Rasesh Mody 3d1babca08 net/qede/base: dcbx changes for base driver
This patch includes changes for DCBX like:
 - Return empty parameters for oper-params query when negotiation is not
   complete
 - Use the ieee specific mask value for reading the ethtype value in the
   ieee dcbx mode
 - Endian-ness conversion is not needed for priority<->TC field, as the
   data is already being read/written by ecore in the bigendian way
 - While writing the ets config, base driver incorrectly merges the input
   values with the operational values. The values should be either set
   or unset
 - CEE selection field must be set regardless CEE/IEEE mode
 - Fail the dcbx query for VF interfaces
 - Semantic changes

Signed-off-by: Rasesh Mody <rasesh.mody@cavium.com>
2017-01-17 19:40:53 +01:00

4353 lines
123 KiB
C

/*
* Copyright (c) 2016 QLogic Corporation.
* All rights reserved.
* www.qlogic.com
*
* See LICENSE.qede_pmd for copyright and licensing details.
*/
#include "bcm_osal.h"
#include "reg_addr.h"
#include "ecore_gtt_reg_addr.h"
#include "ecore.h"
#include "ecore_chain.h"
#include "ecore_status.h"
#include "ecore_hw.h"
#include "ecore_rt_defs.h"
#include "ecore_init_ops.h"
#include "ecore_int.h"
#include "ecore_cxt.h"
#include "ecore_spq.h"
#include "ecore_init_fw_funcs.h"
#include "ecore_sp_commands.h"
#include "ecore_dev_api.h"
#include "ecore_sriov.h"
#include "ecore_vf.h"
#include "ecore_mcp.h"
#include "ecore_hw_defs.h"
#include "mcp_public.h"
#include "ecore_iro.h"
#include "nvm_cfg.h"
#include "ecore_dev_api.h"
#include "ecore_dcbx.h"
/* TODO - there's a bug in DCBx re-configuration flows in MF, as the QM
* registers involved are not split and thus configuration is a race where
* some of the PFs configuration might be lost.
* Eventually, this needs to move into a MFW-covered HW-lock as arbitration
* mechanism as this doesn't cover some cases [E.g., PDA or scenarios where
* there's more than a single compiled ecore component in system].
*/
static osal_spinlock_t qm_lock;
static bool qm_lock_init;
/* Configurable */
#define ECORE_MIN_DPIS (4) /* The minimal num of DPIs required to
* load the driver. The number was
* arbitrarily set.
*/
/* Derived */
#define ECORE_MIN_PWM_REGION ((ECORE_WID_SIZE) * (ECORE_MIN_DPIS))
enum BAR_ID {
BAR_ID_0, /* used for GRC */
BAR_ID_1 /* Used for doorbells */
};
static u32 ecore_hw_bar_size(struct ecore_hwfn *p_hwfn, enum BAR_ID bar_id)
{
u32 bar_reg = (bar_id == BAR_ID_0 ?
PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
u32 val;
if (IS_VF(p_hwfn->p_dev)) {
/* TODO - assume each VF hwfn has 64Kb for Bar0; Bar1 can be
* read from actual register, but we're currently not using
* it for actual doorbelling.
*/
return 1 << 17;
}
val = ecore_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
if (val)
return 1 << (val + 15);
/* The above registers were updated in the past only in CMT mode. Since
* they were found to be useful MFW started updating them from 8.7.7.0.
* In older MFW versions they are set to 0 which means disabled.
