numam-dpdk/lib/cryptodev/rte_crypto_asym.h
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

649 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium Networks
*/
#ifndef _RTE_CRYPTO_ASYM_H_
#define _RTE_CRYPTO_ASYM_H_
/**
* @file rte_crypto_asym.h
*
* RTE Definitions for Asymmetric Cryptography
*
* Defines asymmetric algorithms and modes, as well as supported
* asymmetric crypto operations.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <string.h>
#include <stdint.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_common.h>
#include "rte_crypto_sym.h"
/**
* Buffer to hold crypto params required for asym operations.
*
* These buffers can be used for both input to PMD and output from PMD. When
* used for output from PMD, application has to ensure the buffer is large
* enough to hold the target data.
*/
typedef struct rte_crypto_param_t {
uint8_t *data;
/**< pointer to buffer holding data */
rte_iova_t iova;
/**< IO address of data buffer */
size_t length;
/**< length of data in bytes */
} rte_crypto_param;
/** asym xform type name strings */
extern const char *
rte_crypto_asym_xform_strings[];
/** asym operations type name strings */
extern const char *
rte_crypto_asym_op_strings[];
/**
* Asymmetric crypto transformation types.
* Each xform type maps to one asymmetric algorithm
* performing specific operation
*
*/
enum rte_crypto_asym_xform_type {
RTE_CRYPTO_ASYM_XFORM_UNSPECIFIED = 0,
/**< Invalid xform. */
RTE_CRYPTO_ASYM_XFORM_NONE,
/**< Xform type None.
* May be supported by PMD to support
* passthrough op for debugging purpose.
* if xform_type none , op_type is disregarded.
*/
RTE_CRYPTO_ASYM_XFORM_RSA,
/**< RSA. Performs Encrypt, Decrypt, Sign and Verify.
* Refer to rte_crypto_asym_op_type
*/
RTE_CRYPTO_ASYM_XFORM_DH,
/**< Diffie-Hellman.
* Performs Key Generate and Shared Secret Compute.
* Refer to rte_crypto_asym_op_type
*/
RTE_CRYPTO_ASYM_XFORM_DSA,
/**< Digital Signature Algorithm
* Performs Signature Generation and Verification.
* Refer to rte_crypto_asym_op_type
*/
RTE_CRYPTO_ASYM_XFORM_MODINV,
/**< Modular Multiplicative Inverse
* Perform Modular Multiplicative Inverse b^(-1) mod n
*/
RTE_CRYPTO_ASYM_XFORM_MODEX,
/**< Modular Exponentiation
* Perform Modular Exponentiation b^e mod n
*/
RTE_CRYPTO_ASYM_XFORM_ECDSA,
/**< Elliptic Curve Digital Signature Algorithm
* Perform Signature Generation and Verification.
*/
RTE_CRYPTO_ASYM_XFORM_ECPM,
/**< Elliptic Curve Point Multiplication */
RTE_CRYPTO_ASYM_XFORM_TYPE_LIST_END
/**< End of list */
};
/**
* Asymmetric crypto operation type variants
*/
enum rte_crypto_asym_op_type {
RTE_CRYPTO_ASYM_OP_ENCRYPT,
/**< Asymmetric Encrypt operation */
RTE_CRYPTO_ASYM_OP_DECRYPT,
/**< Asymmetric Decrypt operation */
RTE_CRYPTO_ASYM_OP_SIGN,
/**< Signature Generation operation */
RTE_CRYPTO_ASYM_OP_VERIFY,
/**< Signature Verification operation */
RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE,
/**< DH Private Key generation operation */
RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE,
/**< DH Public Key generation operation */
RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE,
/**< DH Shared Secret compute operation */
RTE_CRYPTO_ASYM_OP_LIST_END
};
/**
* Padding types for RSA signature.
*/
enum rte_crypto_rsa_padding_type {
RTE_CRYPTO_RSA_PADDING_NONE = 0,
/**< RSA no padding scheme */
RTE_CRYPTO_RSA_PADDING_PKCS1_5,
/**< RSA PKCS#1 PKCS1-v1_5 padding scheme. For signatures block type 01,
* for encryption block type 02 are used.
*/
RTE_CRYPTO_RSA_PADDING_OAEP,
/**< RSA PKCS#1 OAEP padding scheme */
RTE_CRYPTO_RSA_PADDING_PSS,
/**< RSA PKCS#1 PSS padding scheme */
RTE_CRYPTO_RSA_PADDING_TYPE_LIST_END
};
/**
* RSA private key type enumeration
*
* enumerates private key format required to perform RSA crypto
* transform.
