numam-dpdk/lib/librte_table/rte_table_hash_ext.c
Cristian Dumitrescu 6907931413 table: rework variable size key ext hash tables
Rework for the variable size key extendible bucket (EXT) hash
table to use the mask-based hash function and the unified
parameter structure.

Signed-off-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
2017-10-24 13:08:08 +02:00

1041 lines
30 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <rte_common.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include "rte_table_hash.h"
#define KEYS_PER_BUCKET 4
struct bucket {
union {
uintptr_t next;
uint64_t lru_list;
};
uint16_t sig[KEYS_PER_BUCKET];
uint32_t key_pos[KEYS_PER_BUCKET];
};
#define BUCKET_NEXT(bucket) \
((void *) ((bucket)->next & (~1LU)))
#define BUCKET_NEXT_VALID(bucket) \
((bucket)->next & 1LU)
#define BUCKET_NEXT_SET(bucket, bucket_next) \
do \
(bucket)->next = (((uintptr_t) ((void *) (bucket_next))) | 1LU);\
while (0)
#define BUCKET_NEXT_SET_NULL(bucket) \
do \
(bucket)->next = 0; \
while (0)
#define BUCKET_NEXT_COPY(bucket, bucket2) \
do \
(bucket)->next = (bucket2)->next; \
while (0)
#ifdef RTE_TABLE_STATS_COLLECT
#define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val) \
table->stats.n_pkts_in += val
#define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val) \
table->stats.n_pkts_lookup_miss += val
#else
#define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val)
#define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val)
#endif
struct grinder {
struct bucket *bkt;
uint64_t sig;
uint64_t match;
uint32_t key_index;
};
struct rte_table_hash {
struct rte_table_stats stats;
/* Input parameters */
uint32_t key_size;
uint32_t entry_size;
uint32_t n_keys;
uint32_t n_buckets;
uint32_t n_buckets_ext;
rte_table_hash_op_hash f_hash;
uint64_t seed;
uint32_t key_offset;
/* Internal */
uint64_t bucket_mask;
uint32_t key_size_shl;
uint32_t data_size_shl;
uint32_t key_stack_tos;
uint32_t bkt_ext_stack_tos;
/* Grinder */
struct grinder grinders[RTE_PORT_IN_BURST_SIZE_MAX];
/* Tables */
uint64_t *key_mask;
struct bucket *buckets;
struct bucket *buckets_ext;
uint8_t *key_mem;
uint8_t *data_mem;
uint32_t *key_stack;
uint32_t *bkt_ext_stack;
/* Table memory */
uint8_t memory[0] __rte_cache_aligned;
};
static int
keycmp(void *a, void *b, void *b_mask, uint32_t n_bytes)
{
uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask;
uint32_t i;
for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
if (a64[i] != (b64[i] & b_mask64[i]))
return 1;
return 0;
}
static void
keycpy(void *dst, void *src, void *src_mask, uint32_t n_bytes)
{
uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask;
uint32_t i;
for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
dst64[i] = src64[i] & src_mask64[i];
}
static int
check_params_create(struct rte_table_hash_params *params)
{
/* name */
if (params->name == NULL) {
RTE_LOG(ERR, TABLE, "%s: name invalid value\n", __func__);
return -EINVAL;
}
/* key_size */
if ((params->key_size < sizeof(uint64_t)) ||
(!rte_is_power_of_2(params->key_size))) {
RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__);
return -EINVAL;
}
/* n_keys */
if (params->n_keys == 0) {
RTE_LOG(ERR, TABLE, "%s: n_keys invalid value\n", __func__);
return -EINVAL;
}
/* n_buckets */
if ((params->n_buckets == 0) ||
(!rte_is_power_of_2(params->n_buckets))) {
RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__);
return -EINVAL;
}
/* f_hash */
if (params->f_hash == NULL) {
RTE_LOG(ERR, TABLE, "%s: f_hash invalid value\n", __func__);
return -EINVAL;
}
return 0;
}
static void *
rte_table_hash_ext_create(void *params, int socket_id, uint32_t entry_size)
{
struct rte_table_hash_params *p = params;
struct rte_table_hash *t;
uint64_t table_meta_sz, key_mask_sz, bucket_sz, bucket_ext_sz, key_sz;
uint64_t key_stack_sz, bkt_ext_stack_sz, data_sz, total_size;
uint64_t key_mask_offset, bucket_offset, bucket_ext_offset, key_offset;
uint64_t key_stack_offset, bkt_ext_stack_offset, data_offset;
uint32_t n_buckets_ext, i;
/* Check input parameters */
if ((check_params_create(p) != 0) ||
(!rte_is_power_of_2(entry_size)) ||
((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
(sizeof(struct bucket) != (RTE_CACHE_LINE_SIZE / 2)))
return NULL;
/*
* Table dimensioning
*
* Objective: Pick the number of bucket extensions (n_buckets_ext) so that
* it is guaranteed that n_keys keys can be stored in the table at any time.
