[ring_idx].next2comp = idx;
VMXNET3_INC_RING_IDX_ONLY(rxq->cmd_ring[ring_idx].next2comp,
rxq->cmd_ring[ring_idx].size);
/* It's time to renew descriptors */
vmxnet3_renew_desc(rxq, ring_idx, newm);
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[ring_idx] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[ring_idx].next2fill);
}
/* Advance to the next descriptor in comp_ring */
vmxnet3_comp_ring_adv_next2proc(&rxq->comp_ring);
rcd = &rxq->comp_ring.base[rxq->comp_ring.next2proc].rcd;
nb_rxd++;
if (nb_rxd > rxq->cmd_ring[0].size) {
PMD_RX_LOG(ERR, "Used up quota of receiving packets,"
" relinquish control.");
break;
}
}
if (unlikely(nb_rxd == 0)) {
uint32_t avail;
for (ring_idx = 0; ring_idx < VMXNET3_RX_CMDRING_SIZE; ring_idx++) {
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[ring_idx]);
if (unlikely(avail > 0)) {
/* try to alloc new buf and renew descriptors */
vmxnet3_post_rx_bufs(rxq, ring_idx);
}
}
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
for (ring_idx = 0; ring_idx < VMXNET3_RX_CMDRING_SIZE; ring_idx++) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[ring_idx] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[ring_idx].next2fill);
}
}
}
return nb_rx;
}
int
vmxnet3_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
const struct rte_memzone *mz;
struct vmxnet3_tx_queue *txq;
struct vmxnet3_cmd_ring *ring;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_data_ring *data_ring;
int size;
PMD_INIT_FUNC_TRACE();
txq = rte_zmalloc("ethdev_tx_queue", sizeof(struct vmxnet3_tx_queue),
RTE_CACHE_LINE_SIZE);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Can not allocate tx queue structure");
return -ENOMEM;
}
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->shared = NULL; /* set in vmxnet3_setup_driver_shared() */
txq->hw = hw;
txq->qid = queue_idx;
txq->stopped = TRUE;
txq->txdata_desc_size = hw->txdata_desc_size;
ring = &txq->cmd_ring;
comp_ring = &txq->comp_ring;
data_ring = &txq->data_ring;
/* Tx vmxnet ring length should be between 512-4096 */
if (nb_desc < VMXNET3_DEF_TX_RING_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Tx Ring Size Min: %u",
VMXNET3_DEF_TX_RING_SIZE);
return -EINVAL;
} else if (nb_desc > VMXNET3_TX_RING_MAX_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Tx Ring Size Max: %u",
VMXNET3_TX_RING_MAX_SIZE);
return -EINVAL;
} else {
ring->size = nb_desc;
ring->size &= ~VMXNET3_RING_SIZE_MASK;
}
comp_ring->size = data_ring->size = ring->size;
/* Tx vmxnet rings structure initialization*/
ring->next2fill = 0;
ring->next2comp = 0;
ring->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_TxDesc) * ring->size;
size += sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size;
size += txq->txdata_desc_size * data_ring->size;
mz = rte_eth_dma_zone_reserve(dev, "txdesc", queue_idx, size,
VMXNET3_RING_BA_ALIGN, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating queue descriptors zone");
return -ENOMEM;
}
txq->mz = mz;
memset(mz->addr, 0, mz->len);
/* cmd_ring initialization */
ring->base = mz->addr;
ring->basePA = mz->iova;
/* comp_ring initialization */
comp_ring->base = ring->base + ring->size;
comp_ring->basePA = ring->basePA +
(sizeof(struct Vmxnet3_TxDesc) * ring->size);
/* data_ring initialization */
data_ring->base = (Vmxnet3_TxDataDesc *)(comp_ring->base + comp_ring->size);
data_ring->basePA = comp_ring->basePA +
(sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size);
/* cmd_ring0 buf_info allocation */
ring->buf_info = rte_zmalloc("tx_ring_buf_info",
ring->size * sizeof(vmxnet3_buf_info_t), RTE_CACHE_LINE_SIZE);
if (ring->buf_info == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating tx_buf_info structure");
return -ENOMEM;
}
/* Update the data portion with txq */
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
int
vmxnet3_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
__rte_unused const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *mz;
struct vmxnet3_rx_queue *rxq;
struct vmxnet3_hw *hw = dev->data->dev_private;
struct vmxnet3_cmd_ring *ring0, *ring1, *ring;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_rx_data_ring *data_ring;
int size;
uint8_t i;
char mem_name[32];
PMD_INIT_FUNC_TRACE();
rxq = rte_zmalloc("ethdev_rx_queue", sizeof(struct vmxnet3_rx_queue),
RTE_CACHE_LINE_SIZE);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Can not allocate rx queue structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->shared = NULL; /* set in vmxnet3_setup_driver_shared() */
rxq->hw = hw;
rxq->qid1 = queue_idx;
rxq->qid2 = queue_idx + hw->num_rx_queues;
rxq->data_ring_qid = queue_idx + 2 * hw->num_rx_queues;
rxq->data_desc_size = hw->rxdata_desc_size;
rxq->stopped = TRUE;
ring0 = &rxq->cmd_ring[0];
ring1 = &rxq->cmd_ring[1];