*/
if (p_hwfn->p_dev->num_hwfns > 1) {
DP_NOTICE(p_hwfn, false,
"BAR size not configured. Assuming BAR size of 256kB"
" for GRC and 512kB for DB\n");
val = BAR_ID_0 ? 256 * 1024 : 512 * 1024;
} else {
DP_NOTICE(p_hwfn, false,
"BAR size not configured. Assuming BAR size of 512kB"
" for GRC and 512kB for DB\n");
val = 512 * 1024;
}
return val;
}
void ecore_init_dp(struct ecore_dev *p_dev,
u32 dp_module, u8 dp_level, void *dp_ctx)
{
u32 i;
p_dev->dp_level = dp_level;
p_dev->dp_module = dp_module;
p_dev->dp_ctx = dp_ctx;
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
p_hwfn->dp_level = dp_level;
p_hwfn->dp_module = dp_module;
p_hwfn->dp_ctx = dp_ctx;
}
}
void ecore_init_struct(struct ecore_dev *p_dev)
{
u8 i;
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
p_hwfn->p_dev = p_dev;
p_hwfn->my_id = i;
p_hwfn->b_active = false;
OSAL_MUTEX_ALLOC(p_hwfn, &p_hwfn->dmae_info.mutex);
OSAL_MUTEX_INIT(&p_hwfn->dmae_info.mutex);
}
/* hwfn 0 is always active */
p_dev->hwfns[0].b_active = true;
/* set the default cache alignment to 128 (may be overridden later) */
p_dev->cache_shift = 7;
}
static void ecore_qm_info_free(struct ecore_hwfn *p_hwfn)
{
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
OSAL_FREE(p_hwfn->p_dev, qm_info->qm_pq_params);
qm_info->qm_pq_params = OSAL_NULL;
OSAL_FREE(p_hwfn->p_dev, qm_info->qm_vport_params);
qm_info->qm_vport_params = OSAL_NULL;
OSAL_FREE(p_hwfn->p_dev, qm_info->qm_port_params);
qm_info->qm_port_params = OSAL_NULL;
OSAL_FREE(p_hwfn->p_dev, qm_info->wfq_data);
qm_info->wfq_data = OSAL_NULL;
}
void ecore_resc_free(struct ecore_dev *p_dev)
{
int i;
if (IS_VF(p_dev))
return;
OSAL_FREE(p_dev, p_dev->fw_data);
p_dev->fw_data = OSAL_NULL;
OSAL_FREE(p_dev, p_dev->reset_stats);
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
OSAL_FREE(p_dev, p_hwfn->p_tx_cids);
p_hwfn->p_tx_cids = OSAL_NULL;
OSAL_FREE(p_dev, p_hwfn->p_rx_cids);
p_hwfn->p_rx_cids = OSAL_NULL;
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
ecore_cxt_mngr_free(p_hwfn);
ecore_qm_info_free(p_hwfn);
ecore_spq_free(p_hwfn);
ecore_eq_free(p_hwfn, p_hwfn->p_eq);
ecore_consq_free(p_hwfn, p_hwfn->p_consq);
ecore_int_free(p_hwfn);
#ifdef CONFIG_ECORE_LL2
ecore_ll2_free(p_hwfn, p_hwfn->p_ll2_info);
#endif
ecore_iov_free(p_hwfn);
ecore_dmae_info_free(p_hwfn);
ecore_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
/* @@@TBD Flush work-queue ? */
}
}
static enum _ecore_status_t ecore_init_qm_info(struct ecore_hwfn *p_hwfn,
bool b_sleepable)
{
u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue;
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
struct init_qm_port_params *p_qm_port;
bool init_rdma_offload_pq = false;
bool init_pure_ack_pq = false;
bool init_ooo_pq = false;
u16 num_pqs, protocol_pqs;
u16 num_pf_rls = 0;
u16 num_vfs = 0;
u32 pf_rl;
u8 pf_wfq;
/* @TMP - saving the existing min/max bw config before resetting the
* qm_info to restore them.
*/
pf_rl = qm_info->pf_rl;
pf_wfq = qm_info->pf_wfq;
#ifdef CONFIG_ECORE_SRIOV
if (p_hwfn->p_dev->p_iov_info)
num_vfs = p_hwfn->p_dev->p_iov_info->total_vfs;
#endif
OSAL_MEM_ZERO(qm_info, sizeof(*qm_info));
#ifndef ASIC_ONLY
/* @TMP - Don't allocate QM queues for VFs on emulation */
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
DP_NOTICE(p_hwfn, false,
"Emulation - skip configuring QM queues for VFs\n");
num_vfs = 0;
}
#endif
/* ethernet PFs require a pq per tc. Even if only a subset of the TCs
* active, we want physical queues allocated for all of them, since we
* don't have a good recycle flow. Non ethernet PFs require only a
* single physical queue.