*
* The worst case scenario takes place when all the n_keys keys fall into
* the same bucket. Actually, due to the KEYS_PER_BUCKET scheme, the worst
* case takes place when (n_keys - KEYS_PER_BUCKET + 1) keys fall into the
* same bucket, while the remaining (KEYS_PER_BUCKET - 1) keys each fall
* into a different bucket. This case defeats the purpose of the hash table.
* It indicates unsuitable f_hash or n_keys to n_buckets ratio.
*
* n_buckets_ext = n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1
*/
n_buckets_ext = p->n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1;
/* Memory allocation */
table_meta_sz = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_table_hash));
key_mask_sz = RTE_CACHE_LINE_ROUNDUP(p->key_size);
bucket_sz = RTE_CACHE_LINE_ROUNDUP(p->n_buckets * sizeof(struct bucket));
bucket_ext_sz =
RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(struct bucket));
key_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * p->key_size);
key_stack_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * sizeof(uint32_t));
bkt_ext_stack_sz =
RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(uint32_t));
data_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * entry_size);
total_size = table_meta_sz + key_mask_sz + bucket_sz + bucket_ext_sz +
key_sz + key_stack_sz + bkt_ext_stack_sz + data_sz;
if (total_size > SIZE_MAX) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes"
" for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
t = rte_zmalloc_socket(p->name,
(size_t)total_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (t == NULL) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes"
" for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
RTE_LOG(INFO, TABLE, "%s (%u-byte key): Hash table %s memory "
"footprint is %" PRIu64 " bytes\n",
__func__, p->key_size, p->name, total_size);
/* Memory initialization */
t->key_size = p->key_size;
t->entry_size = entry_size;
t->n_keys = p->n_keys;
t->n_buckets = p->n_buckets;
t->n_buckets_ext = n_buckets_ext;
t->f_hash = p->f_hash;
t->seed = p->seed;
t->key_offset = p->key_offset;
/* Internal */
t->bucket_mask = t->n_buckets - 1;
t->key_size_shl = __builtin_ctzl(p->key_size);
t->data_size_shl = __builtin_ctzl(entry_size);
/* Tables */
key_mask_offset = 0;
bucket_offset = key_mask_offset + key_mask_sz;
bucket_ext_offset = bucket_offset + bucket_sz;
key_offset = bucket_ext_offset + bucket_ext_sz;
key_stack_offset = key_offset + key_sz;
bkt_ext_stack_offset = key_stack_offset + key_stack_sz;
data_offset = bkt_ext_stack_offset + bkt_ext_stack_sz;
t->key_mask = (uint64_t *) &t->memory[key_mask_offset];
t->buckets = (struct bucket *) &t->memory[bucket_offset];
t->buckets_ext = (struct bucket *) &t->memory[bucket_ext_offset];
t->key_mem = &t->memory[key_offset];
t->key_stack = (uint32_t *) &t->memory[key_stack_offset];
t->bkt_ext_stack = (uint32_t *) &t->memory[bkt_ext_stack_offset];
t->data_mem = &t->memory[data_offset];
/* Key mask */
if (p->key_mask == NULL)
memset(t->key_mask, 0xFF, p->key_size);
else
memcpy(t->key_mask, p->key_mask, p->key_size);
/* Key stack */
for (i = 0; i < t->n_keys; i++)
t->key_stack[i] = t->n_keys - 1 - i;
t->key_stack_tos = t->n_keys;
/* Bucket ext stack */
for (i = 0; i < t->n_buckets_ext; i++)
