numam-dpdk/drivers/net/axgbe/axgbe_phy_impl.c
Girish Nandibasappa 936e294c8e net/axgbe: support 1/2.5Gbps
Added support for 1Gbps and 2.5Gbps in axgbe dpdk driver

Signed-off-by: Girish Nandibasappa <girish.nandibasappa@amd.com>
Acked-by: Ravi Kumar <ravi1.kumar@amd.com>
2020-01-17 19:59:19 +01:00

2238 lines
58 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
* Copyright(c) 2018 Synopsys, Inc. All rights reserved.
*/
#include "axgbe_ethdev.h"
#include "axgbe_common.h"
#include "axgbe_phy.h"
#define AXGBE_PHY_PORT_SPEED_100 BIT(0)
#define AXGBE_PHY_PORT_SPEED_1000 BIT(1)
#define AXGBE_PHY_PORT_SPEED_2500 BIT(2)
#define AXGBE_PHY_PORT_SPEED_10000 BIT(3)
#define AXGBE_MUTEX_RELEASE 0x80000000
#define AXGBE_SFP_DIRECT 7
/* I2C target addresses */
#define AXGBE_SFP_SERIAL_ID_ADDRESS 0x50
#define AXGBE_SFP_DIAG_INFO_ADDRESS 0x51
#define AXGBE_SFP_PHY_ADDRESS 0x56
#define AXGBE_GPIO_ADDRESS_PCA9555 0x20
/* SFP sideband signal indicators */
#define AXGBE_GPIO_NO_TX_FAULT BIT(0)
#define AXGBE_GPIO_NO_RATE_SELECT BIT(1)
#define AXGBE_GPIO_NO_MOD_ABSENT BIT(2)
#define AXGBE_GPIO_NO_RX_LOS BIT(3)
/* Rate-change complete wait/retry count */
#define AXGBE_RATECHANGE_COUNT 500
/* CDR delay values for KR support (in usec) */
#define AXGBE_CDR_DELAY_INIT 10000
#define AXGBE_CDR_DELAY_INC 10000
#define AXGBE_CDR_DELAY_MAX 100000
enum axgbe_port_mode {
AXGBE_PORT_MODE_RSVD = 0,
AXGBE_PORT_MODE_BACKPLANE,
AXGBE_PORT_MODE_BACKPLANE_2500,
AXGBE_PORT_MODE_1000BASE_T,
AXGBE_PORT_MODE_1000BASE_X,
AXGBE_PORT_MODE_NBASE_T,
AXGBE_PORT_MODE_10GBASE_T,
AXGBE_PORT_MODE_10GBASE_R,
AXGBE_PORT_MODE_SFP,
AXGBE_PORT_MODE_MAX,
};
enum axgbe_conn_type {
AXGBE_CONN_TYPE_NONE = 0,
AXGBE_CONN_TYPE_SFP,
AXGBE_CONN_TYPE_MDIO,
AXGBE_CONN_TYPE_RSVD1,
AXGBE_CONN_TYPE_BACKPLANE,
AXGBE_CONN_TYPE_MAX,
};
/* SFP/SFP+ related definitions */
enum axgbe_sfp_comm {
AXGBE_SFP_COMM_DIRECT = 0,
AXGBE_SFP_COMM_PCA9545,
};
enum axgbe_sfp_cable {
AXGBE_SFP_CABLE_UNKNOWN = 0,
AXGBE_SFP_CABLE_ACTIVE,
AXGBE_SFP_CABLE_PASSIVE,
};
enum axgbe_sfp_base {
AXGBE_SFP_BASE_UNKNOWN = 0,
AXGBE_SFP_BASE_1000_T,
AXGBE_SFP_BASE_1000_SX,
AXGBE_SFP_BASE_1000_LX,
AXGBE_SFP_BASE_1000_CX,
AXGBE_SFP_BASE_10000_SR,
AXGBE_SFP_BASE_10000_LR,
AXGBE_SFP_BASE_10000_LRM,
AXGBE_SFP_BASE_10000_ER,
AXGBE_SFP_BASE_10000_CR,
};
enum axgbe_sfp_speed {
AXGBE_SFP_SPEED_UNKNOWN = 0,
AXGBE_SFP_SPEED_100_1000,
AXGBE_SFP_SPEED_1000,
AXGBE_SFP_SPEED_10000,
};
/* SFP Serial ID Base ID values relative to an offset of 0 */
#define AXGBE_SFP_BASE_ID 0
#define AXGBE_SFP_ID_SFP 0x03
#define AXGBE_SFP_BASE_EXT_ID 1
#define AXGBE_SFP_EXT_ID_SFP 0x04
#define AXGBE_SFP_BASE_10GBE_CC 3
#define AXGBE_SFP_BASE_10GBE_CC_SR BIT(4)
#define AXGBE_SFP_BASE_10GBE_CC_LR BIT(5)
#define AXGBE_SFP_BASE_10GBE_CC_LRM BIT(6)
#define AXGBE_SFP_BASE_10GBE_CC_ER BIT(7)
#define AXGBE_SFP_BASE_1GBE_CC 6
#define AXGBE_SFP_BASE_1GBE_CC_SX BIT(0)
#define AXGBE_SFP_BASE_1GBE_CC_LX BIT(1)
#define AXGBE_SFP_BASE_1GBE_CC_CX BIT(2)
#define AXGBE_SFP_BASE_1GBE_CC_T BIT(3)
#define AXGBE_SFP_BASE_CABLE 8
#define AXGBE_SFP_BASE_CABLE_PASSIVE BIT(2)
#define AXGBE_SFP_BASE_CABLE_ACTIVE BIT(3)
#define AXGBE_SFP_BASE_BR 12
#define AXGBE_SFP_BASE_BR_1GBE_MIN 0x0a
#define AXGBE_SFP_BASE_BR_1GBE_MAX 0x0d
#define AXGBE_SFP_BASE_BR_10GBE_MIN 0x64
#define AXGBE_SFP_BASE_BR_10GBE_MAX 0x68
#define AXGBE_SFP_BASE_CU_CABLE_LEN 18
#define AXGBE_SFP_BASE_VENDOR_NAME 20
#define AXGBE_SFP_BASE_VENDOR_NAME_LEN 16
#define AXGBE_SFP_BASE_VENDOR_PN 40
#define AXGBE_SFP_BASE_VENDOR_PN_LEN 16
#define AXGBE_SFP_BASE_VENDOR_REV 56
#define AXGBE_SFP_BASE_VENDOR_REV_LEN 4
#define AXGBE_SFP_BASE_CC 63
/* SFP Serial ID Extended ID values relative to an offset of 64 */
#define AXGBE_SFP_BASE_VENDOR_SN 4
#define AXGBE_SFP_BASE_VENDOR_SN_LEN 16
#define AXGBE_SFP_EXTD_DIAG 28
#define AXGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2)
#define AXGBE_SFP_EXTD_SFF_8472 30
#define AXGBE_SFP_EXTD_CC 31
struct axgbe_sfp_eeprom {
u8 base[64];
u8 extd[32];
u8 vendor[32];
};
#define AXGBE_BEL_FUSE_VENDOR "BEL-FUSE"
#define AXGBE_BEL_FUSE_PARTNO "1GBT-SFP06"
struct axgbe_sfp_ascii {
union {
char vendor[AXGBE_SFP_BASE_VENDOR_NAME_LEN + 1];
char partno[AXGBE_SFP_BASE_VENDOR_PN_LEN + 1];
char rev[AXGBE_SFP_BASE_VENDOR_REV_LEN + 1];
char serno[AXGBE_SFP_BASE_VENDOR_SN_LEN + 1];
} u;
};
/* MDIO PHY reset types */
enum axgbe_mdio_reset {
AXGBE_MDIO_RESET_NONE = 0,
AXGBE_MDIO_RESET_I2C_GPIO,
AXGBE_MDIO_RESET_INT_GPIO,
AXGBE_MDIO_RESET_MAX,
};
/* Re-driver related definitions */
enum axgbe_phy_redrv_if {
AXGBE_PHY_REDRV_IF_MDIO = 0,
AXGBE_PHY_REDRV_IF_I2C,
AXGBE_PHY_REDRV_IF_MAX,
};
enum axgbe_phy_redrv_model {
AXGBE_PHY_REDRV_MODEL_4223 = 0,
AXGBE_PHY_REDRV_MODEL_4227,
AXGBE_PHY_REDRV_MODEL_MAX,
};
enum axgbe_phy_redrv_mode {
AXGBE_PHY_REDRV_MODE_CX = 5,
AXGBE_PHY_REDRV_MODE_SR = 9,
};
#define AXGBE_PHY_REDRV_MODE_REG 0x12b0
/* PHY related configuration information */