*/
if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
p_hwfn->hw_info.personality == ECORE_PCI_ETH)
protocol_pqs = p_hwfn->hw_info.num_hw_tc;
else
protocol_pqs = 1;
num_pqs = protocol_pqs + num_vfs + 1; /* The '1' is for pure-LB */
num_vports = (u8)RESC_NUM(p_hwfn, ECORE_VPORT);
if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
num_pqs++; /* for RoCE queue */
init_rdma_offload_pq = true;
if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) {
/* Due to FW assumption that rl==vport, we limit the
* number of rate limiters by the minimum between its
* allocated number and the allocated number of vports.
* Another limitation is the number of supported qps
* with rate limiters in FW.
*/
num_pf_rls =
(u16)OSAL_MIN_T(u32, RESC_NUM(p_hwfn, ECORE_RL),
RESC_NUM(p_hwfn, ECORE_VPORT));
/* we subtract num_vfs because each one requires a rate
* limiter, and one default rate limiter.
*/
if (num_pf_rls < num_vfs + 1) {
DP_ERR(p_hwfn, "No RL for DCQCN");
DP_ERR(p_hwfn, "[num_pf_rls %d num_vfs %d]\n",
num_pf_rls, num_vfs);
return ECORE_INVAL;
}
num_pf_rls -= num_vfs + 1;
}
num_pqs += num_pf_rls;
qm_info->num_pf_rls = (u8)num_pf_rls;
}
if (p_hwfn->hw_info.personality == ECORE_PCI_IWARP) {
num_pqs += 3; /* for iwarp queue / pure-ack / ooo */
init_rdma_offload_pq = true;
init_pure_ack_pq = true;
init_ooo_pq = true;
}
if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */
init_pure_ack_pq = true;
init_ooo_pq = true;
}
/* Sanity checking that setup requires legal number of resources */
if (num_pqs > RESC_NUM(p_hwfn, ECORE_PQ)) {
DP_ERR(p_hwfn,
"Need too many Physical queues - 0x%04x avail %04x",
num_pqs, RESC_NUM(p_hwfn, ECORE_PQ));
return ECORE_INVAL;
}
/* PQs will be arranged as follows: First per-TC PQ, then pure-LB queue,
* then special queues (iSCSI pure-ACK / RoCE), then per-VF PQ.
*/
qm_info->qm_pq_params = OSAL_ZALLOC(p_hwfn->p_dev,
b_sleepable ? GFP_KERNEL :
GFP_ATOMIC,
sizeof(struct init_qm_pq_params) *
num_pqs);
if (!qm_info->qm_pq_params)
goto alloc_err;
qm_info->qm_vport_params = OSAL_ZALLOC(p_hwfn->p_dev,
b_sleepable ? GFP_KERNEL :
GFP_ATOMIC,
sizeof(struct
init_qm_vport_params) *
num_vports);
if (!qm_info->qm_vport_params)
goto alloc_err;
qm_info->qm_port_params = OSAL_ZALLOC(p_hwfn->p_dev,
b_sleepable ? GFP_KERNEL :
GFP_ATOMIC,
sizeof(struct init_qm_port_params)
* MAX_NUM_PORTS);
if (!qm_info->qm_port_params)
goto alloc_err;
qm_info->wfq_data = OSAL_ZALLOC(p_hwfn->p_dev,
b_sleepable ? GFP_KERNEL :
GFP_ATOMIC,
sizeof(struct ecore_wfq_data) *
num_vports);
if (!qm_info->wfq_data)
goto alloc_err;
vport_id = (u8)RESC_START(p_hwfn, ECORE_VPORT);
/* First init rate limited queues ( Due to RoCE assumption of
* qpid=rlid )
*/
for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) {
qm_info->qm_pq_params[curr_queue].vport_id = vport_id++;
qm_info->qm_pq_params[curr_queue].tc_id =
p_hwfn->hw_info.offload_tc;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
qm_info->qm_pq_params[curr_queue].rl_valid = 1;
};
/* Protocol PQs */
for (i = 0; i < protocol_pqs; i++) {
struct init_qm_pq_params *params =
&qm_info->qm_pq_params[curr_queue++];
if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE ||
p_hwfn->hw_info.personality == ECORE_PCI_IWARP ||
p_hwfn->hw_info.personality == ECORE_PCI_ETH) {
params->vport_id = vport_id;
params->tc_id = i;
/* Note: this assumes that if we had a configuration
* with N tcs and subsequently another configuration
* With Fewer TCs, the in flight traffic (in QM queues,
* in FW, from driver to FW) will still trickle out and
* not get "stuck" in the QM. This is determined by the
* NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ. Unused TCs are
* supposed to be cleared in this map, allowing traffic
* to flush out. If this is not the case, we would need
* to set the TC of unused queues to 0, and reconfigure
* QM every time num of TCs changes. Unused queues in
* this context would mean those intended for TCs where
* tc_id > hw_info.num_active_tcs.