t->bkt_ext_stack[i] = t->n_buckets_ext - 1 - i;
t->bkt_ext_stack_tos = t->n_buckets_ext;
return t;
}
static int
rte_table_hash_ext_free(void *table)
{
struct rte_table_hash *t = table;
/* Check input parameters */
if (t == NULL)
return -EINVAL;
rte_free(t);
return 0;
}
static int
rte_table_hash_ext_entry_add(void *table, void *key, void *entry,
int *key_found, void **entry_ptr)
{
struct rte_table_hash *t = table;
struct bucket *bkt0, *bkt, *bkt_prev;
uint64_t sig;
uint32_t bkt_index, i;
sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
bkt_index = sig & t->bucket_mask;
bkt0 = &t->buckets[bkt_index];
sig = (sig >> 16) | 1LLU;
/* Key is present in the bucket */
for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
uint32_t bkt_key_index = bkt->key_pos[i];
uint8_t *bkt_key =
&t->key_mem[bkt_key_index << t->key_size_shl];
if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
t->key_size) == 0)) {
uint8_t *data = &t->data_mem[bkt_key_index <<
t->data_size_shl];
memcpy(data, entry, t->entry_size);
*key_found = 1;
*entry_ptr = (void *) data;
return 0;
}
}
/* Key is not present in the bucket */
for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt,
bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
if (bkt_sig == 0) {
uint32_t bkt_key_index;
uint8_t *bkt_key, *data;
/* Allocate new key */
if (t->key_stack_tos == 0) /* No free keys */
return -ENOSPC;
bkt_key_index = t->key_stack[
--t->key_stack_tos];
/* Install new key */
bkt_key = &t->key_mem[bkt_key_index <<
t->key_size_shl];
data = &t->data_mem[bkt_key_index <<
t->data_size_shl];
bkt->sig[i] = (uint16_t) sig;
bkt->key_pos[i] = bkt_key_index;
keycpy(bkt_key, key, t->key_mask, t->key_size);
memcpy(data, entry, t->entry_size);
*key_found = 0;
*entry_ptr = (void *) data;
return 0;
}
}
/* Bucket full: extend bucket */
if ((t->bkt_ext_stack_tos > 0) && (t->key_stack_tos > 0)) {
uint32_t bkt_key_index;
uint8_t *bkt_key, *data;
/* Allocate new bucket ext */
bkt_index = t->bkt_ext_stack[--t->bkt_ext_stack_tos];
bkt = &t->buckets_ext[bkt_index];
/* Chain the new bucket ext */
BUCKET_NEXT_SET(bkt_prev, bkt);
BUCKET_NEXT_SET_NULL(bkt);
/* Allocate new key */
bkt_key_index = t->key_stack[--t->key_stack_tos];
bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl];
data = &t->data_mem[bkt_key_index << t->data_size_shl];
/* Install new key into bucket */
bkt->sig[0] = (uint16_t) sig;
bkt->key_pos[0] = bkt_key_index;
keycpy(bkt_key, key, t->key_mask, t->key_size);
memcpy(data, entry, t->entry_size);
*key_found = 0;
*entry_ptr = (void *) data;
return 0;
}
return -ENOSPC;
}
static int
rte_table_hash_ext_entry_delete(void *table, void *key, int *key_found,
void *entry)
{
struct rte_table_hash *t = table;
struct bucket *bkt0, *bkt, *bkt_prev;
uint64_t sig;
uint32_t bkt_index, i;
sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
bkt_index = sig & t->bucket_mask;
bkt0 = &t->buckets[bkt_index];
sig = (sig >> 16) | 1LLU;
/* Key is present in the bucket */
for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt,
bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
uint32_t bkt_key_index = bkt->key_pos[i];
uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
t->key_size_shl];
if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
