numam-dpdk/drivers/crypto/qat/qat_asym.c
Arek Kusztal 8245972c04 crypto/qat: add modular multiplicative inverse
This commit adds modular multiplicative inverse to Intel
QuickAssist Technology driver. For capabilities or limitations
please refer to qat.rst or qat_asym_capabilities.h.

Signed-off-by: Arek Kusztal <arkadiuszx.kusztal@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
2019-04-02 16:50:24 +02:00

421 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <stdarg.h>
#include "qat_asym.h"
#include "icp_qat_fw_pke.h"
#include "icp_qat_fw.h"
#include "qat_pke_functionality_arrays.h"
#define qat_asym_sz_2param(arg) (arg, sizeof(arg)/sizeof(*arg))
static int qat_asym_get_sz_and_func_id(const uint32_t arr[][2],
size_t arr_sz, size_t *size, uint32_t *func_id)
{
size_t i;
for (i = 0; i < arr_sz; i++) {
if (*size <= arr[i][0]) {
*size = arr[i][0];
*func_id = arr[i][1];
return 0;
}
}
return -1;
}
static void qat_asym_build_req_tmpl(void *sess_private_data,
struct rte_crypto_asym_xform *xform)
{
struct icp_qat_fw_pke_request *qat_req;
struct qat_asym_session *session = sess_private_data;
qat_req = &session->req_tmpl;
memset(qat_req, 0, sizeof(*qat_req));
qat_req->pke_hdr.service_type = ICP_QAT_FW_COMN_REQ_CPM_FW_PKE;
qat_req->pke_hdr.hdr_flags =
ICP_QAT_FW_COMN_HDR_FLAGS_BUILD
(ICP_QAT_FW_COMN_REQ_FLAG_SET);
qat_req->pke_hdr.comn_req_flags = 0;
qat_req->pke_hdr.resrvd1 = 0;
qat_req->pke_hdr.resrvd2 = 0;
qat_req->pke_hdr.kpt_mask = 0;
qat_req->pke_hdr.kpt_rn_mask = 0;
qat_req->pke_hdr.cd_pars.content_desc_addr = 0;
qat_req->pke_hdr.cd_pars.content_desc_resrvd = 0;
qat_req->resrvd1 = 0;
qat_req->resrvd2 = 0;
qat_req->next_req_adr = 0;
if (xform->xform_type == RTE_CRYPTO_ASYM_XFORM_MODEX) {
qat_req->output_param_count = 1;
qat_req->input_param_count = 3;
} else if (xform->xform_type == RTE_CRYPTO_ASYM_XFORM_MODINV) {
qat_req->output_param_count = 1;
qat_req->input_param_count = 2;
}
}
static size_t max_of(int n, ...)
{
va_list args;
size_t len = 0, num;
int i;
va_start(args, n);
len = va_arg(args, size_t);
for (i = 0; i < n - 1; i++) {
num = va_arg(args, size_t);
if (num > len)
len = num;
}
va_end(args);
return len;
}
static void qat_clear_arrays(struct qat_asym_op_cookie *cookie,
int in_count, int out_count, int in_size, int out_size)
{
int i;
for (i = 0; i < in_count; i++)
memset(cookie->input_array[i], 0x0, in_size);
for (i = 0; i < out_count; i++)
memset(cookie->output_array[i], 0x0, out_size);
}
static int qat_asym_check_nonzero(rte_crypto_param n)
{
if (n.length < 8) {
/* Not a case for any cryptograpic function except for DH
* generator which very often can be of one byte length
*/
size_t i;
if (n.data[n.length - 1] == 0x0) {
for (i = 0; i < n.length - 1; i++)
if (n.data[i] != 0x0)
break;
if (i == n.length - 1)
return QAT_ASYM_ERROR_INVALID_PARAM;
}
} else if (*(uint64_t *)&n.data[
n.length - 8] == 0) {
/* Very likely it is zeroed modulus */
size_t i;
for (i = 0; i < n.length - 8; i++)
if (n.data[i] != 0x0)
break;
if (i == n.length - 8)
return QAT_ASYM_ERROR_INVALID_PARAM;
}
return 0;
}
int
qat_asym_build_request(void *in_op,
uint8_t *out_msg,
void *op_cookie,
__rte_unused enum qat_device_gen qat_dev_gen)
{
struct qat_asym_session *ctx;
struct rte_crypto_op *op = (struct rte_crypto_op *)in_op;
struct rte_crypto_asym_op *asym_op = op->asym;
struct icp_qat_fw_pke_request *qat_req =
(struct icp_qat_fw_pke_request *)out_msg;
struct qat_asym_op_cookie *cookie =
(struct qat_asym_op_cookie *)op_cookie;
uint64_t err = 0;
size_t alg_size;
size_t alg_size_in_bytes;
uint32_t func_id;
ctx = (struct qat_asym_session *)get_asym_session_private_data(
op->asym->session, cryptodev_qat_asym_driver_id);
rte_mov64((uint8_t *)qat_req, (const uint8_t *)&(ctx->req_tmpl));
qat_req->pke_mid.opaque = (uint64_t)(uintptr_t)op;
qat_req->pke_mid.src_data_addr = cookie->input_addr;