struct axgbe_phy_data {
enum axgbe_port_mode port_mode;
unsigned int port_id;
unsigned int port_speeds;
enum axgbe_conn_type conn_type;
enum axgbe_mode cur_mode;
enum axgbe_mode start_mode;
unsigned int rrc_count;
unsigned int mdio_addr;
unsigned int comm_owned;
/* SFP Support */
enum axgbe_sfp_comm sfp_comm;
unsigned int sfp_mux_address;
unsigned int sfp_mux_channel;
unsigned int sfp_gpio_address;
unsigned int sfp_gpio_mask;
unsigned int sfp_gpio_rx_los;
unsigned int sfp_gpio_tx_fault;
unsigned int sfp_gpio_mod_absent;
unsigned int sfp_gpio_rate_select;
unsigned int sfp_rx_los;
unsigned int sfp_tx_fault;
unsigned int sfp_mod_absent;
unsigned int sfp_diags;
unsigned int sfp_changed;
unsigned int sfp_phy_avail;
unsigned int sfp_cable_len;
enum axgbe_sfp_base sfp_base;
enum axgbe_sfp_cable sfp_cable;
enum axgbe_sfp_speed sfp_speed;
struct axgbe_sfp_eeprom sfp_eeprom;
/* External PHY support */
enum axgbe_mdio_mode phydev_mode;
enum axgbe_mdio_reset mdio_reset;
unsigned int mdio_reset_addr;
unsigned int mdio_reset_gpio;
/* Re-driver support */
unsigned int redrv;
unsigned int redrv_if;
unsigned int redrv_addr;
unsigned int redrv_lane;
unsigned int redrv_model;
/* KR AN support */
unsigned int phy_cdr_notrack;
unsigned int phy_cdr_delay;
};
static enum axgbe_an_mode axgbe_phy_an_mode(struct axgbe_port *pdata);
static int axgbe_phy_i2c_xfer(struct axgbe_port *pdata,
struct axgbe_i2c_op *i2c_op)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
/* Be sure we own the bus */
if (!phy_data->comm_owned)
return -EIO;
return pdata->i2c_if.i2c_xfer(pdata, i2c_op);
}
static int axgbe_phy_redrv_write(struct axgbe_port *pdata, unsigned int reg,
unsigned int val)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
struct axgbe_i2c_op i2c_op;
uint16_t *redrv_val;
u8 redrv_data[5], csum;
unsigned int i, retry;
int ret;
/* High byte of register contains read/write indicator */
redrv_data[0] = ((reg >> 8) & 0xff) << 1;
redrv_data[1] = reg & 0xff;
redrv_val = (uint16_t *)&redrv_data[2];
*redrv_val = rte_cpu_to_be_16(val);
/* Calculate 1 byte checksum */
csum = 0;
for (i = 0; i < 4; i++) {
csum += redrv_data[i];
if (redrv_data[i] > csum)
csum++;
}
redrv_data[4] = ~csum;
retry = 1;
again1:
i2c_op.cmd = AXGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->redrv_addr;
i2c_op.len = sizeof(redrv_data);
i2c_op.buf = redrv_data;
ret = axgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again1;
return ret;
}
retry = 1;
again2:
i2c_op.cmd = AXGBE_I2C_CMD_READ;
i2c_op.target = phy_data->redrv_addr;
i2c_op.len = 1;
i2c_op.buf = redrv_data;
ret = axgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again2;
return ret;
}
if (redrv_data[0] != 0xff) {
PMD_DRV_LOG(ERR, "Redriver write checksum error\n");
ret = -EIO;
}
return ret;
}
static int axgbe_phy_i2c_read(struct axgbe_port *pdata, unsigned int target,
void *reg, unsigned int reg_len,
void *val, unsigned int val_len)
{
struct axgbe_i2c_op i2c_op;
int retry, ret;
retry = 1;
again1:
/* Set the specified register to read */
i2c_op.cmd = AXGBE_I2C_CMD_WRITE;
i2c_op.target = target;
i2c_op.len = reg_len;
i2c_op.buf = reg;
ret = axgbe_phy_i2c_xfer(pdata, &i2c_op);
if (ret) {
if ((ret == -EAGAIN) && retry--)
goto again1;
return ret;
}
retry = 1;
again2:
/* Read the specfied register */
i2c_op.cmd = AXGBE_I2C_CMD_READ;
i2c_op.target = target;
i2c_op.len = val_len;
i2c_op.buf = val;
ret = axgbe_phy_i2c_xfer(pdata, &i2c_op);
if ((ret == -EAGAIN) && retry--)
goto again2;
return ret;
}
static int axgbe_phy_sfp_put_mux(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
struct axgbe_i2c_op i2c_op;
uint8_t mux_channel;
if (phy_data->sfp_comm == AXGBE_SFP_COMM_DIRECT)
return 0;
/* Select no mux channels */
mux_channel = 0;
i2c_op.cmd = AXGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->sfp_mux_address;
i2c_op.len = sizeof(mux_channel);
i2c_op.buf = &mux_channel;
return axgbe_phy_i2c_xfer(pdata, &i2c_op);
}
static int axgbe_phy_sfp_get_mux(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
struct axgbe_i2c_op i2c_op;
u8 mux_channel;
if (phy_data->sfp_comm == AXGBE_SFP_COMM_DIRECT)
return 0;
/* Select desired mux channel */
mux_channel = 1 << phy_data->sfp_mux_channel;
i2c_op.cmd = AXGBE_I2C_CMD_WRITE;
i2c_op.target = phy_data->sfp_mux_address;
i2c_op.len = sizeof(mux_channel);
i2c_op.buf = &mux_channel;
return axgbe_phy_i2c_xfer(pdata, &i2c_op);
}
static void axgbe_phy_put_comm_ownership(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
phy_data->comm_owned = 0;
pthread_mutex_unlock(&pdata->phy_mutex);
}
static int axgbe_phy_get_comm_ownership(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
uint64_t timeout;
unsigned int mutex_id;
/* The I2C and MDIO/GPIO bus is multiplexed between multiple devices,
* the driver needs to take the software mutex and then the hardware
* mutexes before being able to use the busses.