t->key_size) == 0)) {
uint8_t *data = &t->data_mem[bkt_key_index <<
t->data_size_shl];
/* Uninstall key from bucket */
bkt->sig[i] = 0;
*key_found = 1;
if (entry)
memcpy(entry, data, t->entry_size);
/* Free key */
t->key_stack[t->key_stack_tos++] =
bkt_key_index;
/*Check if bucket is unused */
if ((bkt_prev != NULL) &&
(bkt->sig[0] == 0) && (bkt->sig[1] == 0) &&
(bkt->sig[2] == 0) && (bkt->sig[3] == 0)) {
/* Unchain bucket */
BUCKET_NEXT_COPY(bkt_prev, bkt);
/* Clear bucket */
memset(bkt, 0, sizeof(struct bucket));
/* Free bucket back to buckets ext */
bkt_index = bkt - t->buckets_ext;
t->bkt_ext_stack[t->bkt_ext_stack_tos++]
= bkt_index;
}
return 0;
}
}
/* Key is not present in the bucket */
*key_found = 0;
return 0;
}
static int rte_table_hash_ext_lookup_unoptimized(
void *table,
struct rte_mbuf **pkts,
uint64_t pkts_mask,
uint64_t *lookup_hit_mask,
void **entries)
{
struct rte_table_hash *t = (struct rte_table_hash *) table;
uint64_t pkts_mask_out = 0;
__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
for ( ; pkts_mask; ) {
struct bucket *bkt0, *bkt;
struct rte_mbuf *pkt;
uint8_t *key;
uint64_t pkt_mask, sig;
uint32_t pkt_index, bkt_index, i;
pkt_index = __builtin_ctzll(pkts_mask);
pkt_mask = 1LLU << pkt_index;
pkts_mask &= ~pkt_mask;
pkt = pkts[pkt_index];
key = RTE_MBUF_METADATA_UINT8_PTR(pkt, t->key_offset);
sig = (uint64_t) t->f_hash(key, t->key_mask, t->key_size, t->seed);
bkt_index = sig & t->bucket_mask;
bkt0 = &t->buckets[bkt_index];
sig = (sig >> 16) | 1LLU;
/* Key is present in the bucket */
for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
uint32_t bkt_key_index = bkt->key_pos[i];
uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
t->key_size_shl];
if ((sig == bkt_sig) && (keycmp(bkt_key, key,
t->key_mask, t->key_size) == 0)) {
uint8_t *data = &t->data_mem[
bkt_key_index << t->data_size_shl];
pkts_mask_out |= pkt_mask;
entries[pkt_index] = (void *) data;
break;
}
}
}
*lookup_hit_mask = pkts_mask_out;
return 0;
}
/***
*
* mask = match bitmask
* match = at least one match
* match_many = more than one match
* match_pos = position of first match
*
*----------------------------------------
* mask match match_many match_pos
*----------------------------------------
* 0000 0 0 00
* 0001 1 0 00
* 0010 1 0 01
* 0011 1 1 00
*----------------------------------------
* 0100 1 0 10
* 0101 1 1 00
* 0110 1 1 01
* 0111 1 1 00
*----------------------------------------
* 1000 1 0 11
* 1001 1 1 00
* 1010 1 1 01
* 1011 1 1 00
*----------------------------------------
* 1100 1 1 10
* 1101 1 1 00
* 1110 1 1 01
* 1111 1 1 00
*----------------------------------------
*
* match = 1111_1111_1111_1110
* match_many = 1111_1110_1110_1000
* match_pos = 0001_0010_0001_0011__0001_0010_0001_0000
*
* match = 0xFFFELLU
* match_many = 0xFEE8LLU
* match_pos = 0x12131210LLU
*
***/
#define LUT_MATCH 0xFFFELLU
#define LUT_MATCH_MANY 0xFEE8LLU
#define LUT_MATCH_POS 0x12131210LLU
#define lookup_cmp_sig(mbuf_sig, bucket, match, match_many, match_pos) \
{ \
uint64_t bucket_sig[4], mask[4], mask_all; \
\
bucket_sig[0] = bucket->sig[0]; \
bucket_sig[1] = bucket->sig[1]; \
bucket_sig[2] = bucket->sig[2]; \
bucket_sig[3] = bucket->sig[3]; \
\
bucket_sig[0] ^= mbuf_sig; \
bucket_sig[1] ^= mbuf_sig; \
bucket_sig[2] ^= mbuf_sig; \