*/
params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
} else {
params->vport_id = vport_id;
params->tc_id = p_hwfn->hw_info.offload_tc;
params->wrr_group = 1; /* @@@TBD ECORE_WRR_MEDIUM */
}
}
/* Then init pure-LB PQ */
qm_info->pure_lb_pq = curr_queue;
qm_info->qm_pq_params[curr_queue].vport_id =
(u8)RESC_START(p_hwfn, ECORE_VPORT);
qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
curr_queue++;
qm_info->offload_pq = 0; /* Already initialized for iSCSI/FCoE */
if (init_rdma_offload_pq) {
qm_info->offload_pq = curr_queue;
qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
qm_info->qm_pq_params[curr_queue].tc_id =
p_hwfn->hw_info.offload_tc;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
curr_queue++;
}
if (init_pure_ack_pq) {
qm_info->pure_ack_pq = curr_queue;
qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
qm_info->qm_pq_params[curr_queue].tc_id =
p_hwfn->hw_info.offload_tc;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
curr_queue++;
}
if (init_ooo_pq) {
qm_info->ooo_pq = curr_queue;
qm_info->qm_pq_params[curr_queue].vport_id = vport_id;
qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
curr_queue++;
}
/* Then init per-VF PQs */
vf_offset = curr_queue;
for (i = 0; i < num_vfs; i++) {
/* First vport is used by the PF */
qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
/* @@@TBD VF Multi-cos */
qm_info->qm_pq_params[curr_queue].tc_id = 0;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
qm_info->qm_pq_params[curr_queue].rl_valid = 1;
curr_queue++;
};
qm_info->vf_queues_offset = vf_offset;
qm_info->num_pqs = num_pqs;
qm_info->num_vports = num_vports;
/* Initialize qm port parameters */
num_ports = p_hwfn->p_dev->num_ports_in_engines;
for (i = 0; i < num_ports; i++) {
p_qm_port = &qm_info->qm_port_params[i];
p_qm_port->active = 1;
/* @@@TMP - was NUM_OF_PHYS_TCS; Changed until dcbx will
* be in place
*/
if (num_ports == 4)
p_qm_port->active_phys_tcs = 0xf;
else
p_qm_port->active_phys_tcs = 0x9f;
p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
}
if (ECORE_IS_AH(p_hwfn->p_dev) && (num_ports == 4))
qm_info->max_phys_tcs_per_port = NUM_PHYS_TCS_4PORT_K2;
else
qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
qm_info->start_pq = (u16)RESC_START(p_hwfn, ECORE_PQ);
qm_info->num_vf_pqs = num_vfs;
qm_info->start_vport = (u8)RESC_START(p_hwfn, ECORE_VPORT);
for (i = 0; i < qm_info->num_vports; i++)
qm_info->qm_vport_params[i].vport_wfq = 1;
qm_info->vport_rl_en = 1;
qm_info->vport_wfq_en = 1;
qm_info->pf_rl = pf_rl;
qm_info->pf_wfq = pf_wfq;
return ECORE_SUCCESS;
alloc_err:
DP_NOTICE(p_hwfn, false, "Failed to allocate memory for QM params\n");
ecore_qm_info_free(p_hwfn);
return ECORE_NOMEM;
}
/* This function reconfigures the QM pf on the fly.
* For this purpose we:
* 1. reconfigure the QM database
* 2. set new values to runtime arrat
* 3. send an sdm_qm_cmd through the rbc interface to stop the QM
* 4. activate init tool in QM_PF stage
* 5. send an sdm_qm_cmd through rbc interface to release the QM
*/
enum _ecore_status_t ecore_qm_reconf(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
bool b_rc;
enum _ecore_status_t rc;
/* qm_info is allocated in ecore_init_qm_info() which is already called
* from ecore_resc_alloc() or previous call of ecore_qm_reconf().
* The allocated size may change each init, so we free it before next
* allocation.