*/
pthread_mutex_lock(&pdata->phy_mutex);
if (phy_data->comm_owned)
return 0;
/* Clear the mutexes */
XP_IOWRITE(pdata, XP_I2C_MUTEX, AXGBE_MUTEX_RELEASE);
XP_IOWRITE(pdata, XP_MDIO_MUTEX, AXGBE_MUTEX_RELEASE);
/* Mutex formats are the same for I2C and MDIO/GPIO */
mutex_id = 0;
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id);
XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1);
timeout = rte_get_timer_cycles() + (rte_get_timer_hz() * 5);
while (time_before(rte_get_timer_cycles(), timeout)) {
/* Must be all zeroes in order to obtain the mutex */
if (XP_IOREAD(pdata, XP_I2C_MUTEX) ||
XP_IOREAD(pdata, XP_MDIO_MUTEX)) {
rte_delay_us(100);
continue;
}
/* Obtain the mutex */
XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id);
XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id);
phy_data->comm_owned = 1;
return 0;
}
pthread_mutex_unlock(&pdata->phy_mutex);
PMD_DRV_LOG(ERR, "unable to obtain hardware mutexes\n");
return -ETIMEDOUT;
}
static void axgbe_phy_sfp_phy_settings(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
if (phy_data->sfp_mod_absent) {
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.advertising = pdata->phy.supported;
}
pdata->phy.advertising &= ~ADVERTISED_Autoneg;
pdata->phy.advertising &= ~ADVERTISED_TP;
pdata->phy.advertising &= ~ADVERTISED_FIBRE;
pdata->phy.advertising &= ~ADVERTISED_100baseT_Full;
pdata->phy.advertising &= ~ADVERTISED_1000baseT_Full;
pdata->phy.advertising &= ~ADVERTISED_10000baseT_Full;
pdata->phy.advertising &= ~ADVERTISED_10000baseR_FEC;
switch (phy_data->sfp_base) {
case AXGBE_SFP_BASE_1000_T:
case AXGBE_SFP_BASE_1000_SX:
case AXGBE_SFP_BASE_1000_LX:
case AXGBE_SFP_BASE_1000_CX:
pdata->phy.speed = SPEED_UNKNOWN;
pdata->phy.duplex = DUPLEX_UNKNOWN;
pdata->phy.autoneg = AUTONEG_ENABLE;
pdata->phy.advertising |= ADVERTISED_Autoneg;
break;
case AXGBE_SFP_BASE_10000_SR:
case AXGBE_SFP_BASE_10000_LR:
case AXGBE_SFP_BASE_10000_LRM:
case AXGBE_SFP_BASE_10000_ER:
case AXGBE_SFP_BASE_10000_CR:
default:
pdata->phy.speed = SPEED_10000;
pdata->phy.duplex = DUPLEX_FULL;
pdata->phy.autoneg = AUTONEG_DISABLE;
break;
}
switch (phy_data->sfp_base) {
case AXGBE_SFP_BASE_1000_T:
case AXGBE_SFP_BASE_1000_CX:
case AXGBE_SFP_BASE_10000_CR:
pdata->phy.advertising |= ADVERTISED_TP;
break;
default:
pdata->phy.advertising |= ADVERTISED_FIBRE;
}
switch (phy_data->sfp_speed) {
case AXGBE_SFP_SPEED_100_1000:
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100)
pdata->phy.advertising |= ADVERTISED_100baseT_Full;
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000)
pdata->phy.advertising |= ADVERTISED_1000baseT_Full;
break;
case AXGBE_SFP_SPEED_1000:
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000)
pdata->phy.advertising |= ADVERTISED_1000baseT_Full;
break;
case AXGBE_SFP_SPEED_10000:
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000)
pdata->phy.advertising |= ADVERTISED_10000baseT_Full;
break;
default:
/* Choose the fastest supported speed */
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000)
pdata->phy.advertising |= ADVERTISED_10000baseT_Full;
else if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000)
pdata->phy.advertising |= ADVERTISED_1000baseT_Full;
else if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100)
pdata->phy.advertising |= ADVERTISED_100baseT_Full;
}
}
static bool axgbe_phy_sfp_bit_rate(struct axgbe_sfp_eeprom *sfp_eeprom,
enum axgbe_sfp_speed sfp_speed)
{
u8 *sfp_base, min, max;
sfp_base = sfp_eeprom->base;
switch (sfp_speed) {
case AXGBE_SFP_SPEED_1000:
min = AXGBE_SFP_BASE_BR_1GBE_MIN;
max = AXGBE_SFP_BASE_BR_1GBE_MAX;
break;
case AXGBE_SFP_SPEED_10000:
min = AXGBE_SFP_BASE_BR_10GBE_MIN;
max = AXGBE_SFP_BASE_BR_10GBE_MAX;
break;
default:
return false;
}
return ((sfp_base[AXGBE_SFP_BASE_BR] >= min) &&
(sfp_base[AXGBE_SFP_BASE_BR] <= max));
}
static void axgbe_phy_sfp_external_phy(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
if (!phy_data->sfp_changed)
return;
phy_data->sfp_phy_avail = 0;
if (phy_data->sfp_base != AXGBE_SFP_BASE_1000_T)
return;
}
static bool axgbe_phy_belfuse_parse_quirks(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
struct axgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
if (memcmp(&sfp_eeprom->base[AXGBE_SFP_BASE_VENDOR_NAME],
AXGBE_BEL_FUSE_VENDOR, strlen(AXGBE_BEL_FUSE_VENDOR)))
return false;
if (!memcmp(&sfp_eeprom->base[AXGBE_SFP_BASE_VENDOR_PN],
AXGBE_BEL_FUSE_PARTNO, strlen(AXGBE_BEL_FUSE_PARTNO))) {
phy_data->sfp_base = AXGBE_SFP_BASE_1000_SX;
phy_data->sfp_cable = AXGBE_SFP_CABLE_ACTIVE;
phy_data->sfp_speed = AXGBE_SFP_SPEED_1000;
return true;
}
return false;
}
static bool axgbe_phy_sfp_parse_quirks(struct axgbe_port *pdata)
{
if (axgbe_phy_belfuse_parse_quirks(pdata))
return true;
return false;
}
static void axgbe_phy_sfp_parse_eeprom(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
struct axgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom;
uint8_t *sfp_base;
sfp_base = sfp_eeprom->base;
if (sfp_base[AXGBE_SFP_BASE_ID] != AXGBE_SFP_ID_SFP)
return;
if (sfp_base[AXGBE_SFP_BASE_EXT_ID] != AXGBE_SFP_EXT_ID_SFP)
return;
axgbe_phy_sfp_parse_quirks(pdata);
/* Assume ACTIVE cable unless told it is PASSIVE */
if (sfp_base[AXGBE_SFP_BASE_CABLE] & AXGBE_SFP_BASE_CABLE_PASSIVE) {
phy_data->sfp_cable = AXGBE_SFP_CABLE_PASSIVE;
phy_data->sfp_cable_len = sfp_base[AXGBE_SFP_BASE_CU_CABLE_LEN];
} else {
phy_data->sfp_cable = AXGBE_SFP_CABLE_ACTIVE;
}
/* Determine the type of SFP */
if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_SR)
phy_data->sfp_base = AXGBE_SFP_BASE_10000_SR;
else if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_LR)
phy_data->sfp_base = AXGBE_SFP_BASE_10000_LR;
else if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] &
AXGBE_SFP_BASE_10GBE_CC_LRM)
phy_data->sfp_base = AXGBE_SFP_BASE_10000_LRM;
else if (sfp_base[AXGBE_SFP_BASE_10GBE_CC] & AXGBE_SFP_BASE_10GBE_CC_ER)
phy_data->sfp_base = AXGBE_SFP_BASE_10000_ER;
else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_SX)
phy_data->sfp_base = AXGBE_SFP_BASE_1000_SX;
else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_LX)
phy_data->sfp_base = AXGBE_SFP_BASE_1000_LX;
else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_CX)
phy_data->sfp_base = AXGBE_SFP_BASE_1000_CX;
else if (sfp_base[AXGBE_SFP_BASE_1GBE_CC] & AXGBE_SFP_BASE_1GBE_CC_T)
phy_data->sfp_base = AXGBE_SFP_BASE_1000_T;
else if ((phy_data->sfp_cable == AXGBE_SFP_CABLE_PASSIVE) &&
axgbe_phy_sfp_bit_rate(sfp_eeprom, AXGBE_SFP_SPEED_10000))
phy_data->sfp_base = AXGBE_SFP_BASE_10000_CR;
switch (phy_data->sfp_base) {
case AXGBE_SFP_BASE_1000_T:
phy_data->sfp_speed = AXGBE_SFP_SPEED_100_1000;
break;
case AXGBE_SFP_BASE_1000_SX:
case AXGBE_SFP_BASE_1000_LX:
case AXGBE_SFP_BASE_1000_CX:
phy_data->sfp_speed = AXGBE_SFP_SPEED_1000;
break;
case AXGBE_SFP_BASE_10000_SR:
case AXGBE_SFP_BASE_10000_LR:
case AXGBE_SFP_BASE_10000_LRM:
case AXGBE_SFP_BASE_10000_ER:
case AXGBE_SFP_BASE_10000_CR:
phy_data->sfp_speed = AXGBE_SFP_SPEED_10000;