bucket_sig[3] ^= mbuf_sig; \
\
mask[0] = 0; \
mask[1] = 0; \
mask[2] = 0; \
mask[3] = 0; \
\
if (bucket_sig[0] == 0) \
mask[0] = 1; \
if (bucket_sig[1] == 0) \
mask[1] = 2; \
if (bucket_sig[2] == 0) \
mask[2] = 4; \
if (bucket_sig[3] == 0) \
mask[3] = 8; \
\
mask_all = (mask[0] | mask[1]) | (mask[2] | mask[3]); \
\
match = (LUT_MATCH >> mask_all) & 1; \
match_many = (LUT_MATCH_MANY >> mask_all) & 1; \
match_pos = (LUT_MATCH_POS >> (mask_all << 1)) & 3; \
}
#define lookup_cmp_key(mbuf, key, match_key, f) \
{ \
uint64_t *pkt_key = RTE_MBUF_METADATA_UINT64_PTR(mbuf, f->key_offset);\
uint64_t *bkt_key = (uint64_t *) key; \
uint64_t *key_mask = f->key_mask; \
\
switch (f->key_size) { \
case 8: \
{ \
uint64_t xor = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
match_key = 0; \
if (xor == 0) \
match_key = 1; \
} \
break; \
\
case 16: \
{ \
uint64_t xor[2], or; \
\
xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
or = xor[0] | xor[1]; \
match_key = 0; \
if (or == 0) \
match_key = 1; \
} \
break; \
\
case 32: \
{ \
uint64_t xor[4], or; \
\
xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \
xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \
or = xor[0] | xor[1] | xor[2] | xor[3]; \
match_key = 0; \
if (or == 0) \
match_key = 1; \
} \
break; \
\
case 64: \
{ \
uint64_t xor[8], or; \
\
xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \
xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \
xor[4] = (pkt_key[4] & key_mask[4]) ^ bkt_key[4]; \
xor[5] = (pkt_key[5] & key_mask[5]) ^ bkt_key[5]; \
xor[6] = (pkt_key[6] & key_mask[6]) ^ bkt_key[6]; \
xor[7] = (pkt_key[7] & key_mask[7]) ^ bkt_key[7]; \
or = xor[0] | xor[1] | xor[2] | xor[3] | \
xor[4] | xor[5] | xor[6] | xor[7]; \
match_key = 0; \
if (or == 0) \
match_key = 1; \
} \
break; \
\
default: \
match_key = 0; \
if (keycmp(bkt_key, pkt_key, key_mask, f->key_size) == 0) \
match_key = 1; \
} \
}
#define lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index) \
{ \
uint64_t pkt00_mask, pkt01_mask; \
struct rte_mbuf *mbuf00, *mbuf01; \
uint32_t key_offset = t->key_offset; \
\
pkt00_index = __builtin_ctzll(pkts_mask); \
pkt00_mask = 1LLU << pkt00_index; \
pkts_mask &= ~pkt00_mask; \
mbuf00 = pkts[pkt00_index]; \
\
pkt01_index = __builtin_ctzll(pkts_mask); \
pkt01_mask = 1LLU << pkt01_index; \
pkts_mask &= ~pkt01_mask; \
mbuf01 = pkts[pkt01_index]; \
\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}
#define lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, \
pkt01_index) \
{ \
uint64_t pkt00_mask, pkt01_mask; \
struct rte_mbuf *mbuf00, *mbuf01; \
uint32_t key_offset = t->key_offset; \
\
pkt00_index = __builtin_ctzll(pkts_mask); \
pkt00_mask = 1LLU << pkt00_index; \
pkts_mask &= ~pkt00_mask; \
mbuf00 = pkts[pkt00_index]; \
\
pkt01_index = __builtin_ctzll(pkts_mask); \
if (pkts_mask == 0) \
pkt01_index = pkt00_index; \
pkt01_mask = 1LLU << pkt01_index; \
pkts_mask &= ~pkt01_mask; \
mbuf01 = pkts[pkt01_index]; \
\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}
#define lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index) \
{ \
struct grinder *g10, *g11; \
uint64_t sig10, sig11, bkt10_index, bkt11_index; \
struct rte_mbuf *mbuf10, *mbuf11; \
struct bucket *bkt10, *bkt11, *buckets = t->buckets; \