*
*/
enum rte_crypto_rsa_priv_key_type {
RTE_RSA_KEY_TYPE_EXP,
/**< RSA private key is an exponent */
RTE_RSA_KET_TYPE_QT,
/**< RSA private key is in quintuple format
* See rte_crypto_rsa_priv_key_qt
*/
};
/**
* Structure describing RSA private key in quintuple format.
* See PKCS V1.5 RSA Cryptography Standard.
*/
struct rte_crypto_rsa_priv_key_qt {
rte_crypto_param p;
/**< p - Private key component P
* Private key component of RSA parameter required for CRT method
* of private key operations in Octet-string network byte order
* format.
*/
rte_crypto_param q;
/**< q - Private key component Q
* Private key component of RSA parameter required for CRT method
* of private key operations in Octet-string network byte order
* format.
*/
rte_crypto_param dP;
/**< dP - Private CRT component
* Private CRT component of RSA parameter required for CRT method
* RSA private key operations in Octet-string network byte order
* format.
* dP = d mod ( p - 1 )
*/
rte_crypto_param dQ;
/**< dQ - Private CRT component
* Private CRT component of RSA parameter required for CRT method
* RSA private key operations in Octet-string network byte order
* format.
* dQ = d mod ( q - 1 )
*/
rte_crypto_param qInv;
/**< qInv - Private CRT component
* Private CRT component of RSA parameter required for CRT method
* RSA private key operations in Octet-string network byte order
* format.
* qInv = inv q mod p
*/
};
/**
* Asymmetric RSA transform data
*
* Structure describing RSA xform params
*
*/
struct rte_crypto_rsa_xform {
rte_crypto_param n;
/**< n - Modulus
* Modulus data of RSA operation in Octet-string network
* byte order format.
*/
rte_crypto_param e;
/**< e - Public key exponent
* Public key exponent used for RSA public key operations in Octet-
* string network byte order format.
*/
enum rte_crypto_rsa_priv_key_type key_type;
__extension__
union {
rte_crypto_param d;
/**< d - Private key exponent
* Private key exponent used for RSA
* private key operations in
* Octet-string network byte order format.
*/
struct rte_crypto_rsa_priv_key_qt qt;
/**< qt - Private key in quintuple format */
};
};
/**
* Asymmetric Modular exponentiation transform data
*
* Structure describing modular exponentiation xform param
*
*/
struct rte_crypto_modex_xform {
rte_crypto_param modulus;
/**< modulus
* Pointer to the modulus data for modexp transform operation
* in octet-string network byte order format
*
* In case this number is equal to zero the driver shall set
* the crypto op status field to RTE_CRYPTO_OP_STATUS_ERROR
*/
rte_crypto_param exponent;
/**< exponent
* Exponent of the modexp transform operation in
* octet-string network byte order format
*/
};
/**
* Asymmetric modular multiplicative inverse transform operation
*
* Structure describing modular multiplicative inverse transform
*
*/
struct rte_crypto_modinv_xform {
rte_crypto_param modulus;
/**<
* Pointer to the modulus data for modular multiplicative inverse
* operation in octet-string network byte order format
*
* In case this number is equal to zero the driver shall set
* the crypto op status field to RTE_CRYPTO_OP_STATUS_ERROR
*
* This number shall be relatively prime to base
* in corresponding Modular Multiplicative Inverse
* rte_crypto_mod_op_param
*/
};
/**
* Asymmetric DH transform data
*
* Structure describing deffie-hellman xform params
*
*/
struct rte_crypto_dh_xform {
enum rte_crypto_asym_op_type type;
/**< Setup xform for key generate or shared secret compute */
rte_crypto_param p;
/**< p : Prime modulus data
* DH prime modulus data in octet-string network byte order format.
*
*/
rte_crypto_param g;
/**< g : Generator
* DH group generator data in octet-string network byte order
* format.
*
*/
};
/**
* Asymmetric Digital Signature transform operation
*
* Structure describing DSA xform params
*
*/
struct rte_crypto_dsa_xform {
rte_crypto_param p;
/**< p - Prime modulus
* Prime modulus data for DSA operation in Octet-string network byte
* order format.
*/
rte_crypto_param q;
/**< q : Order of the subgroup.
* Order of the subgroup data in Octet-string network byte order
* format.