break;
default:
break;
}
}
static bool axgbe_phy_sfp_verify_eeprom(uint8_t cc_in, uint8_t *buf,
unsigned int len)
{
uint8_t cc;
for (cc = 0; len; buf++, len--)
cc += *buf;
return (cc == cc_in) ? true : false;
}
static int axgbe_phy_sfp_read_eeprom(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
struct axgbe_sfp_eeprom sfp_eeprom;
uint8_t eeprom_addr;
int ret;
ret = axgbe_phy_sfp_get_mux(pdata);
if (ret) {
PMD_DRV_LOG(ERR, "I2C error setting SFP MUX\n");
return ret;
}
/* Read the SFP serial ID eeprom */
eeprom_addr = 0;
ret = axgbe_phy_i2c_read(pdata, AXGBE_SFP_SERIAL_ID_ADDRESS,
&eeprom_addr, sizeof(eeprom_addr),
&sfp_eeprom, sizeof(sfp_eeprom));
if (ret) {
PMD_DRV_LOG(ERR, "I2C error reading SFP EEPROM\n");
goto put;
}
/* Validate the contents read */
if (!axgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[AXGBE_SFP_BASE_CC],
sfp_eeprom.base,
sizeof(sfp_eeprom.base) - 1)) {
ret = -EINVAL;
goto put;
}
if (!axgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[AXGBE_SFP_EXTD_CC],
sfp_eeprom.extd,
sizeof(sfp_eeprom.extd) - 1)) {
ret = -EINVAL;
goto put;
}
/* Check for an added or changed SFP */
if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) {
phy_data->sfp_changed = 1;
memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom));
if (sfp_eeprom.extd[AXGBE_SFP_EXTD_SFF_8472]) {
uint8_t diag_type;
diag_type = sfp_eeprom.extd[AXGBE_SFP_EXTD_DIAG];
if (!(diag_type & AXGBE_SFP_EXTD_DIAG_ADDR_CHANGE))
phy_data->sfp_diags = 1;
}
} else {
phy_data->sfp_changed = 0;
}
put:
axgbe_phy_sfp_put_mux(pdata);
return ret;
}
static void axgbe_phy_sfp_signals(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int gpio_input;
u8 gpio_reg, gpio_ports[2];
int ret;
/* Read the input port registers */
gpio_reg = 0;
ret = axgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address,
&gpio_reg, sizeof(gpio_reg),
gpio_ports, sizeof(gpio_ports));
if (ret) {
PMD_DRV_LOG(ERR, "I2C error reading SFP GPIOs\n");
return;
}
gpio_input = (gpio_ports[1] << 8) | gpio_ports[0];
if (phy_data->sfp_gpio_mask & AXGBE_GPIO_NO_MOD_ABSENT) {
/* No GPIO, just assume the module is present for now */
phy_data->sfp_mod_absent = 0;
} else {
if (!(gpio_input & (1 << phy_data->sfp_gpio_mod_absent)))
phy_data->sfp_mod_absent = 0;
}
if (!(phy_data->sfp_gpio_mask & AXGBE_GPIO_NO_RX_LOS) &&
(gpio_input & (1 << phy_data->sfp_gpio_rx_los)))
phy_data->sfp_rx_los = 1;
if (!(phy_data->sfp_gpio_mask & AXGBE_GPIO_NO_TX_FAULT) &&
(gpio_input & (1 << phy_data->sfp_gpio_tx_fault)))
phy_data->sfp_tx_fault = 1;
}
static void axgbe_phy_sfp_mod_absent(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
phy_data->sfp_mod_absent = 1;
phy_data->sfp_phy_avail = 0;
memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom));
}
static void axgbe_phy_sfp_reset(struct axgbe_phy_data *phy_data)
{
phy_data->sfp_rx_los = 0;
phy_data->sfp_tx_fault = 0;
phy_data->sfp_mod_absent = 1;
phy_data->sfp_diags = 0;
phy_data->sfp_base = AXGBE_SFP_BASE_UNKNOWN;
phy_data->sfp_cable = AXGBE_SFP_CABLE_UNKNOWN;
phy_data->sfp_speed = AXGBE_SFP_SPEED_UNKNOWN;
}
static void axgbe_phy_sfp_detect(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
int ret;
/* Reset the SFP signals and info */
axgbe_phy_sfp_reset(phy_data);
ret = axgbe_phy_get_comm_ownership(pdata);
if (ret)
return;
/* Read the SFP signals and check for module presence */
axgbe_phy_sfp_signals(pdata);
if (phy_data->sfp_mod_absent) {
axgbe_phy_sfp_mod_absent(pdata);
goto put;
}
ret = axgbe_phy_sfp_read_eeprom(pdata);
if (ret) {
/* Treat any error as if there isn't an SFP plugged in */
axgbe_phy_sfp_reset(phy_data);
axgbe_phy_sfp_mod_absent(pdata);
goto put;
}
axgbe_phy_sfp_parse_eeprom(pdata);
axgbe_phy_sfp_external_phy(pdata);
put:
axgbe_phy_sfp_phy_settings(pdata);
axgbe_phy_put_comm_ownership(pdata);
}
static void axgbe_phy_phydev_flowctrl(struct axgbe_port *pdata)
{
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
}
static enum axgbe_mode axgbe_phy_an73_redrv_outcome(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
enum axgbe_mode mode;
unsigned int ad_reg, lp_reg;
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
/* Use external PHY to determine flow control */
if (pdata->phy.pause_autoneg)
axgbe_phy_phydev_flowctrl(pdata);
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
if (lp_reg & 0x20)
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
ad_reg &= lp_reg;
if (ad_reg & 0x80) {
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
mode = AXGBE_MODE_KR;
break;
default:
mode = AXGBE_MODE_SFI;
break;
}
} else if (ad_reg & 0x20) {
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
mode = AXGBE_MODE_KX_1000;
break;
case AXGBE_PORT_MODE_1000BASE_X:
mode = AXGBE_MODE_X;
break;
case AXGBE_PORT_MODE_SFP:
switch (phy_data->sfp_base) {
case AXGBE_SFP_BASE_1000_T:
mode = AXGBE_MODE_SGMII_1000;
break;
case AXGBE_SFP_BASE_1000_SX:
case AXGBE_SFP_BASE_1000_LX:
case AXGBE_SFP_BASE_1000_CX:
default:
mode = AXGBE_MODE_X;
break;
}
break;
default:
mode = AXGBE_MODE_SGMII_1000;
break;
}
} else {
mode = AXGBE_MODE_UNKNOWN;
}
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
return mode;
}
static enum axgbe_mode axgbe_phy_an73_outcome(struct axgbe_port *pdata)
{
enum axgbe_mode mode;
unsigned int ad_reg, lp_reg;
pdata->phy.lp_advertising |= ADVERTISED_Autoneg;
pdata->phy.lp_advertising |= ADVERTISED_Backplane;
/* Compare Advertisement and Link Partner register 1 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_reg & 0x400)
pdata->phy.lp_advertising |= ADVERTISED_Pause;
if (lp_reg & 0x800)
pdata->phy.lp_advertising |= ADVERTISED_Asym_Pause;
if (pdata->phy.pause_autoneg) {
/* Set flow control based on auto-negotiation result */
pdata->phy.tx_pause = 0;
pdata->phy.rx_pause = 0;
if (ad_reg & lp_reg & 0x400) {
pdata->phy.tx_pause = 1;
pdata->phy.rx_pause = 1;
} else if (ad_reg & lp_reg & 0x800) {
if (ad_reg & 0x400)
pdata->phy.rx_pause = 1;
else if (lp_reg & 0x400)
pdata->phy.tx_pause = 1;
}
}
/* Compare Advertisement and Link Partner register 2 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_reg & 0x80)
pdata->phy.lp_advertising |= ADVERTISED_10000baseKR_Full;
if (lp_reg & 0x20)
pdata->phy.lp_advertising |= ADVERTISED_1000baseKX_Full;
ad_reg &= lp_reg;
if (ad_reg & 0x80)
mode = AXGBE_MODE_KR;
else if (ad_reg & 0x20)
mode = AXGBE_MODE_KX_1000;
else
mode = AXGBE_MODE_UNKNOWN;
/* Compare Advertisement and Link Partner register 3 */
ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg & 0xc000)
pdata->phy.lp_advertising |= ADVERTISED_10000baseR_FEC;
return mode;
}
static enum axgbe_mode axgbe_phy_an_outcome(struct axgbe_port *pdata)
{
switch (pdata->an_mode) {
case AXGBE_AN_MODE_CL73:
return axgbe_phy_an73_outcome(pdata);
case AXGBE_AN_MODE_CL73_REDRV:
return axgbe_phy_an73_redrv_outcome(pdata);
case AXGBE_AN_MODE_CL37:
case AXGBE_AN_MODE_CL37_SGMII:
default:
return AXGBE_MODE_UNKNOWN;
}
}
static unsigned int axgbe_phy_an_advertising(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int advertising;
