numam-dpdk/app/test/test_stack_perf.c
Stephen Hemminger cb056611a8 eal: rename lcore master and slave
Replace master lcore with main lcore and
replace slave lcore with worker lcore.

Keep the old functions and macros but mark them as deprecated
for this release.

The "--master-lcore" command line option is also deprecated
and any usage will print a warning and use "--main-lcore"
as replacement.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2020-10-20 13:17:08 +02:00

357 lines
7.5 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <stdio.h>
#include <inttypes.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_launch.h>
#include <rte_pause.h>
#include <rte_stack.h>
#include "test.h"
#define STACK_NAME "STACK_PERF"
#define MAX_BURST 32
#define STACK_SIZE (RTE_MAX_LCORE * MAX_BURST)
/*
* Push/pop bulk sizes, marked volatile so they aren't treated as compile-time
* constants.
*/
static volatile unsigned int bulk_sizes[] = {8, MAX_BURST};
static rte_atomic32_t lcore_barrier;
struct lcore_pair {
unsigned int c1;
unsigned int c2;
};
static int
get_two_hyperthreads(struct lcore_pair *lcp)
{
unsigned int socket[2];
unsigned int core[2];
unsigned int id[2];
RTE_LCORE_FOREACH(id[0]) {
RTE_LCORE_FOREACH(id[1]) {
if (id[0] == id[1])
continue;
core[0] = rte_lcore_to_cpu_id(id[0]);
core[1] = rte_lcore_to_cpu_id(id[1]);
socket[0] = rte_lcore_to_socket_id(id[0]);
socket[1] = rte_lcore_to_socket_id(id[1]);
if ((core[0] == core[1]) && (socket[0] == socket[1])) {
lcp->c1 = id[0];
lcp->c2 = id[1];
return 0;
}
}
}
return 1;
}
static int
get_two_cores(struct lcore_pair *lcp)
{
unsigned int socket[2];
unsigned int core[2];
unsigned int id[2];
RTE_LCORE_FOREACH(id[0]) {
RTE_LCORE_FOREACH(id[1]) {
if (id[0] == id[1])
continue;
core[0] = rte_lcore_to_cpu_id(id[0]);
core[1] = rte_lcore_to_cpu_id(id[1]);
socket[0] = rte_lcore_to_socket_id(id[0]);
socket[1] = rte_lcore_to_socket_id(id[1]);
if ((core[0] != core[1]) && (socket[0] == socket[1])) {
lcp->c1 = id[0];
lcp->c2 = id[1];
return 0;
}
}
}
return 1;
}
static int
get_two_sockets(struct lcore_pair *lcp)
{
unsigned int socket[2];
unsigned int id[2];
RTE_LCORE_FOREACH(id[0]) {
RTE_LCORE_FOREACH(id[1]) {
if (id[0] == id[1])
continue;
socket[0] = rte_lcore_to_socket_id(id[0]);
socket[1] = rte_lcore_to_socket_id(id[1]);
if (socket[0] != socket[1]) {
lcp->c1 = id[0];
lcp->c2 = id[1];
return 0;
}
}
}
return 1;
}
/* Measure the cycle cost of popping an empty stack. */
static void
test_empty_pop(struct rte_stack *s)
{
unsigned int iterations = 100000000;
void *objs[MAX_BURST];
unsigned int i;
uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++)
rte_stack_pop(s, objs, bulk_sizes[0]);
uint64_t end = rte_rdtsc();
printf("Stack empty pop: %.2F\n",
(double)(end - start) / iterations);
}
struct thread_args {
struct rte_stack *s;
unsigned int sz;
double avg;
};
/* Measure the average per-pointer cycle cost of stack push and pop */
static int
bulk_push_pop(void *p)
{
unsigned int iterations = 1000000;
struct thread_args *args = p;
void *objs[MAX_BURST] = {0};
unsigned int size, i;
struct rte_stack *s;
s = args->s;
size = args->sz;
rte_atomic32_sub(&lcore_barrier, 1);
while (rte_atomic32_read(&lcore_barrier) != 0)
rte_pause();
uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_stack_push(s, objs, size);
rte_stack_pop(s, objs, size);
}
uint64_t end = rte_rdtsc();
args->avg = ((double)(end - start))/(iterations * size);
return 0;
}
/*
* Run bulk_push_pop() simultaneously on pairs of cores, to measure stack
* perf when between hyperthread siblings, cores on the same socket, and cores
* on different sockets.
*/
static void
run_on_core_pair(struct lcore_pair *cores, struct rte_stack *s,
lcore_function_t fn)
{
struct thread_args args[2];
unsigned int i;
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
rte_atomic32_set(&lcore_barrier, 2);