* (p-1) % q = 0
*/
rte_crypto_param g;
/**< g: Generator of the subgroup
* Generator data in Octet-string network byte order format.
*/
rte_crypto_param x;
/**< x: Private key of the signer in octet-string network
* byte order format.
* Used when app has pre-defined private key.
* Valid only when xform chain is DSA ONLY.
* if xform chain is DH private key generate + DSA, then DSA sign
* compute will use internally generated key.
*/
};
/**
* TLS named curves
* https://tools.ietf.org/html/rfc8422
*/
enum rte_crypto_ec_group {
RTE_CRYPTO_EC_GROUP_UNKNOWN = 0,
RTE_CRYPTO_EC_GROUP_SECP192R1 = 19,
RTE_CRYPTO_EC_GROUP_SECP224R1 = 21,
RTE_CRYPTO_EC_GROUP_SECP256R1 = 23,
RTE_CRYPTO_EC_GROUP_SECP384R1 = 24,
RTE_CRYPTO_EC_GROUP_SECP521R1 = 25,
};
/**
* Structure for elliptic curve point
*/
struct rte_crypto_ec_point {
rte_crypto_param x;
/**< X coordinate */
rte_crypto_param y;
/**< Y coordinate */
};
/**
* Asymmetric elliptic curve transform data
*
* Structure describing all EC based xform params
*
*/
struct rte_crypto_ec_xform {
enum rte_crypto_ec_group curve_id;
/**< Pre-defined ec groups */
};
/**
* Operations params for modular operations:
* exponentiation and multiplicative inverse
*
*/
struct rte_crypto_mod_op_param {
rte_crypto_param base;
/**<
* Pointer to base of modular exponentiation/multiplicative
* inverse data in octet-string network byte order format
*
* In case Multiplicative Inverse is used this number shall
* be relatively prime to modulus in corresponding Modular
* Multiplicative Inverse rte_crypto_modinv_xform
*/
rte_crypto_param result;
/**<
* Pointer to the result of modular exponentiation/multiplicative inverse
* data in octet-string network byte order format.
*
* This field shall be big enough to hold the result of Modular
* Exponentiation or Modular Multiplicative Inverse
* (bigger or equal to length of modulus)
*/
};
/**
* Asymmetric crypto transform data
*
* Structure describing asym xforms.
*/
struct rte_crypto_asym_xform {
struct rte_crypto_asym_xform *next;
/**< Pointer to next xform to set up xform chain.*/
enum rte_crypto_asym_xform_type xform_type;
/**< Asymmetric crypto transform */
__extension__
union {
struct rte_crypto_rsa_xform rsa;
/**< RSA xform parameters */
struct rte_crypto_modex_xform modex;
/**< Modular Exponentiation xform parameters */
struct rte_crypto_modinv_xform modinv;
/**< Modular Multiplicative Inverse xform parameters */
struct rte_crypto_dh_xform dh;
/**< DH xform parameters */
struct rte_crypto_dsa_xform dsa;
/**< DSA xform parameters */
struct rte_crypto_ec_xform ec;
/**< EC xform parameters, used by elliptic curve based
* operations.
*/
};
};
struct rte_cryptodev_asym_session;
/**
* RSA operation params
*
*/
struct rte_crypto_rsa_op_param {
enum rte_crypto_asym_op_type op_type;
/**< Type of RSA operation for transform */
rte_crypto_param message;
/**<
* Pointer to input data
* - to be encrypted for RSA public encrypt.
* - to be signed for RSA sign generation.
* - to be authenticated for RSA sign verification.
*
* Pointer to output data
* - for RSA private decrypt.
* In this case the underlying array should have been
* allocated with enough memory to hold plaintext output
* (i.e. must be at least RSA key size). The message.length
* field should be 0 and will be overwritten by the PMD
* with the decrypted length.
*
* All data is in Octet-string network byte order format.
*/
rte_crypto_param cipher;
/**<
* Pointer to input data
* - to be decrypted for RSA private decrypt.
*
* Pointer to output data
* - for RSA public encrypt.
* In this case the underlying array should have been allocated
* with enough memory to hold ciphertext output (i.e. must be
* at least RSA key size). The cipher.length field should
* be 0 and will be overwritten by the PMD with the encrypted length.
*
* All data is in Octet-string network byte order format.
*/
rte_crypto_param sign;
/**<
* Pointer to input data
* - to be verified for RSA public decrypt.
*
* Pointer to output data
* - for RSA private encrypt.