/* Without a re-driver, just return current advertising */
if (!phy_data->redrv)
return pdata->phy.advertising;
/* With the KR re-driver we need to advertise a single speed */
advertising = pdata->phy.advertising;
advertising &= ~ADVERTISED_1000baseKX_Full;
advertising &= ~ADVERTISED_10000baseKR_Full;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
advertising |= ADVERTISED_10000baseKR_Full;
break;
case AXGBE_PORT_MODE_BACKPLANE_2500:
advertising |= ADVERTISED_1000baseKX_Full;
break;
case AXGBE_PORT_MODE_1000BASE_T:
case AXGBE_PORT_MODE_1000BASE_X:
case AXGBE_PORT_MODE_NBASE_T:
advertising |= ADVERTISED_1000baseKX_Full;
break;
case AXGBE_PORT_MODE_10GBASE_T:
PMD_DRV_LOG(ERR, "10GBASE_T mode is not supported\n");
break;
case AXGBE_PORT_MODE_10GBASE_R:
advertising |= ADVERTISED_10000baseKR_Full;
break;
case AXGBE_PORT_MODE_SFP:
switch (phy_data->sfp_base) {
case AXGBE_SFP_BASE_1000_T:
case AXGBE_SFP_BASE_1000_SX:
case AXGBE_SFP_BASE_1000_LX:
case AXGBE_SFP_BASE_1000_CX:
advertising |= ADVERTISED_1000baseKX_Full;
break;
default:
advertising |= ADVERTISED_10000baseKR_Full;
break;
}
break;
default:
advertising |= ADVERTISED_10000baseKR_Full;
break;
}
return advertising;
}
static int axgbe_phy_an_config(struct axgbe_port *pdata __rte_unused)
{
return 0;
/* Dummy API since there is no case to support
* external phy devices registred through kerenl apis
*/
}
static enum axgbe_an_mode axgbe_phy_an_sfp_mode(struct axgbe_phy_data *phy_data)
{
switch (phy_data->sfp_base) {
case AXGBE_SFP_BASE_1000_T:
return AXGBE_AN_MODE_CL37_SGMII;
case AXGBE_SFP_BASE_1000_SX:
case AXGBE_SFP_BASE_1000_LX:
case AXGBE_SFP_BASE_1000_CX:
return AXGBE_AN_MODE_CL37;
default:
return AXGBE_AN_MODE_NONE;
}
}
static enum axgbe_an_mode axgbe_phy_an_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
/* A KR re-driver will always require CL73 AN */
if (phy_data->redrv)
return AXGBE_AN_MODE_CL73_REDRV;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
return AXGBE_AN_MODE_CL73;
case AXGBE_PORT_MODE_BACKPLANE_2500:
return AXGBE_AN_MODE_NONE;
case AXGBE_PORT_MODE_1000BASE_T:
return AXGBE_AN_MODE_CL37_SGMII;
case AXGBE_PORT_MODE_1000BASE_X:
return AXGBE_AN_MODE_CL37;
case AXGBE_PORT_MODE_NBASE_T:
return AXGBE_AN_MODE_CL37_SGMII;
case AXGBE_PORT_MODE_10GBASE_T:
return AXGBE_AN_MODE_CL73;
case AXGBE_PORT_MODE_10GBASE_R:
return AXGBE_AN_MODE_NONE;
case AXGBE_PORT_MODE_SFP:
return axgbe_phy_an_sfp_mode(phy_data);
default:
return AXGBE_AN_MODE_NONE;
}
}
static int axgbe_phy_set_redrv_mode_mdio(struct axgbe_port *pdata,
enum axgbe_phy_redrv_mode mode)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
u16 redrv_reg, redrv_val;
redrv_reg = AXGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
redrv_val = (u16)mode;
return pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr,
redrv_reg, redrv_val);
}
static int axgbe_phy_set_redrv_mode_i2c(struct axgbe_port *pdata,
enum axgbe_phy_redrv_mode mode)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int redrv_reg;
int ret;
/* Calculate the register to write */
redrv_reg = AXGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000);
ret = axgbe_phy_redrv_write(pdata, redrv_reg, mode);
return ret;
}
static void axgbe_phy_set_redrv_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
enum axgbe_phy_redrv_mode mode;
int ret;
if (!phy_data->redrv)
return;
mode = AXGBE_PHY_REDRV_MODE_CX;
if ((phy_data->port_mode == AXGBE_PORT_MODE_SFP) &&
(phy_data->sfp_base != AXGBE_SFP_BASE_1000_CX) &&
(phy_data->sfp_base != AXGBE_SFP_BASE_10000_CR))
mode = AXGBE_PHY_REDRV_MODE_SR;
ret = axgbe_phy_get_comm_ownership(pdata);
if (ret)
return;
if (phy_data->redrv_if)
axgbe_phy_set_redrv_mode_i2c(pdata, mode);
else
axgbe_phy_set_redrv_mode_mdio(pdata, mode);
axgbe_phy_put_comm_ownership(pdata);
}
static void axgbe_phy_start_ratechange(struct axgbe_port *pdata)
{
if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS))
return;
}
static void axgbe_phy_complete_ratechange(struct axgbe_port *pdata)
{
unsigned int wait;
/* Wait for command to complete */
wait = AXGBE_RATECHANGE_COUNT;
while (wait--) {
if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS))
return;
rte_delay_us(1500);
}
}
static void axgbe_phy_rrc(struct axgbe_port *pdata)
{
unsigned int s0;
axgbe_phy_start_ratechange(pdata);
/* Receiver Reset Cycle */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 5);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
axgbe_phy_complete_ratechange(pdata);
}
static void axgbe_phy_power_off(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
axgbe_phy_start_ratechange(pdata);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, 0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
axgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = AXGBE_MODE_UNKNOWN;
}
static void axgbe_phy_sfi_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
axgbe_phy_set_redrv_mode(pdata);
axgbe_phy_start_ratechange(pdata);
/* 10G/SFI */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 3);
if (phy_data->sfp_cable != AXGBE_SFP_CABLE_PASSIVE) {
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
} else {
if (phy_data->sfp_cable_len <= 1)
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 1);
else if (phy_data->sfp_cable_len <= 3)
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 2);
else
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 3);
}
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
axgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = AXGBE_MODE_SFI;
}
static void axgbe_phy_kr_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
axgbe_phy_set_redrv_mode(pdata);
axgbe_phy_start_ratechange(pdata);
/* 10G/KR */
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 4);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
/* Call FW to make the change */
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
axgbe_phy_complete_ratechange(pdata);
phy_data->cur_mode = AXGBE_MODE_KR;
}
static void axgbe_phy_kx_2500_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
axgbe_phy_set_redrv_mode(pdata);
/* 2.5G/KX */
axgbe_phy_start_ratechange(pdata);
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 2);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
phy_data->cur_mode = AXGBE_MODE_KX_2500;
}
static void axgbe_phy_sgmii_1000_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int s0;
axgbe_phy_set_redrv_mode(pdata);
/* 1G/SGMII */
axgbe_phy_start_ratechange(pdata);
s0 = 0;
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, 1);
XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, 2);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0);
XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0);
XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1);
phy_data->cur_mode = AXGBE_MODE_SGMII_1000;
}
static enum axgbe_mode axgbe_phy_cur_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
return phy_data->cur_mode;
}
static enum axgbe_mode axgbe_phy_switch_baset_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
