numam-dpdk/drivers/crypto/aesni_mb/rte_aesni_mb_pmd_ops.c
Fan Zhang ac61e23393 aesni_mb: add AES-CTR
This patch provides counter mode support to AES-NI multi-buffer library.

The following cipher algorithm is enabled:
- RTE_CRYPTO_CIPHER_AES_CTR

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2016-06-07 21:46:55 +02:00

494 lines
12 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_cryptodev_pmd.h>
#include "rte_aesni_mb_pmd_private.h"
static const struct rte_cryptodev_capabilities aesni_mb_pmd_capabilities[] = {
{ /* MD5 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_MD5_HMAC,
.block_size = 64,
.key_size = {
.min = 64,
.max = 64,
.increment = 0
},
.digest_size = {
.min = 12,
.max = 12,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* SHA1 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.block_size = 64,
.key_size = {
.min = 64,
.max = 64,
.increment = 0
},
.digest_size = {
.min = 12,
.max = 12,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* SHA224 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA224_HMAC,
.block_size = 64,
.key_size = {
.min = 64,
.max = 64,
.increment = 0
},
.digest_size = {
.min = 14,
.max = 14,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* SHA256 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
.block_size = 64,
.key_size = {
.min = 64,
.max = 64,
.increment = 0
},
.digest_size = {
.min = 16,
.max = 16,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* SHA384 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA384_HMAC,
.block_size = 128,
.key_size = {
.min = 128,
.max = 128,
.increment = 0
},
.digest_size = {
.min = 24,
.max = 24,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* SHA512 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_SHA512_HMAC,
.block_size = 128,
.key_size = {
.min = 128,
.max = 128,
.increment = 0
},
.digest_size = {
.min = 32,
.max = 32,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* AES XCBC HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_AES_XCBC_MAC,
.block_size = 16,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.digest_size = {
.min = 12,
.max = 12,
.increment = 0
},
.aad_size = { 0 }
}, }
}, }
},
{ /* AES CBC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
{ /* AES CTR */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CTR,
.block_size = 16,
.key_size = {
.min = 16,
.max = 32,
.increment = 8
},
.iv_size = {
.min = 16,
.max = 16,
.increment = 0
}
}, }
}, }
},
RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};
/** Configure device */
static int
aesni_mb_pmd_config(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
/** Start device */
static int
aesni_mb_pmd_start(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
/** Stop device */
static void
aesni_mb_pmd_stop(__rte_unused struct rte_cryptodev *dev)
{
}
/** Close device */
static int
aesni_mb_pmd_close(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
/** Get device statistics */
static void
aesni_mb_pmd_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct aesni_mb_qp *qp = dev->data->queue_pairs[qp_id];
stats->enqueued_count += qp->stats.enqueued_count;
stats->dequeued_count += qp->stats.dequeued_count;
stats->enqueue_err_count += qp->stats.enqueue_err_count;
stats->dequeue_err_count += qp->stats.dequeue_err_count;
}
}
/** Reset device statistics */
static void
aesni_mb_pmd_stats_reset(struct rte_cryptodev *dev)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct aesni_mb_qp *qp = dev->data->queue_pairs[qp_id];
memset(&qp->stats, 0, sizeof(qp->stats));
}
}
/** Get device info */
static void
aesni_mb_pmd_info_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *dev_info)
{
struct aesni_mb_private *internals = dev->data->dev_private;
if (dev_info != NULL) {
dev_info->dev_type = dev->dev_type;
dev_info->feature_flags = dev->feature_flags;
dev_info->capabilities = aesni_mb_pmd_capabilities;
dev_info->max_nb_queue_pairs = internals->max_nb_queue_pairs;
dev_info->sym.max_nb_sessions = internals->max_nb_sessions;
}
}
/** Release queue pair */
static int
aesni_mb_pmd_qp_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
if (dev->data->queue_pairs[qp_id] != NULL) {
rte_free(dev->data->queue_pairs[qp_id]);
