992e6df3da
mlx5 PMD created the MR (Memory Region) resource on the
mlx5_dma_map call to make the memory available for DMA
operations. On the mlx5_dma_unmap call the MR resource
was not freed but inserted to MR Free list for further
garbage collection.
Actual MR resource destroying happened on device stop
call. That caused the runtime out of memory in case of
application performed multiple DMA map/unmap calls.
The fix immediately frees the MR resource on mlx5_dma_unmap
call not engaging the list. The export for mlx5_mr_free
function from common PMD part is added as well.
Fixes: 989e999d93
("net/mlx5: support PCI device DMA map and unmap")
Cc: stable@dpdk.org
Signed-off-by: Jiawei Wang <jiaweiw@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
1102 lines
31 KiB
C
1102 lines
31 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2016 6WIND S.A.
|
|
* Copyright 2020 Mellanox Technologies, Ltd
|
|
*/
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_rwlock.h>
|
|
|
|
#include "mlx5_glue.h"
|
|
#include "mlx5_common_mp.h"
|
|
#include "mlx5_common_mr.h"
|
|
#include "mlx5_common_utils.h"
|
|
#include "mlx5_malloc.h"
|
|
|
|
struct mr_find_contig_memsegs_data {
|
|
uintptr_t addr;
|
|
uintptr_t start;
|
|
uintptr_t end;
|
|
const struct rte_memseg_list *msl;
|
|
};
|
|
|
|
/**
|
|
* Expand B-tree table to a given size. Can't be called with holding
|
|
* memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param n
|
|
* Number of entries for expansion.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_btree_expand(struct mlx5_mr_btree *bt, int n)
|
|
{
|
|
void *mem;
|
|
int ret = 0;
|
|
|
|
if (n <= bt->size)
|
|
return ret;
|
|
/*
|
|
* Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
|
|
* used inside if there's no room to expand. Because this is a quite
|
|
* rare case and a part of very slow path, it is very acceptable.
|
|
* Initially cache_bh[] will be given practically enough space and once
|
|
* it is expanded, expansion wouldn't be needed again ever.
|
|
*/
|
|
mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
|
|
if (mem == NULL) {
|
|
/* Not an error, B-tree search will be skipped. */
|
|
DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
|
|
(void *)bt);
|
|
ret = -1;
|
|
} else {
|
|
DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
|
|
bt->table = mem;
|
|
bt->size = n;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Look up LKey from given B-tree lookup table, store the last index and return
|
|
* searched LKey.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param[out] idx
|
|
* Pointer to index. Even on search failure, returns index where it stops
|
|
* searching so that index can be used when inserting a new entry.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
|
|
{
|
|
struct mr_cache_entry *lkp_tbl;
|
|
uint16_t n;
|
|
uint16_t base = 0;
|
|
|
|
MLX5_ASSERT(bt != NULL);
|
|
lkp_tbl = *bt->table;
|
|
n = bt->len;
|
|
/* First entry must be NULL for comparison. */
|
|
MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
|
|
lkp_tbl[0].lkey == UINT32_MAX));
|
|
/* Binary search. */
|
|
do {
|
|
register uint16_t delta = n >> 1;
|
|
|
|
if (addr < lkp_tbl[base + delta].start) {
|
|
n = delta;
|
|
} else {
|
|
base += delta;
|
|
n -= delta;
|
|
}
|
|
} while (n > 1);
|
|
MLX5_ASSERT(addr >= lkp_tbl[base].start);
|
|
*idx = base;
|
|
if (addr < lkp_tbl[base].end)
|
|
return lkp_tbl[base].lkey;
|
|
/* Not found. */
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
/**
|
|
* Insert an entry to B-tree lookup table.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param entry
|
|
* Pointer to new entry to insert.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
|
|
{
|
|
struct mr_cache_entry *lkp_tbl;
|
|
uint16_t idx = 0;
|
|
size_t shift;
|
|
|
|
MLX5_ASSERT(bt != NULL);
|
|
MLX5_ASSERT(bt->len <= bt->size);
|
|
MLX5_ASSERT(bt->len > 0);
|
|
lkp_tbl = *bt->table;
|
|
/* Find out the slot for insertion. */
|
|
if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
|
|
DRV_LOG(DEBUG,
|
|
"abort insertion to B-tree(%p): already exist at"
|
|
" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
/* Already exist, return. */
|
|
return 0;
|
|
}
|
|
/* If table is full, return error. */
|
|
if (unlikely(bt->len == bt->size)) {
|
|
bt->overflow = 1;
|
|
return -1;
|
|
}
|
|
/* Insert entry. */
|
|
++idx;
|
|
shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
|
|
if (shift)
|
|
memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
|
|
lkp_tbl[idx] = *entry;
|
|
bt->len++;
|
|
DRV_LOG(DEBUG,
|
|
"inserted B-tree(%p)[%u],"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize B-tree and allocate memory for lookup table.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param n
|
|
* Number of entries to allocate.
