numam-dpdk/drivers/net/bnxt/bnxt_rxr.c
Lance Richardson 9f13e888ef net/bnxt: fix Rx queue count
bnxt_rx_queue_count_op() incorrectly returns the number of
filled but unprocessed completion queue entries instead of
the number of filled but unprocessed received packet
completions. Fix by properly accounting for the number of
completion ring entries used by the various received packet
completion types.

Fixes: 34c0ba839b ("net/bnxt: fix Rx queue count")
Cc: stable@dpdk.org

Signed-off-by: Lance Richardson <lance.richardson@broadcom.com>
Reviewed-by: Somnath Kotur <somnath.kotur@broadcom.com>
Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2021-03-01 01:26:10 +01:00

1289 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2021 Broadcom
* All rights reserved.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include "bnxt.h"
#include "bnxt_reps.h"
#include "bnxt_ring.h"
#include "bnxt_rxr.h"
#include "bnxt_rxq.h"
#include "hsi_struct_def_dpdk.h"
#ifdef RTE_LIBRTE_IEEE1588
#include "bnxt_hwrm.h"
#endif
#include <bnxt_tf_common.h>
#include <ulp_mark_mgr.h>
/*
* RX Ring handling
*/
static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
{
struct rte_mbuf *data;
data = rte_mbuf_raw_alloc(mb);
return data;
}
static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t raw_prod)
{
uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
struct rx_prod_pkt_bd *rxbd;
struct rte_mbuf **rx_buf;
struct rte_mbuf *mbuf;
rxbd = &rxr->rx_desc_ring[prod];
rx_buf = &rxr->rx_buf_ring[prod];
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
*rx_buf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t raw_prod)
{
uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
struct rx_prod_pkt_bd *rxbd;
struct rte_mbuf **rx_buf;
struct rte_mbuf *mbuf;
rxbd = &rxr->ag_desc_ring[prod];
rx_buf = &rxr->ag_buf_ring[prod];
if (rxbd == NULL) {
PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
return -EINVAL;
}
if (rx_buf == NULL) {
PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
return -EINVAL;
}
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
*rx_buf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
struct rte_mbuf *mbuf)
{
uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
struct rte_mbuf **prod_rx_buf;
struct rx_prod_pkt_bd *prod_bd;
prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
prod_rx_buf = &rxr->rx_buf_ring[prod];
RTE_ASSERT(*prod_rx_buf == NULL);
RTE_ASSERT(mbuf != NULL);
*prod_rx_buf = mbuf;
prod_bd = &rxr->rx_desc_ring[prod];
prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxr->rx_raw_prod = raw_prod;
}
static inline
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
uint16_t cons)
{
struct rte_mbuf **cons_rx_buf;
struct rte_mbuf *mbuf;
cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
RTE_ASSERT(*cons_rx_buf != NULL);
mbuf = *cons_rx_buf;
*cons_rx_buf = NULL;
return mbuf;
}
static void bnxt_tpa_get_metadata(struct bnxt *bp,
struct bnxt_tpa_info *tpa_info,
struct rx_tpa_start_cmpl *tpa_start,
struct rx_tpa_start_cmpl_hi *tpa_start1)
{
tpa_info->cfa_code_valid = 0;
tpa_info->vlan_valid = 0;
tpa_info->hash_valid = 0;
tpa_info->l4_csum_valid = 0;
if (likely(tpa_start->flags_type &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
tpa_info->hash_valid = 1;
tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
}
if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
(void *)tpa_start1;
if (v2_tpa_start->agg_id &
RX_TPA_START_V2_CMPL_METADATA1_VALID) {
tpa_info->vlan_valid = 1;
tpa_info->vlan =
rte_le_to_cpu_16(v2_tpa_start1->metadata0);
}
if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
tpa_info->l4_csum_valid = 1;
return;
}
tpa_info->cfa_code_valid = 1;
tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
if (tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
tpa_info->vlan_valid = 1;
tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
}
if (likely(tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
tpa_info->l4_csum_valid = 1;
}
static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
struct rx_tpa_start_cmpl *tpa_start,
struct rx_tpa_start_cmpl_hi *tpa_start1)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t agg_id;
uint16_t data_cons;
struct bnxt_tpa_info *tpa_info;
struct rte_mbuf *mbuf;
agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
data_cons = tpa_start->opaque;
tpa_info = &rxr->tpa_info[agg_id];
mbuf = bnxt_consume_rx_buf(rxr, data_cons);
bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
tpa_info->agg_count = 0;
tpa_info->mbuf = mbuf;
tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
mbuf->ol_flags = PKT_RX_LRO;
bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
if (likely(tpa_info->hash_valid)) {
mbuf->hash.rss = tpa_info->rss_hash;
mbuf->ol_flags |= PKT_RX_RSS_HASH;