comp_ring = &rxq->comp_ring;
data_ring = &rxq->data_ring;
/* Rx vmxnet rings length should be between 256-4096 */
if (nb_desc < VMXNET3_DEF_RX_RING_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Rx Ring Size Min: 256");
return -EINVAL;
} else if (nb_desc > VMXNET3_RX_RING_MAX_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Rx Ring Size Max: 4096");
return -EINVAL;
} else {
ring0->size = nb_desc;
ring0->size &= ~VMXNET3_RING_SIZE_MASK;
ring1->size = ring0->size;
}
comp_ring->size = ring0->size + ring1->size;
data_ring->size = ring0->size;
/* Rx vmxnet rings structure initialization */
ring0->next2fill = 0;
ring1->next2fill = 0;
ring0->next2comp = 0;
ring1->next2comp = 0;
ring0->gen = VMXNET3_INIT_GEN;
ring1->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_RxDesc) * (ring0->size + ring1->size);
size += sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
if (VMXNET3_VERSION_GE_3(hw) && rxq->data_desc_size)
size += rxq->data_desc_size * data_ring->size;
mz = rte_eth_dma_zone_reserve(dev, "rxdesc", queue_idx, size,
VMXNET3_RING_BA_ALIGN, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating queue descriptors zone");
return -ENOMEM;
}
rxq->mz = mz;
memset(mz->addr, 0, mz->len);
/* cmd_ring0 initialization */
ring0->base = mz->addr;
ring0->basePA = mz->iova;
/* cmd_ring1 initialization */
ring1->base = ring0->base + ring0->size;
ring1->basePA = ring0->basePA + sizeof(struct Vmxnet3_RxDesc) * ring0->size;
/* comp_ring initialization */
comp_ring->base = ring1->base + ring1->size;
comp_ring->basePA = ring1->basePA + sizeof(struct Vmxnet3_RxDesc) *
ring1->size;
/* data_ring initialization */
if (VMXNET3_VERSION_GE_3(hw) && rxq->data_desc_size) {
data_ring->base =
(uint8_t *)(comp_ring->base + comp_ring->size);
data_ring->basePA = comp_ring->basePA +
sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
}
/* cmd_ring0-cmd_ring1 buf_info allocation */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++) {
ring = &rxq->cmd_ring[i];
ring->rid = i;
snprintf(mem_name, sizeof(mem_name), "rx_ring_%d_buf_info", i);
ring->buf_info = rte_zmalloc(mem_name,
ring->size * sizeof(vmxnet3_buf_info_t),
RTE_CACHE_LINE_SIZE);
if (ring->buf_info == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating rx_buf_info structure");
return -ENOMEM;
}
}
/* Update the data portion with rxq */
dev->data->rx_queues[queue_idx] = rxq;
return 0;
}
/*
* Initializes Receive Unit
* Load mbufs in rx queue in advance
*/
int
vmxnet3_dev_rxtx_init(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
int i, ret;
uint8_t j;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < hw->num_rx_queues; i++) {
vmxnet3_rx_queue_t *rxq = dev->data->rx_queues[i];
for (j = 0; j < VMXNET3_RX_CMDRING_SIZE; j++) {
/* Passing 0 as alloc_num will allocate full ring */
ret = vmxnet3_post_rx_bufs(rxq, j);
if (ret <= 0) {
PMD_INIT_LOG(ERR,
"ERROR: Posting Rxq: %d buffers ring: %d",
i, j);
return -ret;
}
/*
* Updating device with the index:next2fill to fill the
* mbufs for coming packets.
*/
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[j] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[j].next2fill);
}
}
rxq->stopped = FALSE;
rxq->start_seg = NULL;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct vmxnet3_tx_queue *txq = dev->data->tx_queues[i];
txq->stopped = FALSE;
}
return 0;
}
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
/*
* Configure RSS feature
*/
int
vmxnet3_rss_configure(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
struct VMXNET3_RSSConf *dev_rss_conf;
struct rte_eth_rss_conf *port_rss_conf;
uint64_t rss_hf;
uint8_t i, j;
PMD_INIT_FUNC_TRACE();
dev_rss_conf = hw->rss_conf;
port_rss_conf = &dev->data->dev_conf.rx_adv_conf.rss_conf;
/* loading hashFunc */
dev_rss_conf->hashFunc = VMXNET3_RSS_HASH_FUNC_TOEPLITZ;
/* loading hashKeySize */
dev_rss_conf->hashKeySize = VMXNET3_RSS_MAX_KEY_SIZE;
/* loading indTableSize: Must not exceed VMXNET3_RSS_MAX_IND_TABLE_SIZE (128)*/
dev_rss_conf->indTableSize = (uint16_t)(hw->num_rx_queues * 4);
if (port_rss_conf->rss_key == NULL) {
/* Default hash key */
port_rss_conf->rss_key = rss_intel_key;
}
/* loading hashKey */
memcpy(&dev_rss_conf->hashKey[0], port_rss_conf->rss_key,
dev_rss_conf->hashKeySize);
/* loading indTable */
for (i = 0, j = 0; i < dev_rss_conf->indTableSize; i++, j++) {
if (j == dev->data->nb_rx_queues)
j = 0;
dev_rss_conf->indTable[i] = j;
}
/* loading hashType */
dev_rss_conf->hashType = 0;
rss_hf = port_rss_conf->rss_hf & VMXNET3_RSS_OFFLOAD_ALL;
if (rss_hf & ETH_RSS_IPV4)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_TCP_IPV4;
if (rss_hf & ETH_RSS_IPV6)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_IPV6;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_TCP_IPV6;
return VMXNET3_SUCCESS;
}