|
|
* @param socket
|
|
* NUMA socket on which memory must be allocated.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
|
|
{
|
|
if (bt == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
MLX5_ASSERT(!bt->table && !bt->size);
|
|
memset(bt, 0, sizeof(*bt));
|
|
bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
sizeof(struct mr_cache_entry) * n,
|
|
0, socket);
|
|
if (bt->table == NULL) {
|
|
rte_errno = ENOMEM;
|
|
DEBUG("failed to allocate memory for btree cache on socket %d",
|
|
socket);
|
|
return -rte_errno;
|
|
}
|
|
bt->size = n;
|
|
/* First entry must be NULL for binary search. */
|
|
(*bt->table)[bt->len++] = (struct mr_cache_entry) {
|
|
.lkey = UINT32_MAX,
|
|
};
|
|
DEBUG("initialized B-tree %p with table %p",
|
|
(void *)bt, (void *)bt->table);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Free B-tree resources.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
*/
|
|
void
|
|
mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
|
|
{
|
|
if (bt == NULL)
|
|
return;
|
|
DEBUG("freeing B-tree %p with table %p",
|
|
(void *)bt, (void *)bt->table);
|
|
mlx5_free(bt->table);
|
|
memset(bt, 0, sizeof(*bt));
|
|
}
|
|
|
|
/**
|
|
* Dump all the entries in a B-tree
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
*/
|
|
void
|
|
mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
|
|
{
|
|
#ifdef RTE_LIBRTE_MLX5_DEBUG
|
|
int idx;
|
|
struct mr_cache_entry *lkp_tbl;
|
|
|
|
if (bt == NULL)
|
|
return;
|
|
lkp_tbl = *bt->table;
|
|
for (idx = 0; idx < bt->len; ++idx) {
|
|
struct mr_cache_entry *entry = &lkp_tbl[idx];
|
|
|
|
DEBUG("B-tree(%p)[%u],"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Find virtually contiguous memory chunk in a given MR.
|
|
*
|
|
* @param dev
|
|
* Pointer to MR structure.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If not found, this will not be
|
|
* updated.
|
|
* @param start_idx
|
|
* Start index of the memseg bitmap.
|
|
*
|
|
* @return
|
|
* Next index to go on lookup.
|
|
*/
|
|
static int
|
|
mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
|
|
int base_idx)
|
|
{
|
|
uintptr_t start = 0;
|
|
uintptr_t end = 0;
|
|
uint32_t idx = 0;
|
|
|
|
/* MR for external memory doesn't have memseg list. */
|
|
if (mr->msl == NULL) {
|
|
MLX5_ASSERT(mr->ms_bmp_n == 1);
|
|
MLX5_ASSERT(mr->ms_n == 1);
|
|
MLX5_ASSERT(base_idx == 0);
|
|
/*
|
|
* Can't search it from memseg list but get it directly from
|
|
* pmd_mr as there's only one chunk.