} else if (tpa_info->cfa_code_valid) {
mbuf->hash.fdir.id = tpa_info->cfa_code;
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
if (tpa_info->vlan_valid) {
mbuf->vlan_tci = tpa_info->vlan;
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
if (likely(tpa_info->l4_csum_valid))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
/* recycle next mbuf */
data_cons = RING_NEXT(data_cons);
bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
}
static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
uint8_t agg_bufs, uint32_t raw_cp_cons)
{
uint16_t last_cp_cons;
struct rx_pkt_cmpl *agg_cmpl;
raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
cpr->valid = FLIP_VALID(raw_cp_cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
}
/* TPA consume agg buffer out of order, allocate connected data only */
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
/* TODO batch allocation for better performance */
while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
raw_next);
break;
}
rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
rxr->ag_raw_prod = raw_next;
raw_next = RING_NEXT(raw_next);
bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
}
return 0;
}
static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
int i;
uint16_t cp_cons, ag_cons;
struct rx_pkt_cmpl *rxcmp;
struct rte_mbuf *last = mbuf;
bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
for (i = 0; i < agg_buf; i++) {
struct rte_mbuf **ag_buf;
struct rte_mbuf *ag_mbuf;
if (is_p5_tpa) {
rxcmp = (void *)&tpa_info->agg_arr[i];
} else {
*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
}
#ifdef BNXT_DEBUG
bnxt_dump_cmpl(cp_cons, rxcmp);
#endif
ag_cons = rxcmp->opaque;
RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
ag_buf = &rxr->ag_buf_ring[ag_cons];
ag_mbuf = *ag_buf;
RTE_ASSERT(ag_mbuf != NULL);
ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
mbuf->nb_segs++;
mbuf->pkt_len += ag_mbuf->data_len;
last->next = ag_mbuf;
last = ag_mbuf;
*ag_buf = NULL;
/*
* As aggregation buffer consumed out of order in TPA module,
* use bitmap to track freed slots to be allocated and notified
* to NIC
*/
rte_bitmap_set(rxr->ag_bitmap, ag_cons);
}
last->next = NULL;
bnxt_prod_ag_mbuf(rxq);
return 0;
}
static inline struct rte_mbuf *bnxt_tpa_end(
struct bnxt_rx_queue *rxq,
uint32_t *raw_cp_cons,
struct rx_tpa_end_cmpl *tpa_end,
struct rx_tpa_end_cmpl_hi *tpa_end1)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t agg_id;
struct rte_mbuf *mbuf;
uint8_t agg_bufs;
uint8_t payload_offset;
struct bnxt_tpa_info *tpa_info;
if (BNXT_CHIP_P5(rxq->bp)) {
struct rx_tpa_v2_end_cmpl *th_tpa_end;
struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
th_tpa_end = (void *)tpa_end;
th_tpa_end1 = (void *)tpa_end1;
agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
payload_offset = th_tpa_end1->payload_offset;
} else {
agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
return NULL;
payload_offset = tpa_end->payload_offset;
}
tpa_info = &rxr->tpa_info[agg_id];
mbuf = tpa_info->mbuf;
RTE_ASSERT(mbuf != NULL);
if (agg_bufs) {
bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
}
mbuf->l4_len = payload_offset;
struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
RTE_ASSERT(new_data != NULL);
if (!new_data) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return NULL;
}
tpa_info->mbuf = new_data;
return mbuf;
}
uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
static void __rte_cold
bnxt_init_ptype_table(void)
{
uint32_t *pt = bnxt_ptype_table;
static bool initialized;
int ip6, tun, type;
uint32_t l3;
int i;
if (initialized)
return;
for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
else
pt[i] = RTE_PTYPE_L2_ETHER;
ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
type = (i & 0x78) << 9;
if (!tun && !ip6)
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
else if (!tun && ip6)
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
else if (tun && !ip6)
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
else
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
switch (type) {
case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
if (tun)
pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
else
pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
break;
case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
if (tun)
pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
else
pt[i] |= l3 | RTE_PTYPE_L4_TCP;
break;
case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
if (tun)
pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
else
pt[i] |= l3 | RTE_PTYPE_L4_UDP;
break;
case RX_PKT_CMPL_FLAGS_ITYPE_IP:
pt[i] |= l3;
break;
}
}
initialized = true;
}
static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t flags_type, flags2;