/* No switching if not 10GBase-T */
if (phy_data->port_mode != AXGBE_PORT_MODE_10GBASE_T)
return axgbe_phy_cur_mode(pdata);
switch (axgbe_phy_cur_mode(pdata)) {
case AXGBE_MODE_SGMII_100:
case AXGBE_MODE_SGMII_1000:
return AXGBE_MODE_KR;
case AXGBE_MODE_KR:
default:
return AXGBE_MODE_SGMII_1000;
}
}
static enum axgbe_mode axgbe_phy_switch_bp_2500_mode(struct axgbe_port *pdata
__rte_unused)
{
return AXGBE_MODE_KX_2500;
}
static enum axgbe_mode axgbe_phy_switch_bp_mode(struct axgbe_port *pdata)
{
/* If we are in KR switch to KX, and vice-versa */
switch (axgbe_phy_cur_mode(pdata)) {
case AXGBE_MODE_KX_1000:
return AXGBE_MODE_KR;
case AXGBE_MODE_KR:
default:
return AXGBE_MODE_KX_1000;
}
}
static enum axgbe_mode axgbe_phy_switch_mode(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
return axgbe_phy_switch_bp_mode(pdata);
case AXGBE_PORT_MODE_BACKPLANE_2500:
return axgbe_phy_switch_bp_2500_mode(pdata);
case AXGBE_PORT_MODE_1000BASE_T:
case AXGBE_PORT_MODE_NBASE_T:
case AXGBE_PORT_MODE_10GBASE_T:
return axgbe_phy_switch_baset_mode(pdata);
case AXGBE_PORT_MODE_1000BASE_X:
case AXGBE_PORT_MODE_10GBASE_R:
case AXGBE_PORT_MODE_SFP:
/* No switching, so just return current mode */
return axgbe_phy_cur_mode(pdata);
default:
return AXGBE_MODE_UNKNOWN;
}
}
static enum axgbe_mode axgbe_phy_get_basex_mode(struct axgbe_phy_data *phy_data
__rte_unused,
int speed)
{
switch (speed) {
case SPEED_1000:
return AXGBE_MODE_X;
case SPEED_10000:
return AXGBE_MODE_KR;
default:
return AXGBE_MODE_UNKNOWN;
}
}
static enum axgbe_mode axgbe_phy_get_baset_mode(struct axgbe_phy_data *phy_data
__rte_unused,
int speed)
{
switch (speed) {
case SPEED_100:
return AXGBE_MODE_SGMII_100;
case SPEED_1000:
return AXGBE_MODE_SGMII_1000;
case SPEED_10000:
return AXGBE_MODE_KR;
default:
return AXGBE_MODE_UNKNOWN;
}
}
static enum axgbe_mode axgbe_phy_get_sfp_mode(struct axgbe_phy_data *phy_data,
int speed)
{
switch (speed) {
case SPEED_100:
return AXGBE_MODE_SGMII_100;
case SPEED_1000:
if (phy_data->sfp_base == AXGBE_SFP_BASE_1000_T)
return AXGBE_MODE_SGMII_1000;
else
return AXGBE_MODE_X;
case SPEED_10000:
case SPEED_UNKNOWN:
return AXGBE_MODE_SFI;
default:
return AXGBE_MODE_UNKNOWN;
}
}
static enum axgbe_mode axgbe_phy_get_bp_2500_mode(int speed)
{
switch (speed) {
case SPEED_2500:
return AXGBE_MODE_KX_2500;
default:
return AXGBE_MODE_UNKNOWN;
}
}
static enum axgbe_mode axgbe_phy_get_bp_mode(int speed)
{
switch (speed) {
case SPEED_1000:
return AXGBE_MODE_KX_1000;
case SPEED_10000:
return AXGBE_MODE_KR;
default:
return AXGBE_MODE_UNKNOWN;
}
}
static enum axgbe_mode axgbe_phy_get_mode(struct axgbe_port *pdata,
int speed)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
return axgbe_phy_get_bp_mode(speed);
case AXGBE_PORT_MODE_BACKPLANE_2500:
return axgbe_phy_get_bp_2500_mode(speed);
case AXGBE_PORT_MODE_1000BASE_T:
case AXGBE_PORT_MODE_NBASE_T:
case AXGBE_PORT_MODE_10GBASE_T:
return axgbe_phy_get_baset_mode(phy_data, speed);
case AXGBE_PORT_MODE_1000BASE_X:
case AXGBE_PORT_MODE_10GBASE_R:
return axgbe_phy_get_basex_mode(phy_data, speed);
case AXGBE_PORT_MODE_SFP:
return axgbe_phy_get_sfp_mode(phy_data, speed);
default:
return AXGBE_MODE_UNKNOWN;
}
}
static void axgbe_phy_set_mode(struct axgbe_port *pdata, enum axgbe_mode mode)
{
switch (mode) {
case AXGBE_MODE_KR:
axgbe_phy_kr_mode(pdata);
break;
case AXGBE_MODE_SFI:
axgbe_phy_sfi_mode(pdata);
break;
case AXGBE_MODE_KX_2500:
axgbe_phy_kx_2500_mode(pdata);
break;
case AXGBE_MODE_SGMII_1000:
axgbe_phy_sgmii_1000_mode(pdata);
break;
default:
break;
}
}
static bool axgbe_phy_check_mode(struct axgbe_port *pdata,
enum axgbe_mode mode, u32 advert)
{
if (pdata->phy.autoneg == AUTONEG_ENABLE) {
if (pdata->phy.advertising & advert)
return true;
} else {
enum axgbe_mode cur_mode;
cur_mode = axgbe_phy_get_mode(pdata, pdata->phy.speed);
if (cur_mode == mode)
return true;
}
return false;
}
static bool axgbe_phy_use_basex_mode(struct axgbe_port *pdata,
enum axgbe_mode mode)
{
switch (mode) {
case AXGBE_MODE_X:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case AXGBE_MODE_KR:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseT_Full);
default:
return false;
}
}
static bool axgbe_phy_use_baset_mode(struct axgbe_port *pdata,
enum axgbe_mode mode)
{
switch (mode) {
case AXGBE_MODE_SGMII_100:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_100baseT_Full);
case AXGBE_MODE_SGMII_1000:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case AXGBE_MODE_KR:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseT_Full);
default:
return false;
}
}
static bool axgbe_phy_use_sfp_mode(struct axgbe_port *pdata,
enum axgbe_mode mode)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (mode) {
case AXGBE_MODE_X:
if (phy_data->sfp_base == AXGBE_SFP_BASE_1000_T)
return false;
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case AXGBE_MODE_SGMII_100:
if (phy_data->sfp_base != AXGBE_SFP_BASE_1000_T)
return false;
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_100baseT_Full);
case AXGBE_MODE_SGMII_1000:
if (phy_data->sfp_base != AXGBE_SFP_BASE_1000_T)
return false;
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseT_Full);
case AXGBE_MODE_SFI:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseT_Full);
default:
return false;
}
}
static bool axgbe_phy_use_bp_2500_mode(struct axgbe_port *pdata,
enum axgbe_mode mode)
{
switch (mode) {
case AXGBE_MODE_KX_2500:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_2500baseX_Full);
default:
return false;
}
}
static bool axgbe_phy_use_bp_mode(struct axgbe_port *pdata,
enum axgbe_mode mode)
{
switch (mode) {
case AXGBE_MODE_KX_1000:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_1000baseKX_Full);
case AXGBE_MODE_KR:
return axgbe_phy_check_mode(pdata, mode,
ADVERTISED_10000baseKR_Full);
default:
return false;
}
}
static bool axgbe_phy_use_mode(struct axgbe_port *pdata, enum axgbe_mode mode)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
return axgbe_phy_use_bp_mode(pdata, mode);
case AXGBE_PORT_MODE_BACKPLANE_2500:
return axgbe_phy_use_bp_2500_mode(pdata, mode);
case AXGBE_PORT_MODE_1000BASE_T:
case AXGBE_PORT_MODE_NBASE_T:
case AXGBE_PORT_MODE_10GBASE_T:
return axgbe_phy_use_baset_mode(pdata, mode);
case AXGBE_PORT_MODE_1000BASE_X:
case AXGBE_PORT_MODE_10GBASE_R:
return axgbe_phy_use_basex_mode(pdata, mode);
case AXGBE_PORT_MODE_SFP:
return axgbe_phy_use_sfp_mode(pdata, mode);
default:
return false;
}
}
static int axgbe_phy_link_status(struct axgbe_port *pdata, int *an_restart)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg;
*an_restart = 0;
if (phy_data->port_mode == AXGBE_PORT_MODE_SFP) {
/* Check SFP signals */
axgbe_phy_sfp_detect(pdata);
if (phy_data->sfp_changed) {
*an_restart = 1;
return 0;
}
if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los)
return 0;
}
/* Link status is latched low, so read once to clear
* and then read again to get current state
*/
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1);