* In this case the underlying array should have been allocated
* with enough memory to hold signature output (i.e. must be
* at least RSA key size). The sign.length field should
* be 0 and will be overwritten by the PMD with the signature length.
*
* All data is in Octet-string network byte order format.
*/
enum rte_crypto_rsa_padding_type pad;
/**< RSA padding scheme to be used for transform */
enum rte_crypto_auth_algorithm md;
/**< Hash algorithm to be used for data hash if padding
* scheme is either OAEP or PSS. Valid hash algorithms
* are:
* MD5, SHA1, SHA224, SHA256, SHA384, SHA512
*/
enum rte_crypto_auth_algorithm mgf1md;
/**<
* Hash algorithm to be used for mask generation if
* padding scheme is either OAEP or PSS. If padding
* scheme is unspecified data hash algorithm is used
* for mask generation. Valid hash algorithms are:
* MD5, SHA1, SHA224, SHA256, SHA384, SHA512
*/
};
/**
* Diffie-Hellman Operations params.
* @note:
*/
struct rte_crypto_dh_op_param {
rte_crypto_param pub_key;
/**<
* Output generated public key when xform type is
* DH PUB_KEY_GENERATION.
* Input peer public key when xform type is DH
* SHARED_SECRET_COMPUTATION
* pub_key is in octet-string network byte order format.
*
*/
rte_crypto_param priv_key;
/**<
* Output generated private key if xform type is
* DH PRIVATE_KEY_GENERATION
* Input when xform type is DH SHARED_SECRET_COMPUTATION.
* priv_key is in octet-string network byte order format.
*
*/
rte_crypto_param shared_secret;
/**<
* Output with calculated shared secret
* when dh xform set up with op type = SHARED_SECRET_COMPUTATION.
* shared_secret is an octet-string network byte order format.
*
*/
};
/**
* DSA Operations params
*
*/
struct rte_crypto_dsa_op_param {
enum rte_crypto_asym_op_type op_type;
/**< Signature Generation or Verification */
rte_crypto_param message;
/**< input message to be signed or verified */
rte_crypto_param r;
/**< dsa sign component 'r' value
*
* output if op_type = sign generate,
* input if op_type = sign verify
*/
rte_crypto_param s;
/**< dsa sign component 's' value
*
* output if op_type = sign generate,
* input if op_type = sign verify
*/
rte_crypto_param y;
/**< y : Public key of the signer.
* Public key data of the signer in Octet-string network byte order
* format.
* y = g^x mod p
*/
};
/**
* ECDSA operation params
*/
struct rte_crypto_ecdsa_op_param {
enum rte_crypto_asym_op_type op_type;
/**< Signature generation or verification */
rte_crypto_param pkey;
/**< Private key of the signer for signature generation */
struct rte_crypto_ec_point q;
/**< Public key of the signer for verification */
rte_crypto_param message;
/**< Input message digest to be signed or verified */
rte_crypto_param k;
/**< The ECDSA per-message secret number, which is an integer
* in the interval (1, n-1)
*/
rte_crypto_param r;
/**< r component of elliptic curve signature
* output : for signature generation
* input : for signature verification
*/
rte_crypto_param s;
/**< s component of elliptic curve signature
* output : for signature generation
* input : for signature verification
*/
};
/**
* Structure for EC point multiplication operation param
*/
struct rte_crypto_ecpm_op_param {
struct rte_crypto_ec_point p;
/**< x and y coordinates of input point */
struct rte_crypto_ec_point r;
/**< x and y coordinates of resultant point */
rte_crypto_param scalar;
/**< Scalar to multiply the input point */
};
/**
* Asymmetric Cryptographic Operation.
*
* Structure describing asymmetric crypto operation params.
*
*/
struct rte_crypto_asym_op {
RTE_STD_C11
union {
struct rte_cryptodev_asym_session *session;
/**< Handle for the initialised session context */
struct rte_crypto_asym_xform *xform;
/**< Session-less API crypto operation parameters */
};
__extension__
union {
struct rte_crypto_rsa_op_param rsa;
struct rte_crypto_mod_op_param modex;
struct rte_crypto_mod_op_param modinv;
struct rte_crypto_dh_op_param dh;
struct rte_crypto_dsa_op_param dsa;
struct rte_crypto_ecdsa_op_param ecdsa;
struct rte_crypto_ecpm_op_param ecpm;
};
};
#ifdef __cplusplus
}
#endif
#endif /* _RTE_CRYPTO_ASYM_H_ */