qat_req->pke_mid.dest_data_addr = cookie->output_addr;
if (ctx->alg == QAT_PKE_MODEXP) {
err = qat_asym_check_nonzero(ctx->sess_alg_params.mod_exp.n);
if (err) {
QAT_LOG(ERR, "Empty modulus in modular exponentiation,"
" aborting this operation");
goto error;
}
alg_size_in_bytes = max_of(3, asym_op->modex.base.length,
ctx->sess_alg_params.mod_exp.e.length,
ctx->sess_alg_params.mod_exp.n.length);
alg_size = alg_size_in_bytes << 3;
if (qat_asym_get_sz_and_func_id(MOD_EXP_SIZE,
sizeof(MOD_EXP_SIZE)/sizeof(*MOD_EXP_SIZE),
&alg_size, &func_id)) {
err = QAT_ASYM_ERROR_INVALID_PARAM;
goto error;
}
alg_size_in_bytes = alg_size >> 3;
rte_memcpy(cookie->input_array[0] + alg_size_in_bytes -
asym_op->modex.base.length
, asym_op->modex.base.data,
asym_op->modex.base.length);
rte_memcpy(cookie->input_array[1] + alg_size_in_bytes -
ctx->sess_alg_params.mod_exp.e.length
, ctx->sess_alg_params.mod_exp.e.data,
ctx->sess_alg_params.mod_exp.e.length);
rte_memcpy(cookie->input_array[2] + alg_size_in_bytes -
ctx->sess_alg_params.mod_exp.n.length,
ctx->sess_alg_params.mod_exp.n.data,
ctx->sess_alg_params.mod_exp.n.length);
cookie->alg_size = alg_size;
qat_req->pke_hdr.cd_pars.func_id = func_id;
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "base",
cookie->input_array[0],
alg_size_in_bytes);
QAT_DP_HEXDUMP_LOG(DEBUG, "exponent",
cookie->input_array[1],
alg_size_in_bytes);
QAT_DP_HEXDUMP_LOG(DEBUG, "modulus",
cookie->input_array[2],
alg_size_in_bytes);
#endif
} else if (ctx->alg == QAT_PKE_MODINV) {
err = qat_asym_check_nonzero(ctx->sess_alg_params.mod_inv.n);
if (err) {
QAT_LOG(ERR, "Empty modulus in modular multiplicative"
" inverse, aborting this operation");
goto error;
}
alg_size_in_bytes = max_of(2, asym_op->modinv.base.length,
ctx->sess_alg_params.mod_inv.n.length);
alg_size = alg_size_in_bytes << 3;
if (ctx->sess_alg_params.mod_inv.n.data[
ctx->sess_alg_params.mod_inv.n.length - 1] & 0x01) {
if (qat_asym_get_sz_and_func_id(MOD_INV_IDS_ODD,
sizeof(MOD_INV_IDS_ODD)/
sizeof(*MOD_INV_IDS_ODD),
&alg_size, &func_id)) {
err = QAT_ASYM_ERROR_INVALID_PARAM;
goto error;
}
} else {
if (qat_asym_get_sz_and_func_id(MOD_INV_IDS_EVEN,
sizeof(MOD_INV_IDS_EVEN)/
sizeof(*MOD_INV_IDS_EVEN),
&alg_size, &func_id)) {
err = QAT_ASYM_ERROR_INVALID_PARAM;
goto error;
}
}
alg_size_in_bytes = alg_size >> 3;
rte_memcpy(cookie->input_array[0] + alg_size_in_bytes -
asym_op->modinv.base.length
, asym_op->modinv.base.data,
asym_op->modinv.base.length);
rte_memcpy(cookie->input_array[1] + alg_size_in_bytes -
ctx->sess_alg_params.mod_inv.n.length
, ctx->sess_alg_params.mod_inv.n.data,
ctx->sess_alg_params.mod_inv.n.length);
cookie->alg_size = alg_size;
qat_req->pke_hdr.cd_pars.func_id = func_id;
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "base",
cookie->input_array[0],
alg_size_in_bytes);
QAT_DP_HEXDUMP_LOG(DEBUG, "modulus",
cookie->input_array[1],
alg_size_in_bytes);
#endif
}
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "qat_req:", qat_req,
sizeof(struct icp_qat_fw_pke_request));
#endif
return 0;
error:
qat_req->output_param_count = 0;
qat_req->input_param_count = 0;
qat_req->pke_hdr.service_type = ICP_QAT_FW_COMN_REQ_NULL;
cookie->error |= err;
return 0;
}
void
qat_asym_process_response(void **op, uint8_t *resp,
void *op_cookie)
{
struct qat_asym_session *ctx;
struct icp_qat_fw_pke_resp *resp_msg =
(struct icp_qat_fw_pke_resp *)resp;
struct rte_crypto_op *rx_op = (struct rte_crypto_op *)(uintptr_t)
(resp_msg->opaque);
struct rte_crypto_asym_op *asym_op = rx_op->asym;
struct qat_asym_op_cookie *cookie = op_cookie;
size_t alg_size, alg_size_in_bytes;
ctx = (struct qat_asym_session *)get_asym_session_private_data(
rx_op->asym->session, cryptodev_qat_asym_driver_id);
*op = rx_op;
rx_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
if (cookie->error) {
cookie->error = 0;