|
|
*/
|
|
entry->start = (uintptr_t)mr->pmd_mr.addr;
|
|
entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
|
|
entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
|
|
/* Returning 1 ends iteration. */
|
|
return 1;
|
|
}
|
|
for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
|
|
if (rte_bitmap_get(mr->ms_bmp, idx)) {
|
|
const struct rte_memseg_list *msl;
|
|
const struct rte_memseg *ms;
|
|
|
|
msl = mr->msl;
|
|
ms = rte_fbarray_get(&msl->memseg_arr,
|
|
mr->ms_base_idx + idx);
|
|
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
|
|
if (!start)
|
|
start = ms->addr_64;
|
|
end = ms->addr_64 + ms->hugepage_sz;
|
|
} else if (start) {
|
|
/* Passed the end of a fragment. */
|
|
break;
|
|
}
|
|
}
|
|
if (start) {
|
|
/* Found one chunk. */
|
|
entry->start = start;
|
|
entry->end = end;
|
|
entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
/**
|
|
* Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
|
|
* Then, this entry will have to be searched by mr_lookup_list() in
|
|
* mlx5_mr_create() on miss.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param mr
|
|
* Pointer to MR to insert.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
|
|
struct mlx5_mr *mr)
|
|
{
|
|
unsigned int n;
|
|
|
|
DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
|
|
(void *)mr, (void *)share_cache);
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mr_cache_entry entry;
|
|
|
|
memset(&entry, 0, sizeof(entry));
|
|
/* Find a contiguous chunk and advance the index. */
|
|
n = mr_find_next_chunk(mr, &entry, n);
|
|
if (!entry.end)
|
|
break;
|
|
if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
|
|
/*
|
|
* Overflowed, but the global table cannot be expanded
|
|
* because of deadlock.
|
|
*/
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Look up address in the original global MR list.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If no match, this will not be updated.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Found MR on match, NULL otherwise.
|
|
*/
|
|
struct mlx5_mr *
|
|
mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
struct mlx5_mr *mr;
|
|
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &share_cache->mr_list, mr) {
|
|
unsigned int n;
|
|
|
|
if (mr->ms_n == 0)
|
|
continue;
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mr_cache_entry ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
n = mr_find_next_chunk(mr, &ret, n);
|
|
if (addr >= ret.start && addr < ret.end) {
|
|
/* Found. */
|
|
*entry = ret;
|
|
return mr;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Look up address on global MR cache.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If no match, this will not be updated.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
uint32_t
|
|
mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
uint16_t idx;
|
|
uint32_t lkey = UINT32_MAX;
|
|
struct mlx5_mr *mr;
|
|
|
|
/*
|
|
* If the global cache has overflowed since it failed to expand the
|
|
* B-tree table, it can't have all the existing MRs. Then, the address
|
|
* has to be searched by traversing the original MR list instead, which
|
|
* is very slow path. Otherwise, the global cache is all inclusive.
|
|
*/
|
|
if (!unlikely(share_cache->cache.overflow)) {
|
|
lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
|
|
if (lkey != UINT32_MAX)
|
|
*entry = (*share_cache->cache.table)[idx];
|
|
} else {
|
|
/* Falling back to the slowest path. */
|
|
mr = mlx5_mr_lookup_list(share_cache, entry, addr);
|
|
if (mr != NULL)
|
|
lkey = entry->lkey;
|
|
}
|
|
MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
|
|
addr < entry->end));
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
|
|
* can raise memory free event and the callback function will spin on the lock.
|
|
*
|
|
* @param mr
|
|
* Pointer to MR to free.
