numam-dpdk/lib/net/net_crc_neon.c
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

260 lines
6.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#include <string.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_net_crc.h>
#include <rte_vect.h>
#include <rte_cpuflags.h>
#include "net_crc.h"
/** PMULL CRC computation context structure */
struct crc_pmull_ctx {
uint64x2_t rk1_rk2;
uint64x2_t rk5_rk6;
uint64x2_t rk7_rk8;
};
struct crc_pmull_ctx crc32_eth_pmull __rte_aligned(16);
struct crc_pmull_ctx crc16_ccitt_pmull __rte_aligned(16);
/**
* @brief Performs one folding round
*
* Logically function operates as follows:
* DATA = READ_NEXT_16BYTES();
* F1 = LSB8(FOLD)
* F2 = MSB8(FOLD)
* T1 = CLMUL(F1, RK1)
* T2 = CLMUL(F2, RK2)
* FOLD = XOR(T1, T2, DATA)
*
* @param data_block 16 byte data block
* @param precomp precomputed rk1 constant
* @param fold running 16 byte folded data
*
* @return New 16 byte folded data
*/
static inline uint64x2_t
crcr32_folding_round(uint64x2_t data_block, uint64x2_t precomp,
uint64x2_t fold)
{
uint64x2_t tmp0 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(fold), 1),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 0)));
uint64x2_t tmp1 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(fold), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 1)));
return veorq_u64(tmp1, veorq_u64(data_block, tmp0));
}
/**
* Performs reduction from 128 bits to 64 bits
*
* @param data128 128 bits data to be reduced
* @param precomp rk5 and rk6 precomputed constants
*
* @return data reduced to 64 bits
*/
static inline uint64x2_t
crcr32_reduce_128_to_64(uint64x2_t data128,
uint64x2_t precomp)
{
uint64x2_t tmp0, tmp1, tmp2;
/* 64b fold */
tmp0 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(data128), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 0)));
tmp1 = vshift_bytes_right(data128, 8);
tmp0 = veorq_u64(tmp0, tmp1);
/* 32b fold */
tmp2 = vshift_bytes_left(tmp0, 4);
tmp1 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(tmp2), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 1)));
return veorq_u64(tmp1, tmp0);
}
/**
* Performs Barret's reduction from 64 bits to 32 bits
*
* @param data64 64 bits data to be reduced
* @param precomp rk7 precomputed constant
*
* @return data reduced to 32 bits
*/
static inline uint32_t
crcr32_reduce_64_to_32(uint64x2_t data64,
uint64x2_t precomp)
{
static uint32_t mask1[4] __rte_aligned(16) = {
0xffffffff, 0xffffffff, 0x00000000, 0x00000000
};
static uint32_t mask2[4] __rte_aligned(16) = {
0x00000000, 0xffffffff, 0xffffffff, 0xffffffff
};
uint64x2_t tmp0, tmp1, tmp2;
tmp0 = vandq_u64(data64, vld1q_u64((uint64_t *)mask2));
tmp1 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(tmp0), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 0)));
tmp1 = veorq_u64(tmp1, tmp0);
tmp1 = vandq_u64(tmp1, vld1q_u64((uint64_t *)mask1));
tmp2 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(tmp1), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 1)));
tmp2 = veorq_u64(tmp2, tmp1);
tmp2 = veorq_u64(tmp2, tmp0);
return vgetq_lane_u32(vreinterpretq_u32_u64(tmp2), 2);
}
static inline uint32_t
crc32_eth_calc_pmull(
const uint8_t *data,
uint32_t data_len,
uint32_t crc,
const struct crc_pmull_ctx *params)
{
uint64x2_t temp, fold, k;
uint32_t n;
/* Get CRC init value */