dev->data->queue_pairs[qp_id] = NULL;
}
return 0;
}
/** set a unique name for the queue pair based on it's name, dev_id and qp_id */
static int
aesni_mb_pmd_qp_set_unique_name(struct rte_cryptodev *dev,
struct aesni_mb_qp *qp)
{
unsigned n = snprintf(qp->name, sizeof(qp->name),
"aesni_mb_pmd_%u_qp_%u",
dev->data->dev_id, qp->id);
if (n > sizeof(qp->name))
return -1;
return 0;
}
/** Create a ring to place processed operations on */
static struct rte_ring *
aesni_mb_pmd_qp_create_processed_ops_ring(struct aesni_mb_qp *qp,
unsigned ring_size, int socket_id)
{
struct rte_ring *r;
r = rte_ring_lookup(qp->name);
if (r) {
if (r->prod.size >= ring_size) {
MB_LOG_INFO("Reusing existing ring %s for processed ops",
qp->name);
return r;
}
MB_LOG_ERR("Unable to reuse existing ring %s for processed ops",
qp->name);
return NULL;
}
return rte_ring_create(qp->name, ring_size, socket_id,
RING_F_SP_ENQ | RING_F_SC_DEQ);
}
/** Setup a queue pair */
static int
aesni_mb_pmd_qp_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)
{
struct aesni_mb_qp *qp = NULL;
struct aesni_mb_private *internals = dev->data->dev_private;
/* Free memory prior to re-allocation if needed. */
if (dev->data->queue_pairs[qp_id] != NULL)
aesni_mb_pmd_qp_release(dev, qp_id);
/* Allocate the queue pair data structure. */
qp = rte_zmalloc_socket("AES-NI PMD Queue Pair", sizeof(*qp),
RTE_CACHE_LINE_SIZE, socket_id);
if (qp == NULL)
return -ENOMEM;
qp->id = qp_id;
dev->data->queue_pairs[qp_id] = qp;
if (aesni_mb_pmd_qp_set_unique_name(dev, qp))
goto qp_setup_cleanup;
qp->ops = &job_ops[internals->vector_mode];
qp->processed_ops = aesni_mb_pmd_qp_create_processed_ops_ring(qp,
qp_conf->nb_descriptors, socket_id);
if (qp->processed_ops == NULL)
goto qp_setup_cleanup;
qp->sess_mp = dev->data->session_pool;
memset(&qp->stats, 0, sizeof(qp->stats));
/* Initialise multi-buffer manager */
(*qp->ops->job.init_mgr)(&qp->mb_mgr);
return 0;
qp_setup_cleanup:
if (qp)
rte_free(qp);
return -1;
}
/** Start queue pair */
static int
aesni_mb_pmd_qp_start(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint16_t queue_pair_id)
{
return -ENOTSUP;
}
/** Stop queue pair */
static int
aesni_mb_pmd_qp_stop(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint16_t queue_pair_id)
{
return -ENOTSUP;
}
/** Return the number of allocated queue pairs */
static uint32_t
aesni_mb_pmd_qp_count(struct rte_cryptodev *dev)
{
return dev->data->nb_queue_pairs;
}
/** Returns the size of the aesni multi-buffer session structure */
static unsigned
aesni_mb_pmd_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
return sizeof(struct aesni_mb_session);
}
/** Configure a aesni multi-buffer session from a crypto xform chain */
static void *
aesni_mb_pmd_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform, void *sess)
{
struct aesni_mb_private *internals = dev->data->dev_private;
if (unlikely(sess == NULL)) {
MB_LOG_ERR("invalid session struct");
return NULL;
}
if (aesni_mb_set_session_parameters(&job_ops[internals->vector_mode],
sess, xform) != 0) {
MB_LOG_ERR("failed configure session parameters");
return NULL;
}
return sess;
}
/** Clear the memory of session so it doesn't leave key material behind */
static void
aesni_mb_pmd_session_clear(struct rte_cryptodev *dev __rte_unused, void *sess)
{
/*
* Current just resetting the whole data structure, need to investigate
* whether a more selective reset of key would be more performant
*/
if (sess)
memset(sess, 0, sizeof(struct aesni_mb_session));
}
struct rte_cryptodev_ops aesni_mb_pmd_ops = {
.dev_configure = aesni_mb_pmd_config,
.dev_start = aesni_mb_pmd_start,
.dev_stop = aesni_mb_pmd_stop,
.dev_close = aesni_mb_pmd_close,
.stats_get = aesni_mb_pmd_stats_get,
.stats_reset = aesni_mb_pmd_stats_reset,
.dev_infos_get = aesni_mb_pmd_info_get,
.queue_pair_setup = aesni_mb_pmd_qp_setup,
.queue_pair_release = aesni_mb_pmd_qp_release,
.queue_pair_start = aesni_mb_pmd_qp_start,
.queue_pair_stop = aesni_mb_pmd_qp_stop,
.queue_pair_count = aesni_mb_pmd_qp_count,
.session_get_size = aesni_mb_pmd_session_get_size,
.session_configure = aesni_mb_pmd_session_configure,
.session_clear = aesni_mb_pmd_session_clear
};
struct rte_cryptodev_ops *rte_aesni_mb_pmd_ops = &aesni_mb_pmd_ops;