args[0].sz = args[1].sz = bulk_sizes[i];
args[0].s = args[1].s = s;
if (cores->c1 == rte_get_main_lcore()) {
rte_eal_remote_launch(fn, &args[1], cores->c2);
fn(&args[0]);
rte_eal_wait_lcore(cores->c2);
} else {
rte_eal_remote_launch(fn, &args[0], cores->c1);
rte_eal_remote_launch(fn, &args[1], cores->c2);
rte_eal_wait_lcore(cores->c1);
rte_eal_wait_lcore(cores->c2);
}
printf("Average cycles per object push/pop (bulk size: %u): %.2F\n",
bulk_sizes[i], (args[0].avg + args[1].avg) / 2);
}
}
/* Run bulk_push_pop() simultaneously on 1+ cores. */
static void
run_on_n_cores(struct rte_stack *s, lcore_function_t fn, int n)
{
struct thread_args args[RTE_MAX_LCORE];
unsigned int i;
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
unsigned int lcore_id;
int cnt = 0;
double avg;
rte_atomic32_set(&lcore_barrier, n);
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (++cnt >= n)
break;
args[lcore_id].s = s;
args[lcore_id].sz = bulk_sizes[i];
if (rte_eal_remote_launch(fn, &args[lcore_id],
lcore_id))
rte_panic("Failed to launch lcore %d\n",
lcore_id);
}
lcore_id = rte_lcore_id();
args[lcore_id].s = s;
args[lcore_id].sz = bulk_sizes[i];
fn(&args[lcore_id]);
rte_eal_mp_wait_lcore();
avg = args[rte_lcore_id()].avg;
cnt = 0;
RTE_LCORE_FOREACH_WORKER(lcore_id) {
if (++cnt >= n)
break;
avg += args[lcore_id].avg;
}
printf("Average cycles per object push/pop (bulk size: %u): %.2F\n",
bulk_sizes[i], avg / n);
}
}
/*
* Measure the cycle cost of pushing and popping a single pointer on a single
* lcore.
*/
static void
test_single_push_pop(struct rte_stack *s)
{
unsigned int iterations = 16000000;
void *obj = NULL;
unsigned int i;
uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_stack_push(s, &obj, 1);
rte_stack_pop(s, &obj, 1);
}
uint64_t end = rte_rdtsc();
printf("Average cycles per single object push/pop: %.2F\n",
((double)(end - start)) / iterations);
}
/* Measure the cycle cost of bulk pushing and popping on a single lcore. */
static void
test_bulk_push_pop(struct rte_stack *s)
{
unsigned int iterations = 8000000;
void *objs[MAX_BURST];
unsigned int sz, i;
for (sz = 0; sz < RTE_DIM(bulk_sizes); sz++) {
uint64_t start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_stack_push(s, objs, bulk_sizes[sz]);
rte_stack_pop(s, objs, bulk_sizes[sz]);
}
uint64_t end = rte_rdtsc();
double avg = ((double)(end - start) /
(iterations * bulk_sizes[sz]));
printf("Average cycles per object push/pop (bulk size: %u): %.2F\n",
bulk_sizes[sz], avg);
}
}
static int
__test_stack_perf(uint32_t flags)
{
struct lcore_pair cores;
struct rte_stack *s;
rte_atomic32_init(&lcore_barrier);
s = rte_stack_create(STACK_NAME, STACK_SIZE, rte_socket_id(), flags);
if (s == NULL) {
printf("[%s():%u] failed to create a stack\n",
__func__, __LINE__);
return -1;
}
printf("### Testing single element push/pop ###\n");
test_single_push_pop(s);
printf("\n### Testing empty pop ###\n");
test_empty_pop(s);
printf("\n### Testing using a single lcore ###\n");
test_bulk_push_pop(s);
if (get_two_hyperthreads(&cores) == 0) {
printf("\n### Testing using two hyperthreads ###\n");
run_on_core_pair(&cores, s, bulk_push_pop);
}
if (get_two_cores(&cores) == 0) {
printf("\n### Testing using two physical cores ###\n");
run_on_core_pair(&cores, s, bulk_push_pop);
}
if (get_two_sockets(&cores) == 0) {
printf("\n### Testing using two NUMA nodes ###\n");
run_on_core_pair(&cores, s, bulk_push_pop);
}
printf("\n### Testing on all %u lcores ###\n", rte_lcore_count());
run_on_n_cores(s, bulk_push_pop, rte_lcore_count());
rte_stack_free(s);
return 0;
}
static int
test_stack_perf(void)
{
return __test_stack_perf(0);
}
static int
test_lf_stack_perf(void)
{
return __test_stack_perf(RTE_STACK_F_LF);
}
REGISTER_TEST_COMMAND(stack_perf_autotest, test_stack_perf);
REGISTER_TEST_COMMAND(stack_lf_perf_autotest, test_lf_stack_perf);