|
|
*/
|
|
void
|
|
mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
|
|
{
|
|
if (mr == NULL)
|
|
return;
|
|
DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
|
|
dereg_mr_cb(&mr->pmd_mr);
|
|
if (mr->ms_bmp != NULL)
|
|
rte_bitmap_free(mr->ms_bmp);
|
|
mlx5_free(mr);
|
|
}
|
|
|
|
void
|
|
mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
|
|
{
|
|
struct mlx5_mr *mr;
|
|
|
|
DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
|
|
/* Flush cache to rebuild. */
|
|
share_cache->cache.len = 1;
|
|
share_cache->cache.overflow = 0;
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &share_cache->mr_list, mr)
|
|
if (mlx5_mr_insert_cache(share_cache, mr) < 0)
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Release resources of detached MR having no online entry.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
*/
|
|
static void
|
|
mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
|
|
{
|
|
struct mlx5_mr *mr_next;
|
|
struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
|
|
|
|
/* Must be called from the primary process. */
|
|
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
/*
|
|
* MR can't be freed with holding the lock because rte_free() could call
|
|
* memory free callback function. This will be a deadlock situation.
|
|
*/
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/* Detach the whole free list and release it after unlocking. */
|
|
free_list = share_cache->mr_free_list;
|
|
LIST_INIT(&share_cache->mr_free_list);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
/* Release resources. */
|
|
mr_next = LIST_FIRST(&free_list);
|
|
while (mr_next != NULL) {
|
|
struct mlx5_mr *mr = mr_next;
|
|
|
|
mr_next = LIST_NEXT(mr, mr);
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
}
|
|
}
|
|
|
|
/* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
|
|
static int
|
|
mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, size_t len, void *arg)
|
|
{
|
|
struct mr_find_contig_memsegs_data *data = arg;
|
|
|
|
if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
|
|
return 0;
|
|
/* Found, save it and stop walking. */
|
|
data->start = ms->addr_64;
|
|
data->end = ms->addr_64 + len;
|
|
data->msl = msl;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* This API should be called on a secondary process, then a request is sent to
|
|
* the primary process in order to create a MR for the address. As the global MR
|
|
* list is on the shared memory, following LKey lookup should succeed unless the
|
|
* request fails.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
* @param mr_ext_memseg_en
|
|
* Configurable flag about external memory segment enable or not.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mr_create_secondary(void *pd __rte_unused,
|
|
struct mlx5_mp_id *mp_id,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr,
|
|
unsigned int mr_ext_memseg_en __rte_unused)
|
|
{
|
|
int ret;
|
|
|
|
DEBUG("port %u requesting MR creation for address (%p)",
|
|
mp_id->port_id, (void *)addr);
|
|
ret = mlx5_mp_req_mr_create(mp_id, addr);
|
|
if (ret) {
|
|
DEBUG("Fail to request MR creation for address (%p)",
|
|
(void *)addr);
|
|
return UINT32_MAX;
|
|
}
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
/* Fill in output data. */
|
|
mlx5_mr_lookup_cache(share_cache, entry, addr);
|
|
/* Lookup can't fail. */
|
|
MLX5_ASSERT(entry->lkey != UINT32_MAX);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
DEBUG("MR CREATED by primary process for %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
|
|
(void *)addr, entry->start, entry->end, entry->lkey);
|
|
return entry->lkey;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* Register entire virtually contiguous memory chunk around the address.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
* @param mr_ext_memseg_en
|
|
* Configurable flag about external memory segment enable or not.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
uint32_t
|
|
mlx5_mr_create_primary(void *pd,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr,
|
|
unsigned int mr_ext_memseg_en)
|
|
{
|
|
struct mr_find_contig_memsegs_data data = {.addr = addr, };
|
|
struct mr_find_contig_memsegs_data data_re;
|
|
const struct rte_memseg_list *msl;
|
|
const struct rte_memseg *ms;
|
|
struct mlx5_mr *mr = NULL;
|
|
int ms_idx_shift = -1;
|
|
uint32_t bmp_size;
|
|
void *bmp_mem;
|
|
uint32_t ms_n;
|
|
uint32_t n;
|
|
size_t len;
|
|
|
|
DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
|
|
/*
|
|
* Release detached MRs if any. This can't be called with holding either
|
|
* memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
|
|
* been detached by the memory free event but it couldn't be released
|
|
* inside the callback due to deadlock. As a result, releasing resources
|
|
* is quite opportunistic.