uint8_t index;
flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
/*
* Index format:
* bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
* bit 1: RX_CMPL_FLAGS2_IP_TYPE
* bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
* bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
*/
index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
return bnxt_ptype_table[index];
}
static void __rte_cold
bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct rte_eth_conf *dev_conf;
bool outer_cksum_enabled;
uint64_t offloads;
uint32_t *pt;
int i;
dev_conf = &rxq->bp->eth_dev->data->dev_conf;
offloads = dev_conf->rxmode.offloads;
outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
/* Initialize ol_flags table. */
pt = rxr->ol_flags_table;
for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
pt[i] = 0;
if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
/* Tunnel case. */
if (outer_cksum_enabled) {
if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
pt[i] |= PKT_RX_IP_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
pt[i] |= PKT_RX_L4_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
} else {
if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
pt[i] |= PKT_RX_IP_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
pt[i] |= PKT_RX_L4_CKSUM_GOOD;
}
} else {
/* Non-tunnel case. */
if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
pt[i] |= PKT_RX_IP_CKSUM_GOOD;
if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
pt[i] |= PKT_RX_L4_CKSUM_GOOD;
}
}
/* Initialize checksum error table. */
pt = rxr->ol_flags_err_table;
for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
pt[i] = 0;
if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
/* Tunnel case. */
if (outer_cksum_enabled) {
if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
pt[i] |= PKT_RX_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
pt[i] |= PKT_RX_L4_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
} else {
if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
pt[i] |= PKT_RX_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
pt[i] |= PKT_RX_L4_CKSUM_BAD;
}
} else {
/* Non-tunnel case. */
if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
pt[i] |= PKT_RX_IP_CKSUM_BAD;
if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
pt[i] |= PKT_RX_L4_CKSUM_BAD;
}
}
}
static void
bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
{
uint16_t flags_type, errors, flags;
uint64_t ol_flags;
flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
flags = rte_le_to_cpu_32(rxcmp1->flags2) &
(RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
(RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
errors = (errors >> 4) & flags;
ol_flags = rxr->ol_flags_table[flags & ~errors];
if (unlikely(errors)) {
errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
ol_flags |= rxr->ol_flags_err_table[errors];
}
if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
ol_flags |= PKT_RX_RSS_HASH;
}
#ifdef RTE_LIBRTE_IEEE1588
if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
#endif
mbuf->ol_flags = ol_flags;
}
#ifdef RTE_LIBRTE_IEEE1588
static void
bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
{
uint64_t systime_cycles = 0;
if (!BNXT_CHIP_P5(bp))
return;
/* On Thor, Rx timestamps are provided directly in the
* Rx completion records to the driver. Only 32 bits of
* the timestamp is present in the completion. Driver needs
* to read the current 48 bit free running timer using the
* HWRM_PORT_TS_QUERY command and combine the upper 16 bits
* from the HWRM response with the lower 32 bits in the
* Rx completion to produce the 48 bit timestamp for the Rx packet
*/
bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
&systime_cycles);
bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
}
#endif
static uint32_t
bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
struct rte_mbuf *mbuf, uint32_t *vfr_flag)
{
uint32_t cfa_code;
uint32_t meta_fmt;
uint32_t meta;
bool gfid = false;
uint32_t mark_id;
uint32_t flags2;
uint32_t gfid_support = 0;
int rc;
if (BNXT_GFID_ENABLED(bp))
gfid_support = 1;
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
meta = rte_le_to_cpu_32(rxcmp1->metadata);
/*
* The flags field holds extra bits of info from [6:4]
* which indicate if the flow is in TCAM or EM or EEM
*/
meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
BNXT_CFA_META_FMT_SHFT;
switch (meta_fmt) {
case 0:
if (gfid_support) {
/* Not an LFID or GFID, a flush cmd. */
goto skip_mark;
} else {
/* LFID mode, no vlan scenario */
gfid = false;
}
break;
case 4:
case 5:
/*
* EM/TCAM case
* Assume that EM doesn't support Mark due to GFID
* collisions with EEM. Simply return without setting the mark
* in the mbuf.