*/
ecore_qm_info_free(p_hwfn);
/* initialize ecore's qm data structure */
rc = ecore_init_qm_info(p_hwfn, false);
if (rc != ECORE_SUCCESS)
return rc;
/* stop PF's qm queues */
OSAL_SPIN_LOCK(&qm_lock);
b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
qm_info->start_pq, qm_info->num_pqs);
OSAL_SPIN_UNLOCK(&qm_lock);
if (!b_rc)
return ECORE_INVAL;
/* clear the QM_PF runtime phase leftovers from previous init */
ecore_init_clear_rt_data(p_hwfn);
/* prepare QM portion of runtime array */
ecore_qm_init_pf(p_hwfn);
/* activate init tool on runtime array */
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
p_hwfn->hw_info.hw_mode);
if (rc != ECORE_SUCCESS)
return rc;
/* start PF's qm queues */
OSAL_SPIN_LOCK(&qm_lock);
b_rc = ecore_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
qm_info->start_pq, qm_info->num_pqs);
OSAL_SPIN_UNLOCK(&qm_lock);
if (!b_rc)
return ECORE_INVAL;
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_resc_alloc(struct ecore_dev *p_dev)
{
struct ecore_consq *p_consq;
struct ecore_eq *p_eq;
#ifdef CONFIG_ECORE_LL2
struct ecore_ll2_info *p_ll2_info;
#endif
enum _ecore_status_t rc = ECORE_SUCCESS;
int i;
if (IS_VF(p_dev))
return rc;
p_dev->fw_data = OSAL_ZALLOC(p_dev, GFP_KERNEL,
sizeof(*p_dev->fw_data));
if (!p_dev->fw_data)
return ECORE_NOMEM;
/* Allocate Memory for the Queue->CID mapping */
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
u32 num_tx_conns = RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
int tx_size, rx_size;
/* @@@TMP - resc management, change to actual required size */
if (p_hwfn->pf_params.eth_pf_params.num_cons > num_tx_conns)
num_tx_conns = p_hwfn->pf_params.eth_pf_params.num_cons;
tx_size = sizeof(struct ecore_hw_cid_data) * num_tx_conns;
rx_size = sizeof(struct ecore_hw_cid_data) *
RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
p_hwfn->p_tx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
tx_size);
if (!p_hwfn->p_tx_cids) {
DP_NOTICE(p_hwfn, true,
"Failed to allocate memory for Tx Cids\n");
goto alloc_no_mem;
}
p_hwfn->p_rx_cids = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
rx_size);
if (!p_hwfn->p_rx_cids) {
DP_NOTICE(p_hwfn, true,
"Failed to allocate memory for Rx Cids\n");
goto alloc_no_mem;
}
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
u32 n_eqes, num_cons;
/* First allocate the context manager structure */
rc = ecore_cxt_mngr_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* Set the HW cid/tid numbers (in the contest manager)
* Must be done prior to any further computations.
*/
rc = ecore_cxt_set_pf_params(p_hwfn);
if (rc)
goto alloc_err;
/* Prepare and process QM requirements */
rc = ecore_init_qm_info(p_hwfn, true);
if (rc)
goto alloc_err;
/* Compute the ILT client partition */
rc = ecore_cxt_cfg_ilt_compute(p_hwfn);
if (rc)
goto alloc_err;
/* CID map / ILT shadow table / T2
* The talbes sizes are determined by the computations above
*/
rc = ecore_cxt_tables_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* SPQ, must follow ILT because initializes SPQ context */
rc = ecore_spq_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* SP status block allocation */
p_hwfn->p_dpc_ptt = ecore_get_reserved_ptt(p_hwfn,
RESERVED_PTT_DPC);
rc = ecore_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
if (rc)
goto alloc_err;
rc = ecore_iov_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* EQ */
n_eqes = ecore_chain_get_capacity(&p_hwfn->p_spq->chain);
if ((p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) ||
(p_hwfn->hw_info.personality == ECORE_PCI_IWARP)) {
/* Calculate the EQ size
* ---------------------
* Each ICID may generate up to one event at a time i.e.
* the event must be handled/cleared before a new one
* can be generated. We calculate the sum of events per
* protocol and create an EQ deep enough to handle the
* worst case:
* - Core - according to SPQ.
* - RoCE - per QP there are a couple of ICIDs, one
* responder and one requester, each can
* generate an EQE => n_eqes_qp = 2 * n_qp.