|
|
*/
|
|
mlx5_mr_garbage_collect(share_cache);
|
|
/*
|
|
* If enabled, find out a contiguous virtual address chunk in use, to
|
|
* which the given address belongs, in order to register maximum range.
|
|
* In the best case where mempools are not dynamically recreated and
|
|
* '--socket-mem' is specified as an EAL option, it is very likely to
|
|
* have only one MR(LKey) per a socket and per a hugepage-size even
|
|
* though the system memory is highly fragmented. As the whole memory
|
|
* chunk will be pinned by kernel, it can't be reused unless entire
|
|
* chunk is freed from EAL.
|
|
*
|
|
* If disabled, just register one memseg (page). Then, memory
|
|
* consumption will be minimized but it may drop performance if there
|
|
* are many MRs to lookup on the datapath.
|
|
*/
|
|
if (!mr_ext_memseg_en) {
|
|
data.msl = rte_mem_virt2memseg_list((void *)addr);
|
|
data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
|
|
data.end = data.start + data.msl->page_sz;
|
|
} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
|
|
DRV_LOG(WARNING,
|
|
"Unable to find virtually contiguous"
|
|
" chunk for address (%p)."
|
|
" rte_memseg_contig_walk() failed.", (void *)addr);
|
|
rte_errno = ENXIO;
|
|
goto err_nolock;
|
|
}
|
|
alloc_resources:
|
|
/* Addresses must be page-aligned. */
|
|
MLX5_ASSERT(data.msl);
|
|
MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
|
|
MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
|
|
msl = data.msl;
|
|
ms = rte_mem_virt2memseg((void *)data.start, msl);
|
|
len = data.end - data.start;
|
|
MLX5_ASSERT(ms);
|
|
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
|
|
/* Number of memsegs in the range. */
|
|
ms_n = len / msl->page_sz;
|
|
DEBUG("Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" page_sz=0x%" PRIx64 ", ms_n=%u",
|
|
(void *)addr, data.start, data.end, msl->page_sz, ms_n);
|
|
/* Size of memory for bitmap. */
|
|
bmp_size = rte_bitmap_get_memory_footprint(ms_n);
|
|
mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
|
|
bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
|
|
if (mr == NULL) {
|
|
DEBUG("Unable to allocate memory for a new MR of"
|
|
" address (%p).", (void *)addr);
|
|
rte_errno = ENOMEM;
|
|
goto err_nolock;
|
|
}
|
|
mr->msl = msl;
|
|
/*
|
|
* Save the index of the first memseg and initialize memseg bitmap. To
|
|
* see if a memseg of ms_idx in the memseg-list is still valid, check:
|
|
* rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
|
|
*/
|
|
mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
|
|
mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
|
|
if (mr->ms_bmp == NULL) {
|
|
DEBUG("Unable to initialize bitmap for a new MR of"
|
|
" address (%p).", (void *)addr);
|
|
rte_errno = EINVAL;
|
|
goto err_nolock;
|
|
}
|
|
/*
|
|
* Should recheck whether the extended contiguous chunk is still valid.
|
|
* Because memory_hotplug_lock can't be held if there's any memory
|
|
* related calls in a critical path, resource allocation above can't be
|
|
* locked. If the memory has been changed at this point, try again with
|
|
* just single page. If not, go on with the big chunk atomically from
|
|
* here.
|
|
*/
|
|
rte_mcfg_mem_read_lock();
|
|
data_re = data;
|
|
if (len > msl->page_sz &&
|
|
!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
|
|
DEBUG("Unable to find virtually contiguous"
|
|
" chunk for address (%p)."