*/
if (BNXT_CFA_META_EM_TEST(meta)) {
/*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
gfid = true;
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
} else {
/*
* It is a TCAM entry, so it is an LFID.
* The TCAM IDX and Mode can also be determined
* by decoding the meta_data. We are not
* using these for now.
*/
}
break;
case 6:
case 7:
/* EEM Case, only using gfid in EEM for now. */
gfid = true;
/*
* For EEM flows, The first part of cfa_code is 16 bits.
* The second part is embedded in the
* metadata field from bit 19 onwards. The driver needs to
* ignore the first 19 bits of metadata and use the next 12
* bits as higher 12 bits of cfa_code.
*/
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
break;
default:
/* For other values, the cfa_code is assumed to be an LFID. */
break;
}
rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
cfa_code, vfr_flag, &mark_id);
if (!rc) {
/* VF to VFR Rx path. So, skip mark_id injection in mbuf */
if (vfr_flag && *vfr_flag)
return mark_id;
/* Got the mark, write it to the mbuf and return */
mbuf->hash.fdir.hi = mark_id;
*bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
mbuf->hash.fdir.id = rxcmp1->cfa_code;
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
return mark_id;
}
skip_mark:
mbuf->hash.fdir.hi = 0;
mbuf->hash.fdir.id = 0;
return 0;
}
void bnxt_set_mark_in_mbuf(struct bnxt *bp,
struct rx_pkt_cmpl_hi *rxcmp1,
struct rte_mbuf *mbuf)
{
uint32_t cfa_code = 0;
uint8_t meta_fmt = 0;
uint16_t flags2 = 0;
uint32_t meta = 0;
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
if (!cfa_code)
return;
if (cfa_code && !bp->mark_table[cfa_code].valid)
return;
flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
meta = rte_le_to_cpu_32(rxcmp1->metadata);
if (meta) {
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
/* The flags field holds extra bits of info from [6:4]
* which indicate if the flow is in TCAM or EM or EEM
*/
meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
BNXT_CFA_META_FMT_SHFT;
/* meta_fmt == 4 => 'b100 => 'b10x => EM.
* meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
* meta_fmt == 6 => 'b110 => 'b11x => EEM
* meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
*/
meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
}
mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct rx_pkt_cmpl *rxcmp;
struct rx_pkt_cmpl_hi *rxcmp1;
uint32_t tmp_raw_cons = *raw_cons;
uint16_t cons, raw_prod, cp_cons =
RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
struct rte_mbuf *mbuf;
int rc = 0;
uint8_t agg_buf = 0;
uint16_t cmp_type;
uint32_t vfr_flag = 0, mark_id = 0;
struct bnxt *bp = rxq->bp;
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
cmp_type = CMP_TYPE(rxcmp);
if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
struct bnxt_tpa_info *tpa_info;
tpa_info = &rxr->tpa_info[agg_id];
RTE_ASSERT(tpa_info->agg_count < 16);
tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
}
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
return -EBUSY;
cpr->valid = FLIP_VALID(cp_cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
(struct rx_tpa_start_cmpl_hi *)rxcmp1);
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
(struct rx_tpa_end_cmpl *)rxcmp,
(struct rx_tpa_end_cmpl_hi *)rxcmp1);
if (unlikely(!mbuf))
return -EBUSY;
*rx_pkt = mbuf;
goto next_rx;
} else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
(cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
rc = -EINVAL;
goto next_rx;
}
agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
return -EBUSY;
raw_prod = rxr->rx_raw_prod;
cons = rxcmp->opaque;
mbuf = bnxt_consume_rx_buf(rxr, cons);
if (mbuf == NULL)
return -EBUSY;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rxcmp->len;
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
#ifdef RTE_LIBRTE_IEEE1588
if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
RX_PKT_CMPL_FLAGS_MASK) ==
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
#endif
if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
bnxt_parse_csum_v2(mbuf, rxcmp1);
bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
/* TODO Add support for cfa_code parsing */
goto reuse_rx_mbuf;
}
bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
if (BNXT_TRUFLOW_EN(bp))
mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
&vfr_flag);
else
bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
reuse_rx_mbuf:
if (agg_buf)
bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
#ifdef BNXT_DEBUG
if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
/* Re-install the mbuf back to the rx ring */
bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
rc = -EIO;
goto next_rx;
}
#endif
/*
* TODO: Redesign this....