uint8_t *key10, *key11; \
uint64_t bucket_mask = t->bucket_mask; \
rte_table_hash_op_hash f_hash = t->f_hash; \
uint64_t seed = t->seed; \
uint32_t key_size = t->key_size; \
uint32_t key_offset = t->key_offset; \
\
mbuf10 = pkts[pkt10_index]; \
key10 = RTE_MBUF_METADATA_UINT8_PTR(mbuf10, key_offset); \
sig10 = (uint64_t) f_hash(key10, t->key_mask, key_size, seed); \
bkt10_index = sig10 & bucket_mask; \
bkt10 = &buckets[bkt10_index]; \
\
mbuf11 = pkts[pkt11_index]; \
key11 = RTE_MBUF_METADATA_UINT8_PTR(mbuf11, key_offset); \
sig11 = (uint64_t) f_hash(key11, t->key_mask, key_size, seed); \
bkt11_index = sig11 & bucket_mask; \
bkt11 = &buckets[bkt11_index]; \
\
rte_prefetch0(bkt10); \
rte_prefetch0(bkt11); \
\
g10 = &g[pkt10_index]; \
g10->sig = sig10; \
g10->bkt = bkt10; \
\
g11 = &g[pkt11_index]; \
g11->sig = sig11; \
g11->bkt = bkt11; \
}
#define lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many)\
{ \
struct grinder *g20, *g21; \
uint64_t sig20, sig21; \
struct bucket *bkt20, *bkt21; \
uint8_t *key20, *key21, *key_mem = t->key_mem; \
uint64_t match20, match21, match_many20, match_many21; \
uint64_t match_pos20, match_pos21; \
uint32_t key20_index, key21_index, key_size_shl = t->key_size_shl;\
\
g20 = &g[pkt20_index]; \
sig20 = g20->sig; \
bkt20 = g20->bkt; \
sig20 = (sig20 >> 16) | 1LLU; \
lookup_cmp_sig(sig20, bkt20, match20, match_many20, match_pos20);\
match20 <<= pkt20_index; \
match_many20 |= BUCKET_NEXT_VALID(bkt20); \
match_many20 <<= pkt20_index; \
key20_index = bkt20->key_pos[match_pos20]; \
key20 = &key_mem[key20_index << key_size_shl]; \
\
g21 = &g[pkt21_index]; \
sig21 = g21->sig; \
bkt21 = g21->bkt; \
sig21 = (sig21 >> 16) | 1LLU; \
lookup_cmp_sig(sig21, bkt21, match21, match_many21, match_pos21);\
match21 <<= pkt21_index; \
match_many21 |= BUCKET_NEXT_VALID(bkt21); \
match_many21 <<= pkt21_index; \
key21_index = bkt21->key_pos[match_pos21]; \
key21 = &key_mem[key21_index << key_size_shl]; \
\
rte_prefetch0(key20); \
rte_prefetch0(key21); \
\
pkts_mask_match_many |= match_many20 | match_many21; \
\
g20->match = match20; \
g20->key_index = key20_index; \
\
g21->match = match21; \
g21->key_index = key21_index; \
}
#define lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, \
entries) \
{ \
struct grinder *g30, *g31; \
struct rte_mbuf *mbuf30, *mbuf31; \
uint8_t *key30, *key31, *key_mem = t->key_mem; \
uint8_t *data30, *data31, *data_mem = t->data_mem; \
uint64_t match30, match31, match_key30, match_key31, match_keys;\
uint32_t key30_index, key31_index; \
uint32_t key_size_shl = t->key_size_shl; \
uint32_t data_size_shl = t->data_size_shl; \
\
mbuf30 = pkts[pkt30_index]; \
g30 = &g[pkt30_index]; \
match30 = g30->match; \
key30_index = g30->key_index; \
key30 = &key_mem[key30_index << key_size_shl]; \
lookup_cmp_key(mbuf30, key30, match_key30, t); \
match_key30 <<= pkt30_index; \
match_key30 &= match30; \
data30 = &data_mem[key30_index << data_size_shl]; \
entries[pkt30_index] = data30; \
\
mbuf31 = pkts[pkt31_index]; \
g31 = &g[pkt31_index]; \
match31 = g31->match; \
key31_index = g31->key_index; \
key31 = &key_mem[key31_index << key_size_shl]; \
lookup_cmp_key(mbuf31, key31, match_key31, t); \
match_key31 <<= pkt31_index; \
match_key31 &= match31; \