|
|
" rte_memseg_contig_walk() failed.", (void *)addr);
|
|
rte_errno = ENXIO;
|
|
goto err_memlock;
|
|
}
|
|
if (data.start != data_re.start || data.end != data_re.end) {
|
|
/*
|
|
* The extended contiguous chunk has been changed. Try again
|
|
* with single memseg instead.
|
|
*/
|
|
data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
|
|
data.end = data.start + msl->page_sz;
|
|
rte_mcfg_mem_read_unlock();
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
goto alloc_resources;
|
|
}
|
|
MLX5_ASSERT(data.msl == data_re.msl);
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/*
|
|
* Check the address is really missing. If other thread already created
|
|
* one or it is not found due to overflow, abort and return.
|
|
*/
|
|
if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
|
|
/*
|
|
* Insert to the global cache table. It may fail due to
|
|
* low-on-memory. Then, this entry will have to be searched
|
|
* here again.
|
|
*/
|
|
mr_btree_insert(&share_cache->cache, entry);
|
|
DEBUG("Found MR for %p on final lookup, abort", (void *)addr);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
rte_mcfg_mem_read_unlock();
|
|
/*
|
|
* Must be unlocked before calling rte_free() because
|
|
* mlx5_mr_mem_event_free_cb() can be called inside.
|
|
*/
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
return entry->lkey;
|
|
}
|
|
/*
|
|
* Trim start and end addresses for verbs MR. Set bits for registering
|
|
* memsegs but exclude already registered ones. Bitmap can be
|
|
* fragmented.
|
|
*/
|
|
for (n = 0; n < ms_n; ++n) {
|
|
uintptr_t start;
|
|
struct mr_cache_entry ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
start = data_re.start + n * msl->page_sz;
|
|
/* Exclude memsegs already registered by other MRs. */
|
|
if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
|
|
UINT32_MAX) {
|
|
/*
|
|
* Start from the first unregistered memseg in the
|
|
* extended range.
|
|
*/
|
|
if (ms_idx_shift == -1) {
|
|
mr->ms_base_idx += n;
|
|
data.start = start;
|
|
ms_idx_shift = n;
|
|
}
|
|
data.end = start + msl->page_sz;
|
|
rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
|
|
++mr->ms_n;
|
|
}
|
|
}
|
|
len = data.end - data.start;
|
|
mr->ms_bmp_n = len / msl->page_sz;
|
|
MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
|
|
/*
|
|
* Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
|
|
* be called with holding the memory lock because it doesn't use
|
|
* mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
|
|
* through mlx5_alloc_verbs_buf().
|
|
*/
|
|
share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
|
|
if (mr->pmd_mr.obj == NULL) {
|
|
DEBUG("Fail to create an MR for address (%p)",
|
|
(void *)addr);
|
|
rte_errno = EINVAL;
|
|
goto err_mrlock;
|
|
}
|
|
MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
|
|
MLX5_ASSERT(mr->pmd_mr.len);
|
|
LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
|
|
DEBUG("MR CREATED (%p) for %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
|
|
(void *)mr, (void *)addr, data.start, data.end,
|
|
rte_cpu_to_be_32(mr->pmd_mr.lkey),
|
|
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
|
|
/* Insert to the global cache table. */
|
|
mlx5_mr_insert_cache(share_cache, mr);
|
|
/* Fill in output data. */
|
|
mlx5_mr_lookup_cache(share_cache, entry, addr);
|
|
/* Lookup can't fail. */
|
|
MLX5_ASSERT(entry->lkey != UINT32_MAX);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
rte_mcfg_mem_read_unlock();
|
|
return entry->lkey;
|
|
err_mrlock:
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
err_memlock:
|
|
rte_mcfg_mem_read_unlock();
|
|
err_nolock:
|
|
/*
|
|
* In case of error, as this can be called in a datapath, a warning
|
|
* message per an error is preferable instead. Must be unlocked before
|
|
* calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
|
|
* inside.
|
|
*/
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* This can be called from primary and secondary process.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd handle of a device (net, regex, vdpa,...).