* If the allocation fails, the packet does not get received.
* Simply returning this will result in slowly falling behind
* on the producer ring buffers.
* Instead, "filling up" the producer just before ringing the
* doorbell could be a better solution since it will let the
* producer ring starve until memory is available again pushing
* the drops into hardware and getting them out of the driver
* allowing recovery to a full producer ring.
*
* This could also help with cache usage by preventing per-packet
* calls in favour of a tight loop with the same function being called
* in it.
*/
raw_prod = RING_NEXT(raw_prod);
if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
raw_prod);
rc = -ENOMEM;
goto rx;
}
rxr->rx_raw_prod = raw_prod;
if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
vfr_flag) {
bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
/* Now return an error so that nb_rx_pkts is not
* incremented.
* This packet was meant to be given to the representor.
* So no need to account the packet and give it to
* parent Rx burst function.
*/
rc = -ENODEV;
goto next_rx;
}
/*
* All MBUFs are allocated with the same size under DPDK,
* no optimization for rx_copy_thresh
*/
rx:
*rx_pkt = mbuf;
next_rx:
*raw_cons = tmp_raw_cons;
return rc;
}
uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t rx_raw_prod = rxr->rx_raw_prod;
uint16_t ag_raw_prod = rxr->ag_raw_prod;
uint32_t raw_cons = cpr->cp_raw_cons;
bool alloc_failed = false;
uint32_t cons;
int nb_rx_pkts = 0;
int nb_rep_rx_pkts = 0;
struct rx_pkt_cmpl *rxcmp;
int rc = 0;
bool evt = false;
if (unlikely(is_bnxt_in_error(rxq->bp)))
return 0;
/* If Rx Q was stopped return */
if (unlikely(!rxq->rx_started))
return 0;
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
/*
* Replenish buffers if needed when a transition has been made from
* vector- to non-vector- receive processing.
*/
while (unlikely(rxq->rxrearm_nb)) {
if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
rxr->rx_raw_prod = rxq->rxrearm_start;
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
rxq->rxrearm_start++;
rxq->rxrearm_nb--;
} else {
/* Retry allocation on next call. */
break;
}
}
#endif
/* Handle RX burst request */
while (1) {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
break;
cpr->valid = FLIP_VALID(cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
(CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
if (!rc)
nb_rx_pkts++;
else if (rc == -EBUSY) /* partial completion */
break;
else if (rc == -ENODEV) /* completion for representor */
nb_rep_rx_pkts++;
else if (rc == -ENOMEM) {
nb_rx_pkts++;
alloc_failed = true;
}
} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
evt =
bnxt_event_hwrm_resp_handler(rxq->bp,
(struct cmpl_base *)rxcmp);
/* If the async event is Fatal error, return */
if (unlikely(is_bnxt_in_error(rxq->bp)))
goto done;
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
break;
/* Post some Rx buf early in case of larger burst processing */
if (nb_rx_pkts == BNXT_RX_POST_THRESH)
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
}
cpr->cp_raw_cons = raw_cons;
if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
/*
* For PMD, there is no need to keep on pushing to REARM
* the doorbell if there are no new completions
*/
goto done;
}
/* Ring the completion queue doorbell. */
bnxt_db_cq(cpr);
/* Ring the receive descriptor doorbell. */
if (rx_raw_prod != rxr->rx_raw_prod)
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
/* Ring the AGG ring DB */
if (ag_raw_prod != rxr->ag_raw_prod)
bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
/* Attempt to alloc Rx buf in case of a previous allocation failure. */
if (alloc_failed) {
uint16_t cnt;
rx_raw_prod = RING_NEXT(rx_raw_prod);
for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
struct rte_mbuf **rx_buf;
uint16_t ndx;
ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
rx_buf = &rxr->rx_buf_ring[ndx];
/* Buffer already allocated for this index. */
if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
continue;
/* This slot is empty. Alloc buffer for Rx */
if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
rxr->rx_raw_prod = rx_raw_prod + cnt;
bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
} else {
PMD_DRV_LOG(ERR, "Alloc mbuf failed\n");
break;
}
}
}
done:
return nb_rx_pkts;
}
/*
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*/
uint16_t
bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