rx_op->status = RTE_CRYPTO_OP_STATUS_ERROR;
QAT_DP_LOG(ERR, "Cookie status returned error");
} else {
if (ICP_QAT_FW_PKE_RESP_PKE_STAT_GET(
resp_msg->pke_resp_hdr.resp_status.pke_resp_flags)) {
rx_op->status = RTE_CRYPTO_OP_STATUS_ERROR;
QAT_DP_LOG(ERR, "Asymmetric response status returned error");
}
if (resp_msg->pke_resp_hdr.resp_status.comn_err_code) {
rx_op->status = RTE_CRYPTO_OP_STATUS_ERROR;
QAT_DP_LOG(ERR, "Asymmetric common status returned error");
}
}
if (ctx->alg == QAT_PKE_MODEXP) {
alg_size = cookie->alg_size;
alg_size_in_bytes = alg_size >> 3;
uint8_t *modexp_result = asym_op->modex.result.data;
if (rx_op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) {
rte_memcpy(modexp_result +
(asym_op->modex.result.length -
ctx->sess_alg_params.mod_exp.n.length),
cookie->output_array[0] + alg_size_in_bytes
- ctx->sess_alg_params.mod_exp.n.length,
ctx->sess_alg_params.mod_exp.n.length
);
rx_op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "modexp_result",
cookie->output_array[0],
alg_size_in_bytes);
#endif
}
qat_clear_arrays(cookie, 3, 1, alg_size_in_bytes,
alg_size_in_bytes);
} else if (ctx->alg == QAT_PKE_MODINV) {
alg_size = cookie->alg_size;
alg_size_in_bytes = alg_size >> 3;
uint8_t *modinv_result = asym_op->modinv.result.data;
if (rx_op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED) {
rte_memcpy(modinv_result + (asym_op->modinv.result.length
- ctx->sess_alg_params.mod_inv.n.length),
cookie->output_array[0] + alg_size_in_bytes
- ctx->sess_alg_params.mod_inv.n.length,
ctx->sess_alg_params.mod_inv.n.length);
rx_op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "modinv_result",
cookie->output_array[0],
alg_size_in_bytes);
#endif
}
qat_clear_arrays(cookie, 2, 1, alg_size_in_bytes,
alg_size_in_bytes);
}
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
QAT_DP_HEXDUMP_LOG(DEBUG, "resp_msg:", resp_msg,
sizeof(struct icp_qat_fw_pke_resp));
#endif
}
int
qat_asym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_asym_xform *xform,
struct rte_cryptodev_asym_session *sess,
struct rte_mempool *mempool)
{
int err = 0;
void *sess_private_data;
struct qat_asym_session *session;
if (rte_mempool_get(mempool, &sess_private_data)) {
QAT_LOG(ERR,
"Couldn't get object from session mempool");
return -ENOMEM;
}
session = sess_private_data;
if (xform->xform_type == RTE_CRYPTO_ASYM_XFORM_MODEX) {
session->sess_alg_params.mod_exp.e = xform->modex.exponent;
session->sess_alg_params.mod_exp.n = xform->modex.modulus;
session->alg = QAT_PKE_MODEXP;
if (xform->modex.exponent.length == 0 ||
xform->modex.modulus.length == 0) {
QAT_LOG(ERR, "Invalid mod exp input parameter");
err = -EINVAL;
goto error;
}
} else if (xform->xform_type == RTE_CRYPTO_ASYM_XFORM_MODINV) {
session->sess_alg_params.mod_inv.n = xform->modinv.modulus;
session->alg = QAT_PKE_MODINV;
if (xform->modinv.modulus.length == 0) {
QAT_LOG(ERR, "Invalid mod inv input parameter");
err = -EINVAL;
goto error;
}
} else {
QAT_LOG(ERR, "Invalid asymmetric crypto xform");
err = -EINVAL;
goto error;
}
qat_asym_build_req_tmpl(sess_private_data, xform);
set_asym_session_private_data(sess, dev->driver_id,
sess_private_data);
return 0;
error:
rte_mempool_put(mempool, sess_private_data);
return err;
}
unsigned int qat_asym_session_get_private_size(
struct rte_cryptodev *dev __rte_unused)
{
return RTE_ALIGN_CEIL(sizeof(struct qat_asym_session), 8);
}
void
qat_asym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_asym_session *sess)
{
uint8_t index = dev->driver_id;
void *sess_priv = get_asym_session_private_data(sess, index);
struct qat_asym_session *s = (struct qat_asym_session *)sess_priv;
if (sess_priv) {
memset(s, 0, qat_asym_session_get_private_size(dev));
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
set_asym_session_private_data(sess, index, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
}