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mr_create(void *pd, struct mlx5_mp_id *mp_id,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr,
|
|
unsigned int mr_ext_memseg_en)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
switch (rte_eal_process_type()) {
|
|
case RTE_PROC_PRIMARY:
|
|
ret = mlx5_mr_create_primary(pd, share_cache, entry,
|
|
addr, mr_ext_memseg_en);
|
|
break;
|
|
case RTE_PROC_SECONDARY:
|
|
ret = mlx5_mr_create_secondary(pd, mp_id, share_cache, entry,
|
|
addr, mr_ext_memseg_en);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Look up address in the global MR cache table. If not found, create a new MR.
|
|
* Insert the found/created entry to local bottom-half cache table.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this is not written.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mr_lookup_caches(void *pd, struct mlx5_mp_id *mp_id,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mlx5_mr_ctrl *mr_ctrl,
|
|
struct mr_cache_entry *entry, uintptr_t addr,
|
|
unsigned int mr_ext_memseg_en)
|
|
{
|
|
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
|
|
uint32_t lkey;
|
|
uint16_t idx;
|
|
|
|
/* If local cache table is full, try to double it. */
|
|
if (unlikely(bt->len == bt->size))
|
|
mr_btree_expand(bt, bt->size << 1);
|
|
/* Look up in the global cache. */
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
|
|
if (lkey != UINT32_MAX) {
|
|
/* Found. */
|
|
*entry = (*share_cache->cache.table)[idx];
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
/*
|
|
* Update local cache. Even if it fails, return the found entry
|
|
* to update top-half cache. Next time, this entry will be found
|
|
* in the global cache.
|
|
*/
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
/* First time to see the address? Create a new MR. */
|
|
lkey = mlx5_mr_create(pd, mp_id, share_cache, entry, addr,
|
|
mr_ext_memseg_en);
|
|
/*
|
|
* Update the local cache if successfully created a new global MR. Even
|
|
* if failed to create one, there's no action to take in this datapath
|
|
* code. As returning LKey is invalid, this will eventually make HW
|
|
* fail.
|
|
*/
|
|
if (lkey != UINT32_MAX)
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Bottom-half of LKey search on datapath. First search in cache_bh[] and if
|
|
* misses, search in the global MR cache table and update the new entry to
|
|
* per-queue local caches.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
uint32_t mlx5_mr_addr2mr_bh(void *pd, struct mlx5_mp_id *mp_id,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mlx5_mr_ctrl *mr_ctrl,
|
|
uintptr_t addr, unsigned int mr_ext_memseg_en)
|
|
{
|
|
uint32_t lkey;
|
|
uint16_t bh_idx = 0;
|
|
/* Victim in top-half cache to replace with new entry. */
|
|
struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
|
|
|
|
/* Binary-search MR translation table. */
|
|
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
|
|
/* Update top-half cache. */
|
|
if (likely(lkey != UINT32_MAX)) {
|
|
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
|
|
} else {
|
|
/*
|
|
* If missed in local lookup table, search in the global cache
|
|
* and local cache_bh[] will be updated inside if possible.
|
|
* Top-half cache entry will also be updated.
|
|
*/
|
|
lkey = mr_lookup_caches(pd, mp_id, share_cache, mr_ctrl,
|
|
repl, addr, mr_ext_memseg_en);
|
|
if (unlikely(lkey == UINT32_MAX))
|
|
return UINT32_MAX;
|
|
}
|
|
/* Update the most recently used entry. */
|
|
mr_ctrl->mru = mr_ctrl->head;
|
|
/* Point to the next victim, the oldest. */
|
|
mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Release all the created MRs and resources on global MR cache of a device.