if (reg & MDIO_STAT1_LSTATUS)
return 1;
/* No link, attempt a receiver reset cycle */
if (phy_data->rrc_count++) {
phy_data->rrc_count = 0;
axgbe_phy_rrc(pdata);
}
return 0;
}
static void axgbe_phy_sfp_gpio_setup(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg;
reg = XP_IOREAD(pdata, XP_PROP_3);
phy_data->sfp_gpio_address = AXGBE_GPIO_ADDRESS_PCA9555 +
XP_GET_BITS(reg, XP_PROP_3, GPIO_ADDR);
phy_data->sfp_gpio_mask = XP_GET_BITS(reg, XP_PROP_3, GPIO_MASK);
phy_data->sfp_gpio_rx_los = XP_GET_BITS(reg, XP_PROP_3,
GPIO_RX_LOS);
phy_data->sfp_gpio_tx_fault = XP_GET_BITS(reg, XP_PROP_3,
GPIO_TX_FAULT);
phy_data->sfp_gpio_mod_absent = XP_GET_BITS(reg, XP_PROP_3,
GPIO_MOD_ABS);
phy_data->sfp_gpio_rate_select = XP_GET_BITS(reg, XP_PROP_3,
GPIO_RATE_SELECT);
}
static void axgbe_phy_sfp_comm_setup(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg, mux_addr_hi, mux_addr_lo;
reg = XP_IOREAD(pdata, XP_PROP_4);
mux_addr_hi = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_HI);
mux_addr_lo = XP_GET_BITS(reg, XP_PROP_4, MUX_ADDR_LO);
if (mux_addr_lo == AXGBE_SFP_DIRECT)
return;
phy_data->sfp_comm = AXGBE_SFP_COMM_PCA9545;
phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo;
phy_data->sfp_mux_channel = XP_GET_BITS(reg, XP_PROP_4, MUX_CHAN);
}
static void axgbe_phy_sfp_setup(struct axgbe_port *pdata)
{
axgbe_phy_sfp_comm_setup(pdata);
axgbe_phy_sfp_gpio_setup(pdata);
}
static bool axgbe_phy_redrv_error(struct axgbe_phy_data *phy_data)
{
if (!phy_data->redrv)
return false;
if (phy_data->redrv_if >= AXGBE_PHY_REDRV_IF_MAX)
return true;
switch (phy_data->redrv_model) {
case AXGBE_PHY_REDRV_MODEL_4223:
if (phy_data->redrv_lane > 3)
return true;
break;
case AXGBE_PHY_REDRV_MODEL_4227:
if (phy_data->redrv_lane > 1)
return true;
break;
default:
return true;
}
return false;
}
static int axgbe_phy_mdio_reset_setup(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
unsigned int reg;
if (phy_data->conn_type != AXGBE_CONN_TYPE_MDIO)
return 0;
reg = XP_IOREAD(pdata, XP_PROP_3);
phy_data->mdio_reset = XP_GET_BITS(reg, XP_PROP_3, MDIO_RESET);
switch (phy_data->mdio_reset) {
case AXGBE_MDIO_RESET_NONE:
case AXGBE_MDIO_RESET_I2C_GPIO:
case AXGBE_MDIO_RESET_INT_GPIO:
break;
default:
PMD_DRV_LOG(ERR, "unsupported MDIO reset (%#x)\n",
phy_data->mdio_reset);
return -EINVAL;
}
if (phy_data->mdio_reset == AXGBE_MDIO_RESET_I2C_GPIO) {
phy_data->mdio_reset_addr = AXGBE_GPIO_ADDRESS_PCA9555 +
XP_GET_BITS(reg, XP_PROP_3,
MDIO_RESET_I2C_ADDR);
phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3,
MDIO_RESET_I2C_GPIO);
} else if (phy_data->mdio_reset == AXGBE_MDIO_RESET_INT_GPIO) {
phy_data->mdio_reset_gpio = XP_GET_BITS(reg, XP_PROP_3,
MDIO_RESET_INT_GPIO);
}
return 0;
}
static bool axgbe_phy_port_mode_mismatch(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000))
return false;
break;
case AXGBE_PORT_MODE_BACKPLANE_2500:
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_2500)
return false;
break;
case AXGBE_PORT_MODE_1000BASE_T:
if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000))
return false;
break;
case AXGBE_PORT_MODE_1000BASE_X:
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000)
return false;
break;
case AXGBE_PORT_MODE_NBASE_T:
if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_2500))
return false;
break;
case AXGBE_PORT_MODE_10GBASE_T:
if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000))
return false;
break;
case AXGBE_PORT_MODE_10GBASE_R:
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000)
return false;
break;
case AXGBE_PORT_MODE_SFP:
if ((phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) ||
(phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000))
return false;
break;
default:
break;
}
return true;
}
static bool axgbe_phy_conn_type_mismatch(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_BACKPLANE:
case AXGBE_PORT_MODE_BACKPLANE_2500:
if (phy_data->conn_type == AXGBE_CONN_TYPE_BACKPLANE)
return false;
break;
case AXGBE_PORT_MODE_1000BASE_T:
case AXGBE_PORT_MODE_1000BASE_X:
case AXGBE_PORT_MODE_NBASE_T:
case AXGBE_PORT_MODE_10GBASE_T:
case AXGBE_PORT_MODE_10GBASE_R:
if (phy_data->conn_type == AXGBE_CONN_TYPE_MDIO)
return false;
break;
case AXGBE_PORT_MODE_SFP:
if (phy_data->conn_type == AXGBE_CONN_TYPE_SFP)
return false;
break;
default:
break;
}
return true;
}
static bool axgbe_phy_port_enabled(struct axgbe_port *pdata)
{
unsigned int reg;
reg = XP_IOREAD(pdata, XP_PROP_0);
if (!XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS))
return false;
if (!XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE))
return false;
return true;
}
static void axgbe_phy_cdr_track(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
if (!pdata->vdata->an_cdr_workaround)
return;
if (!phy_data->phy_cdr_notrack)
return;
rte_delay_us(phy_data->phy_cdr_delay + 400);
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL,
AXGBE_PMA_CDR_TRACK_EN_MASK,
AXGBE_PMA_CDR_TRACK_EN_ON);
phy_data->phy_cdr_notrack = 0;
}
static void axgbe_phy_cdr_notrack(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
if (!pdata->vdata->an_cdr_workaround)
return;
if (phy_data->phy_cdr_notrack)
return;
XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL,
AXGBE_PMA_CDR_TRACK_EN_MASK,
AXGBE_PMA_CDR_TRACK_EN_OFF);
axgbe_phy_rrc(pdata);
phy_data->phy_cdr_notrack = 1;
}
static void axgbe_phy_kr_training_post(struct axgbe_port *pdata)
{
if (!pdata->cdr_track_early)
axgbe_phy_cdr_track(pdata);
}
static void axgbe_phy_kr_training_pre(struct axgbe_port *pdata)
{
if (pdata->cdr_track_early)
axgbe_phy_cdr_track(pdata);
}
static void axgbe_phy_an_post(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (pdata->an_mode) {
case AXGBE_AN_MODE_CL73:
case AXGBE_AN_MODE_CL73_REDRV:
if (phy_data->cur_mode != AXGBE_MODE_KR)
break;
axgbe_phy_cdr_track(pdata);
switch (pdata->an_result) {
case AXGBE_AN_READY:
case AXGBE_AN_COMPLETE:
break;
default:
if (phy_data->phy_cdr_delay < AXGBE_CDR_DELAY_MAX)
phy_data->phy_cdr_delay += AXGBE_CDR_DELAY_INC;
break;
}
break;
default:
break;
}
}
static void axgbe_phy_an_pre(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
switch (pdata->an_mode) {
case AXGBE_AN_MODE_CL73:
case AXGBE_AN_MODE_CL73_REDRV:
if (phy_data->cur_mode != AXGBE_MODE_KR)
break;
axgbe_phy_cdr_notrack(pdata);
break;
default:
break;
}
}
static void axgbe_phy_stop(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
/* Reset SFP data */
axgbe_phy_sfp_reset(phy_data);
axgbe_phy_sfp_mod_absent(pdata);
/* Reset CDR support */
axgbe_phy_cdr_track(pdata);
/* Power off the PHY */
axgbe_phy_power_off(pdata);
/* Stop the I2C controller */
pdata->i2c_if.i2c_stop(pdata);
}
static int axgbe_phy_start(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
int ret;
/* Start the I2C controller */
ret = pdata->i2c_if.i2c_start(pdata);
if (ret)
return ret;
/* Start in highest supported mode */
axgbe_phy_set_mode(pdata, phy_data->start_mode);
/* Reset CDR support */
axgbe_phy_cdr_track(pdata);
/* After starting the I2C controller, we can check for an SFP */