struct rte_mbuf **rx_pkts __rte_unused,
uint16_t nb_pkts __rte_unused)
{
return 0;
}
void bnxt_free_rx_rings(struct bnxt *bp)
{
int i;
struct bnxt_rx_queue *rxq;
if (!bp->rx_queues)
return;
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
rxq = bp->rx_queues[i];
if (!rxq)
continue;
bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
rte_free(rxq->rx_ring->rx_ring_struct);
/* Free the Aggregator ring */
bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
rte_free(rxq->rx_ring->ag_ring_struct);
rxq->rx_ring->ag_ring_struct = NULL;
rte_free(rxq->rx_ring);
bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring);
rte_free(rxq);
bp->rx_queues[i] = NULL;
}
}
int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
{
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
rxr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_rx_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxr == NULL)
return -ENOMEM;
rxq->rx_ring = rxr;
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->rx_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->rx_desc_ring;
ring->bd_dma = rxr->rx_desc_mapping;
/* Allocate extra rx ring entries for vector rx. */
ring->vmem_size = sizeof(struct rte_mbuf *) *
(ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
ring->vmem = (void **)&rxr->rx_buf_ring;
ring->fw_ring_id = INVALID_HW_RING_ID;
cpr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_cp_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (cpr == NULL)
return -ENOMEM;
rxq->cp_ring = cpr;
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
cpr->cp_ring_struct = ring;
/* Allocate two completion slots per entry in desc ring. */
ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
ring->ring_size *= AGG_RING_SIZE_FACTOR;
ring->ring_size = rte_align32pow2(ring->ring_size);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)cpr->cp_desc_ring;
ring->bd_dma = cpr->cp_desc_mapping;
ring->vmem_size = 0;
ring->vmem = NULL;
ring->fw_ring_id = INVALID_HW_RING_ID;
/* Allocate Aggregator rings */
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->ag_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
AGG_RING_SIZE_FACTOR);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->ag_desc_ring;
ring->bd_dma = rxr->ag_desc_mapping;
ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
ring->vmem = (void **)&rxr->ag_buf_ring;
ring->fw_ring_id = INVALID_HW_RING_ID;
return 0;
}
static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
uint16_t len)
{
uint32_t j;
struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
if (!rx_bd_ring)
return;
for (j = 0; j < ring->ring_size; j++) {
rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
rx_bd_ring[j].len = rte_cpu_to_le_16(len);
rx_bd_ring[j].opaque = j;
}
}
int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
uint32_t raw_prod, type;
unsigned int i;
uint16_t size;
/* Initialize packet type table. */
bnxt_init_ptype_table();
size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
rxr = rxq->rx_ring;
ring = rxr->rx_ring_struct;
bnxt_init_rxbds(ring, type, size);
/* Initialize offload flags parsing table. */
bnxt_init_ol_flags_tables(rxq);
raw_prod = rxr->rx_raw_prod;
for (i = 0; i < ring->ring_size; i++) {
if (unlikely(!rxr->rx_buf_ring[i])) {
if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
PMD_DRV_LOG(WARNING,
"init'ed rx ring %d with %d/%d mbufs only\n",
rxq->queue_id, i, ring->ring_size);
break;
}
}
rxr->rx_raw_prod = raw_prod;
raw_prod = RING_NEXT(raw_prod);
}
/* Initialize dummy mbuf pointers for vector mode rx. */
for (i = ring->ring_size;
i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
}
ring = rxr->ag_ring_struct;
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
bnxt_init_rxbds(ring, type, size);
raw_prod = rxr->ag_raw_prod;
for (i = 0; i < ring->ring_size; i++) {
if (unlikely(!rxr->ag_buf_ring[i])) {
if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
PMD_DRV_LOG(WARNING,
"init'ed AG ring %d with %d/%d mbufs only\n",
rxq->queue_id, i, ring->ring_size);
break;
}
}
rxr->ag_raw_prod = raw_prod;
raw_prod = RING_NEXT(raw_prod);
}
PMD_DRV_LOG(DEBUG, "AGG Done!\n");
if (rxr->tpa_info) {
unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
for (i = 0; i < max_aggs; i++) {
if (unlikely(!rxr->tpa_info[i].mbuf)) {
rxr->tpa_info[i].mbuf =
__bnxt_alloc_rx_data(rxq->mb_pool);
if (!rxr->tpa_info[i].mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
}
}
}
PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
return 0;
}