|
|
* list.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
*/
|
|
void
|
|
mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
|
|
{
|
|
struct mlx5_mr *mr_next;
|
|
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/* Detach from MR list and move to free list. */
|
|
mr_next = LIST_FIRST(&share_cache->mr_list);
|
|
while (mr_next != NULL) {
|
|
struct mlx5_mr *mr = mr_next;
|
|
|
|
mr_next = LIST_NEXT(mr, mr);
|
|
LIST_REMOVE(mr, mr);
|
|
LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
|
|
}
|
|
LIST_INIT(&share_cache->mr_list);
|
|
/* Free global cache. */
|
|
mlx5_mr_btree_free(&share_cache->cache);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
/* Free all remaining MRs. */
|
|
mlx5_mr_garbage_collect(share_cache);
|
|
}
|
|
|
|
/**
|
|
* Flush all of the local cache entries.
|
|
*
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR local cache.
|
|
*/
|
|
void
|
|
mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
|
|
{
|
|
/* Reset the most-recently-used index. */
|
|
mr_ctrl->mru = 0;
|
|
/* Reset the linear search array. */
|
|
mr_ctrl->head = 0;
|
|
memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
|
|
/* Reset the B-tree table. */
|
|
mr_ctrl->cache_bh.len = 1;
|
|
mr_ctrl->cache_bh.overflow = 0;
|
|
/* Update the generation number. */
|
|
mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
|
|
DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
|
|
(void *)mr_ctrl, mr_ctrl->cur_gen);
|
|
}
|
|
|
|
/**
|
|
* Creates a memory region for external memory, that is memory which is not
|
|
* part of the DPDK memory segments.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param addr
|
|
* Starting virtual address of memory.
|
|
* @param len
|
|
* Length of memory segment being mapped.
|
|
* @param socked_id
|
|
* Socket to allocate heap memory for the control structures.
|
|
*
|
|
* @return
|
|
* Pointer to MR structure on success, NULL otherwise.
|
|
*/
|
|
struct mlx5_mr *
|
|
mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
|
|
mlx5_reg_mr_t reg_mr_cb)
|
|
{
|
|
struct mlx5_mr *mr = NULL;
|
|
|
|
mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (mr == NULL)
|
|
return NULL;
|
|
reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
|
|
if (mr->pmd_mr.obj == NULL) {
|
|
DRV_LOG(WARNING,
|
|
"Fail to create MR for address (%p)",
|
|
(void *)addr);
|
|
mlx5_free(mr);
|
|
return NULL;
|
|
}
|
|
mr->msl = NULL; /* Mark it is external memory. */
|
|
mr->ms_bmp = NULL;
|
|
mr->ms_n = 1;
|
|
mr->ms_bmp_n = 1;
|
|
DRV_LOG(DEBUG,
|
|
"MR CREATED (%p) for external memory %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
|
|
(void *)mr, (void *)addr,
|
|
addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
|
|
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
|
|
return mr;
|
|
}
|
|
|
|
/**
|
|
* Dump all the created MRs and the global cache entries.
|
|
*
|
|
* @param sh
|
|
* Pointer to Ethernet device shared context.
|
|
*/
|
|
void
|
|
mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
|
|
{
|
|
#ifdef RTE_LIBRTE_MLX5_DEBUG
|
|
struct mlx5_mr *mr;
|
|
int mr_n = 0;
|
|
int chunk_n = 0;
|
|
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &share_cache->mr_list, mr) {
|
|
unsigned int n;
|
|
|
|
DEBUG("MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
|
|
mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
|
|
mr->ms_n, mr->ms_bmp_n);
|
|
if (mr->ms_n == 0)
|
|
continue;
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mr_cache_entry ret = { 0, };
|
|
|
|
n = mr_find_next_chunk(mr, &ret, n);
|
|
if (!ret.end)
|
|
break;
|
|
DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
|
|
chunk_n++, ret.start, ret.end);
|
|
}
|
|
}
|
|
DEBUG("Dumping global cache %p", (void *)share_cache);
|
|
mlx5_mr_btree_dump(&share_cache->cache);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
#endif
|
|
}
|