* Each CQ can generate an EQE. There are 2 CQs
* per QP => n_eqes_cq = 2 * n_qp.
* Hence the RoCE total is 4 * n_qp or
* 2 * num_cons.
* - ENet - There can be up to two events per VF. One
* for VF-PF channel and another for VF FLR
* initial cleanup. The number of VFs is
* bounded by MAX_NUM_VFS_BB, and is much
* smaller than RoCE's so we avoid exact
* calculation.
*/
if (p_hwfn->hw_info.personality == ECORE_PCI_ETH_ROCE) {
num_cons =
ecore_cxt_get_proto_cid_count(
p_hwfn,
PROTOCOLID_ROCE,
0);
num_cons *= 2;
} else {
num_cons = ecore_cxt_get_proto_cid_count(
p_hwfn,
PROTOCOLID_IWARP,
0);
}
n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
} else if (p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) {
num_cons =
ecore_cxt_get_proto_cid_count(p_hwfn,
PROTOCOLID_ISCSI, 0);
n_eqes += 2 * num_cons;
}
if (n_eqes > 0xFFFF) {
DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements."
"The maximum of a u16 chain is 0x%x\n",
n_eqes, 0xFFFF);
rc = ECORE_INVAL;
goto alloc_err;
}
p_eq = ecore_eq_alloc(p_hwfn, (u16)n_eqes);
if (!p_eq)
goto alloc_no_mem;
p_hwfn->p_eq = p_eq;
p_consq = ecore_consq_alloc(p_hwfn);
if (!p_consq)
goto alloc_no_mem;
p_hwfn->p_consq = p_consq;
#ifdef CONFIG_ECORE_LL2
if (p_hwfn->using_ll2) {
p_ll2_info = ecore_ll2_alloc(p_hwfn);
if (!p_ll2_info)
goto alloc_no_mem;
p_hwfn->p_ll2_info = p_ll2_info;
}
#endif
/* DMA info initialization */
rc = ecore_dmae_info_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true,
"Failed to allocate memory for dmae_info structure\n");
goto alloc_err;
}
/* DCBX initialization */
rc = ecore_dcbx_info_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true,
"Failed to allocate memory for dcbx structure\n");
goto alloc_err;
}
}
p_dev->reset_stats = OSAL_ZALLOC(p_dev, GFP_KERNEL,
sizeof(*p_dev->reset_stats));
if (!p_dev->reset_stats) {
DP_NOTICE(p_dev, true, "Failed to allocate reset statistics\n");
goto alloc_no_mem;
}
return ECORE_SUCCESS;
alloc_no_mem:
rc = ECORE_NOMEM;
alloc_err:
ecore_resc_free(p_dev);
return rc;
}
void ecore_resc_setup(struct ecore_dev *p_dev)
{
int i;
if (IS_VF(p_dev))
return;
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
ecore_cxt_mngr_setup(p_hwfn);
ecore_spq_setup(p_hwfn);
ecore_eq_setup(p_hwfn, p_hwfn->p_eq);
ecore_consq_setup(p_hwfn, p_hwfn->p_consq);
/* Read shadow of current MFW mailbox */
ecore_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
p_hwfn->mcp_info->mfw_mb_cur,
p_hwfn->mcp_info->mfw_mb_length);
ecore_int_setup(p_hwfn, p_hwfn->p_main_ptt);
ecore_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
#ifdef CONFIG_ECORE_LL2
if (p_hwfn->using_ll2)
ecore_ll2_setup(p_hwfn, p_hwfn->p_ll2_info);
#endif
}
}
#define FINAL_CLEANUP_POLL_CNT (100)
#define FINAL_CLEANUP_POLL_TIME (10)
enum _ecore_status_t ecore_final_cleanup(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 id, bool is_vf)
{
u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
enum _ecore_status_t rc = ECORE_TIMEOUT;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_TEDIBEAR(p_hwfn->p_dev) ||
CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
DP_INFO(p_hwfn, "Skipping final cleanup for non-ASIC\n");
return ECORE_SUCCESS;
}
#endif
addr = GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
if (is_vf)
id += 0x10;
command |= X_FINAL_CLEANUP_AGG_INT <<
SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
/* Make sure notification is not set before initiating final cleanup */
if (REG_RD(p_hwfn, addr)) {
DP_NOTICE(p_hwfn, false,
"Unexpected; Found final cleanup notification");