data31 = &data_mem[key31_index << data_size_shl]; \
entries[pkt31_index] = data31; \
\
rte_prefetch0(data30); \
rte_prefetch0(data31); \
\
match_keys = match_key30 | match_key31; \
pkts_mask_out |= match_keys; \
}
/***
* The lookup function implements a 4-stage pipeline, with each stage processing
* two different packets. The purpose of pipelined implementation is to hide the
* latency of prefetching the data structures and loosen the data dependency
* between instructions.
*
* p00 _______ p10 _______ p20 _______ p30 _______
*----->| |----->| |----->| |----->| |----->
* | 0 | | 1 | | 2 | | 3 |
*----->|_______|----->|_______|----->|_______|----->|_______|----->
* p01 p11 p21 p31
*
* The naming convention is:
* pXY = packet Y of stage X, X = 0 .. 3, Y = 0 .. 1
*
***/
static int rte_table_hash_ext_lookup(
void *table,
struct rte_mbuf **pkts,
uint64_t pkts_mask,
uint64_t *lookup_hit_mask,
void **entries)
{
struct rte_table_hash *t = (struct rte_table_hash *) table;
struct grinder *g = t->grinders;
uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index;
uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index;
uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0;
int status = 0;
__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(t, n_pkts_in);
/* Cannot run the pipeline with less than 7 packets */
if (__builtin_popcountll(pkts_mask) < 7) {
status = rte_table_hash_ext_lookup_unoptimized(table, pkts,
pkts_mask, lookup_hit_mask, entries);
RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in -
__builtin_popcountll(*lookup_hit_mask));
return status;
}
/* Pipeline stage 0 */
lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
/* Pipeline feed */
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline feed */
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
/*
* Pipeline run
*
*/
for ( ; pkts_mask; ) {
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask,
pkt00_index, pkt01_index);
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index,
pkts_mask_match_many);
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index,
pkts_mask_out, entries);
}
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
entries);
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
entries);
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
entries);
/* Slow path */
pkts_mask_match_many &= ~pkts_mask_out;
if (pkts_mask_match_many) {
uint64_t pkts_mask_out_slow = 0;
status = rte_table_hash_ext_lookup_unoptimized(table, pkts,
pkts_mask_match_many, &pkts_mask_out_slow, entries);
pkts_mask_out |= pkts_mask_out_slow;
}
*lookup_hit_mask = pkts_mask_out;
RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out));
return status;
}
static int
rte_table_hash_ext_stats_read(void *table, struct rte_table_stats *stats, int clear)
{
struct rte_table_hash *t = table;
if (stats != NULL)
memcpy(stats, &t->stats, sizeof(t->stats));
if (clear)
memset(&t->stats, 0, sizeof(t->stats));
return 0;
}
struct rte_table_ops rte_table_hash_ext_ops = {
.f_create = rte_table_hash_ext_create,
.f_free = rte_table_hash_ext_free,
.f_add = rte_table_hash_ext_entry_add,
.f_delete = rte_table_hash_ext_entry_delete,
.f_add_bulk = NULL,
.f_delete_bulk = NULL,
.f_lookup = rte_table_hash_ext_lookup,
.f_stats = rte_table_hash_ext_stats_read,
};