switch (phy_data->port_mode) {
case AXGBE_PORT_MODE_SFP:
axgbe_phy_sfp_detect(pdata);
break;
default:
break;
}
return ret;
}
static int axgbe_phy_reset(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data = pdata->phy_data;
enum axgbe_mode cur_mode;
/* Reset by power cycling the PHY */
cur_mode = phy_data->cur_mode;
axgbe_phy_power_off(pdata);
/* First time reset is done with passed unknown mode*/
axgbe_phy_set_mode(pdata, cur_mode);
return 0;
}
static int axgbe_phy_init(struct axgbe_port *pdata)
{
struct axgbe_phy_data *phy_data;
unsigned int reg;
int ret;
/* Check if enabled */
if (!axgbe_phy_port_enabled(pdata)) {
PMD_DRV_LOG(ERR, "device is not enabled\n");
return -ENODEV;
}
/* Initialize the I2C controller */
ret = pdata->i2c_if.i2c_init(pdata);
if (ret)
return ret;
phy_data = rte_zmalloc("phy_data memory", sizeof(*phy_data), 0);
if (!phy_data) {
PMD_DRV_LOG(ERR, "phy_data allocation failed\n");
return -ENOMEM;
}
pdata->phy_data = phy_data;
reg = XP_IOREAD(pdata, XP_PROP_0);
phy_data->port_mode = XP_GET_BITS(reg, XP_PROP_0, PORT_MODE);
phy_data->port_id = XP_GET_BITS(reg, XP_PROP_0, PORT_ID);
phy_data->port_speeds = XP_GET_BITS(reg, XP_PROP_0, PORT_SPEEDS);
phy_data->conn_type = XP_GET_BITS(reg, XP_PROP_0, CONN_TYPE);
phy_data->mdio_addr = XP_GET_BITS(reg, XP_PROP_0, MDIO_ADDR);
reg = XP_IOREAD(pdata, XP_PROP_4);
phy_data->redrv = XP_GET_BITS(reg, XP_PROP_4, REDRV_PRESENT);
phy_data->redrv_if = XP_GET_BITS(reg, XP_PROP_4, REDRV_IF);
phy_data->redrv_addr = XP_GET_BITS(reg, XP_PROP_4, REDRV_ADDR);
phy_data->redrv_lane = XP_GET_BITS(reg, XP_PROP_4, REDRV_LANE);
phy_data->redrv_model = XP_GET_BITS(reg, XP_PROP_4, REDRV_MODEL);
/* Validate the connection requested */
if (axgbe_phy_conn_type_mismatch(pdata)) {
PMD_DRV_LOG(ERR, "phy mode/connection mismatch (%#x/%#x)\n",
phy_data->port_mode, phy_data->conn_type);
return -EINVAL;
}
/* Validate the mode requested */
if (axgbe_phy_port_mode_mismatch(pdata)) {
PMD_DRV_LOG(ERR, "phy mode/speed mismatch (%#x/%#x)\n",
phy_data->port_mode, phy_data->port_speeds);
return -EINVAL;
}
/* Check for and validate MDIO reset support */
ret = axgbe_phy_mdio_reset_setup(pdata);
if (ret)
return ret;
/* Validate the re-driver information */
if (axgbe_phy_redrv_error(phy_data)) {
PMD_DRV_LOG(ERR, "phy re-driver settings error\n");
return -EINVAL;
}
pdata->kr_redrv = phy_data->redrv;
/* Indicate current mode is unknown */
phy_data->cur_mode = AXGBE_MODE_UNKNOWN;
/* Initialize supported features */
pdata->phy.supported = 0;
switch (phy_data->port_mode) {
/* Backplane support */
case AXGBE_PORT_MODE_BACKPLANE:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_Backplane;
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseKX_Full;
phy_data->start_mode = AXGBE_MODE_KX_1000;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) {
pdata->phy.supported |= SUPPORTED_10000baseKR_Full;
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |=
SUPPORTED_10000baseR_FEC;
phy_data->start_mode = AXGBE_MODE_KR;
}
phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE;
break;
case AXGBE_PORT_MODE_BACKPLANE_2500:
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_Backplane;
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
phy_data->start_mode = AXGBE_MODE_KX_2500;
phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE;
break;
/* MDIO 1GBase-T support */
case AXGBE_PORT_MODE_1000BASE_T:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_1000;
}
phy_data->phydev_mode = AXGBE_MDIO_MODE_CL22;
break;
/* MDIO Base-X support */
case AXGBE_PORT_MODE_1000BASE_X:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_FIBRE;
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = AXGBE_MODE_X;
phy_data->phydev_mode = AXGBE_MDIO_MODE_CL22;
break;
/* MDIO NBase-T support */
case AXGBE_PORT_MODE_NBASE_T:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_2500) {
pdata->phy.supported |= SUPPORTED_2500baseX_Full;
phy_data->start_mode = AXGBE_MODE_KX_2500;
}
phy_data->phydev_mode = AXGBE_MDIO_MODE_CL45;
break;
/* 10GBase-T support */
case AXGBE_PORT_MODE_10GBASE_T:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) {
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
phy_data->start_mode = AXGBE_MODE_KR;
}
phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE;
break;
/* 10GBase-R support */
case AXGBE_PORT_MODE_10GBASE_R:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |= SUPPORTED_10000baseR_FEC;
phy_data->start_mode = AXGBE_MODE_SFI;
phy_data->phydev_mode = AXGBE_MDIO_MODE_NONE;
break;
/* SFP support */
case AXGBE_PORT_MODE_SFP:
pdata->phy.supported |= SUPPORTED_Autoneg;
pdata->phy.supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
pdata->phy.supported |= SUPPORTED_TP;
pdata->phy.supported |= SUPPORTED_FIBRE;
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_100) {
pdata->phy.supported |= SUPPORTED_100baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_100;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_1000) {
pdata->phy.supported |= SUPPORTED_1000baseT_Full;
phy_data->start_mode = AXGBE_MODE_SGMII_1000;
}
if (phy_data->port_speeds & AXGBE_PHY_PORT_SPEED_10000) {
pdata->phy.supported |= SUPPORTED_10000baseT_Full;
phy_data->start_mode = AXGBE_MODE_SFI;
if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE)
pdata->phy.supported |=
SUPPORTED_10000baseR_FEC;
}
phy_data->phydev_mode = AXGBE_MDIO_MODE_CL22;
axgbe_phy_sfp_setup(pdata);
break;
default:
return -EINVAL;
}
if ((phy_data->conn_type & AXGBE_CONN_TYPE_MDIO) &&
(phy_data->phydev_mode != AXGBE_MDIO_MODE_NONE)) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr,
phy_data->phydev_mode);
if (ret) {
PMD_DRV_LOG(ERR, "mdio port/clause not compatible (%d/%u)\n",
phy_data->mdio_addr, phy_data->phydev_mode);
return -EINVAL;
}
}
if (phy_data->redrv && !phy_data->redrv_if) {
ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr,
AXGBE_MDIO_MODE_CL22);
if (ret) {
PMD_DRV_LOG(ERR, "redriver mdio port not compatible (%u)\n",
phy_data->redrv_addr);
return -EINVAL;
}
}
phy_data->phy_cdr_delay = AXGBE_CDR_DELAY_INIT;
return 0;
}
void axgbe_init_function_ptrs_phy_v2(struct axgbe_phy_if *phy_if)
{
struct axgbe_phy_impl_if *phy_impl = &phy_if->phy_impl;
phy_impl->init = axgbe_phy_init;
phy_impl->reset = axgbe_phy_reset;
phy_impl->start = axgbe_phy_start;
phy_impl->stop = axgbe_phy_stop;
phy_impl->link_status = axgbe_phy_link_status;
phy_impl->use_mode = axgbe_phy_use_mode;
phy_impl->set_mode = axgbe_phy_set_mode;
phy_impl->get_mode = axgbe_phy_get_mode;
phy_impl->switch_mode = axgbe_phy_switch_mode;
phy_impl->cur_mode = axgbe_phy_cur_mode;
phy_impl->an_mode = axgbe_phy_an_mode;
phy_impl->an_config = axgbe_phy_an_config;
phy_impl->an_advertising = axgbe_phy_an_advertising;
phy_impl->an_outcome = axgbe_phy_an_outcome;
phy_impl->an_pre = axgbe_phy_an_pre;
phy_impl->an_post = axgbe_phy_an_post;
phy_impl->kr_training_pre = axgbe_phy_kr_training_pre;
phy_impl->kr_training_post = axgbe_phy_kr_training_post;
}