DP_NOTICE(p_hwfn, false,
" before initiating final cleanup\n");
REG_WR(p_hwfn, addr, 0);
}
DP_VERBOSE(p_hwfn, ECORE_MSG_IOV,
"Sending final cleanup for PFVF[%d] [Command %08x\n]",
id, OSAL_CPU_TO_LE32(command));
ecore_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN,
OSAL_CPU_TO_LE32(command));
/* Poll until completion */
while (!REG_RD(p_hwfn, addr) && count--)
OSAL_MSLEEP(FINAL_CLEANUP_POLL_TIME);
if (REG_RD(p_hwfn, addr))
rc = ECORE_SUCCESS;
else
DP_NOTICE(p_hwfn, true,
"Failed to receive FW final cleanup notification\n");
/* Cleanup afterwards */
REG_WR(p_hwfn, addr, 0);
return rc;
}
static enum _ecore_status_t ecore_calc_hw_mode(struct ecore_hwfn *p_hwfn)
{
int hw_mode = 0;
if (ECORE_IS_BB_B0(p_hwfn->p_dev)) {
hw_mode |= 1 << MODE_BB_B0;
} else if (ECORE_IS_AH(p_hwfn->p_dev)) {
hw_mode |= 1 << MODE_K2;
} else {
DP_NOTICE(p_hwfn, true, "Unknown chip type %#x\n",
p_hwfn->p_dev->type);
return ECORE_INVAL;
}
/* Ports per engine is based on the values in CNIG_REG_NW_PORT_MODE */
switch (p_hwfn->p_dev->num_ports_in_engines) {
case 1:
hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
break;
case 2:
hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
break;
case 4:
hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
break;
default:
DP_NOTICE(p_hwfn, true,
"num_ports_in_engine = %d not supported\n",
p_hwfn->p_dev->num_ports_in_engines);
return ECORE_INVAL;
}
switch (p_hwfn->p_dev->mf_mode) {
case ECORE_MF_DEFAULT:
case ECORE_MF_NPAR:
hw_mode |= 1 << MODE_MF_SI;
break;
case ECORE_MF_OVLAN:
hw_mode |= 1 << MODE_MF_SD;
break;
default:
DP_NOTICE(p_hwfn, true,
"Unsupported MF mode, init as DEFAULT\n");
hw_mode |= 1 << MODE_MF_SI;
}
#ifndef ASIC_ONLY
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
hw_mode |= 1 << MODE_FPGA;
} else {
if (p_hwfn->p_dev->b_is_emul_full)
hw_mode |= 1 << MODE_EMUL_FULL;
else
hw_mode |= 1 << MODE_EMUL_REDUCED;
}
} else
#endif
hw_mode |= 1 << MODE_ASIC;
if (p_hwfn->p_dev->num_hwfns > 1)
hw_mode |= 1 << MODE_100G;
p_hwfn->hw_info.hw_mode = hw_mode;
DP_VERBOSE(p_hwfn, (ECORE_MSG_PROBE | ECORE_MSG_IFUP),
"Configuring function for hw_mode: 0x%08x\n",
p_hwfn->hw_info.hw_mode);
return ECORE_SUCCESS;
}
#ifndef ASIC_ONLY
/* MFW-replacement initializations for non-ASIC */
static enum _ecore_status_t ecore_hw_init_chip(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 pl_hv = 1;
int i;
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
pl_hv |= 0x600;
ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV + 4, pl_hv);
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev))
ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV_2, 0x3ffffff);
/* initialize port mode to 4x10G_E (10G with 4x10 SERDES) */
/* CNIG_REG_NW_PORT_MODE is same for A0 and B0 */
if (!CHIP_REV_IS_EMUL(p_hwfn->p_dev) || !ECORE_IS_AH(p_hwfn->p_dev))
ecore_wr(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0, 4);
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
/* 2 for 4-port, 1 for 2-port, 0 for 1-port */
ecore_wr(p_hwfn, p_ptt, MISC_REG_PORT_MODE,
(p_hwfn->p_dev->num_ports_in_engines >> 1));
ecore_wr(p_hwfn, p_ptt, MISC_REG_BLOCK_256B_EN,
p_hwfn->p_dev->num_ports_in_engines == 4 ? 0 : 3);
}
/* Poll on RBC */
ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_RBC_DONE, 1);
for (i = 0; i < 100; i++) {
OSAL_UDELAY(50);
if (ecore_rd(p_hwfn, p_ptt, PSWRQ2_REG_CFG_DONE) == 1)
break;
}
if (i == 100)
DP_NOTICE(p_hwfn, true,
"RBC done failed to complete in PSWRQ2\n");
return ECORE_SUCCESS;
}
#endif
/* Init run time data for all PFs and their VFs on an engine.