temp = vreinterpretq_u64_u32(vsetq_lane_u32(crc, vmovq_n_u32(0), 0));
/**
* Folding all data into single 16 byte data block
* Assumes: fold holds first 16 bytes of data
*/
if (unlikely(data_len < 32)) {
if (unlikely(data_len == 16)) {
/* 16 bytes */
fold = vld1q_u64((const uint64_t *)data);
fold = veorq_u64(fold, temp);
goto reduction_128_64;
}
if (unlikely(data_len < 16)) {
/* 0 to 15 bytes */
uint8_t buffer[16] __rte_aligned(16);
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, data, data_len);
fold = vld1q_u64((uint64_t *)buffer);
fold = veorq_u64(fold, temp);
if (unlikely(data_len < 4)) {
fold = vshift_bytes_left(fold, 8 - data_len);
goto barret_reduction;
}
fold = vshift_bytes_left(fold, 16 - data_len);
goto reduction_128_64;
}
/* 17 to 31 bytes */
fold = vld1q_u64((const uint64_t *)data);
fold = veorq_u64(fold, temp);
n = 16;
k = params->rk1_rk2;
goto partial_bytes;
}
/** At least 32 bytes in the buffer */
/** Apply CRC initial value */
fold = vld1q_u64((const uint64_t *)data);
fold = veorq_u64(fold, temp);
/** Main folding loop - the last 16 bytes is processed separately */
k = params->rk1_rk2;
for (n = 16; (n + 16) <= data_len; n += 16) {
temp = vld1q_u64((const uint64_t *)&data[n]);
fold = crcr32_folding_round(temp, k, fold);
}
partial_bytes:
if (likely(n < data_len)) {
uint64x2_t last16, a, b, mask;
uint32_t rem = data_len & 15;
last16 = vld1q_u64((const uint64_t *)&data[data_len - 16]);
a = vshift_bytes_left(fold, 16 - rem);
b = vshift_bytes_right(fold, rem);
mask = vshift_bytes_left(vdupq_n_u64(-1), 16 - rem);
b = vorrq_u64(b, vandq_u64(mask, last16));
/* k = rk1 & rk2 */
temp = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(a), 1),
vgetq_lane_p64(vreinterpretq_p64_u64(k), 0)));
fold = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(a), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(k), 1)));
fold = veorq_u64(fold, temp);
fold = veorq_u64(fold, b);
}
/** Reduction 128 -> 32 Assumes: fold holds 128bit folded data */
reduction_128_64:
k = params->rk5_rk6;
fold = crcr32_reduce_128_to_64(fold, k);
barret_reduction:
k = params->rk7_rk8;
n = crcr32_reduce_64_to_32(fold, k);
return n;
}
void
rte_net_crc_neon_init(void)
{
/* Initialize CRC16 data */
uint64_t ccitt_k1_k2[2] = {0x189aeLLU, 0x8e10LLU};
uint64_t ccitt_k5_k6[2] = {0x189aeLLU, 0x114aaLLU};
uint64_t ccitt_k7_k8[2] = {0x11c581910LLU, 0x10811LLU};
/* Initialize CRC32 data */
uint64_t eth_k1_k2[2] = {0xccaa009eLLU, 0x1751997d0LLU};
uint64_t eth_k5_k6[2] = {0xccaa009eLLU, 0x163cd6124LLU};
uint64_t eth_k7_k8[2] = {0x1f7011640LLU, 0x1db710641LLU};
/** Save the params in context structure */
crc16_ccitt_pmull.rk1_rk2 = vld1q_u64(ccitt_k1_k2);
crc16_ccitt_pmull.rk5_rk6 = vld1q_u64(ccitt_k5_k6);
crc16_ccitt_pmull.rk7_rk8 = vld1q_u64(ccitt_k7_k8);
/** Save the params in context structure */
crc32_eth_pmull.rk1_rk2 = vld1q_u64(eth_k1_k2);
crc32_eth_pmull.rk5_rk6 = vld1q_u64(eth_k5_k6);
crc32_eth_pmull.rk7_rk8 = vld1q_u64(eth_k7_k8);
}
uint32_t
rte_crc16_ccitt_neon_handler(const uint8_t *data, uint32_t data_len)
{
return (uint16_t)~crc32_eth_calc_pmull(data,
data_len,
0xffff,
&crc16_ccitt_pmull);
}
uint32_t
rte_crc32_eth_neon_handler(const uint8_t *data, uint32_t data_len)
{
return ~crc32_eth_calc_pmull(data,
data_len,
0xffffffffUL,
&crc32_eth_pmull);
}