* TBD - for VFs - Once we have parent PF info for each VF in
* shmem available as CAU requires knowledge of parent PF for each VF.
*/
static void ecore_init_cau_rt_data(struct ecore_dev *p_dev)
{
u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
int i, sb_id;
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
struct ecore_igu_info *p_igu_info;
struct ecore_igu_block *p_block;
struct cau_sb_entry sb_entry;
p_igu_info = p_hwfn->hw_info.p_igu_info;
for (sb_id = 0; sb_id < ECORE_MAPPING_MEMORY_SIZE(p_dev);
sb_id++) {
p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
if (!p_block->is_pf)
continue;
ecore_init_cau_sb_entry(p_hwfn, &sb_entry,
p_block->function_id, 0, 0);
STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry);
}
}
}
static enum _ecore_status_t ecore_hw_init_common(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
int hw_mode)
{
struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
struct ecore_dev *p_dev = p_hwfn->p_dev;
u8 vf_id, max_num_vfs;
u16 num_pfs, pf_id;
u32 concrete_fid;
enum _ecore_status_t rc = ECORE_SUCCESS;
ecore_init_cau_rt_data(p_dev);
/* Program GTT windows */
ecore_gtt_init(p_hwfn);
#ifndef ASIC_ONLY
if (CHIP_REV_IS_EMUL(p_dev)) {
rc = ecore_hw_init_chip(p_hwfn, p_hwfn->p_main_ptt);
if (rc != ECORE_SUCCESS)
return rc;
}
#endif
if (p_hwfn->mcp_info) {
if (p_hwfn->mcp_info->func_info.bandwidth_max)
qm_info->pf_rl_en = 1;
if (p_hwfn->mcp_info->func_info.bandwidth_min)
qm_info->pf_wfq_en = 1;
}
ecore_qm_common_rt_init(p_hwfn,
p_dev->num_ports_in_engines,
qm_info->max_phys_tcs_per_port,
qm_info->pf_rl_en, qm_info->pf_wfq_en,
qm_info->vport_rl_en, qm_info->vport_wfq_en,
qm_info->qm_port_params);
ecore_cxt_hw_init_common(p_hwfn);
/* Close gate from NIG to BRB/Storm; By default they are open, but
* we close them to prevent NIG from passing data to reset blocks.
* Should have been done in the ENGINE phase, but init-tool lacks
* proper port-pretend capabilities.
*/
ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
ecore_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
ecore_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
ecore_port_unpretend(p_hwfn, p_ptt);
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
if (rc != ECORE_SUCCESS)
return rc;
/* @@TBD MichalK - should add VALIDATE_VFID to init tool...
* need to decide with which value, maybe runtime
*/
ecore_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
if (ECORE_IS_BB(p_dev)) {
/* Workaround clears ROCE search for all functions to prevent
* involving non initialized function in processing ROCE packet.
*/
num_pfs = NUM_OF_ENG_PFS(p_dev);
for (pf_id = 0; pf_id < num_pfs; pf_id++) {
ecore_fid_pretend(p_hwfn, p_ptt, pf_id);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
}
/* pretend to original PF */
ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
}
/* Workaround for avoiding CCFC execution error when getting packets
* with CRC errors, and allowing instead the invoking of the FW error
* handler.
* This is not done inside the init tool since it currently can't
* perform a pretending to VFs.
*/
max_num_vfs = ECORE_IS_AH(p_dev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
concrete_fid = ecore_vfid_to_concrete(p_hwfn, vf_id);
ecore_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid);
ecore_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
ecore_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
ecore_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
ecore_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
}
/* pretend to original PF */
ecore_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
return rc;
}
#ifndef ASIC_ONLY
#define MISC_REG_RESET_REG_2_XMAC_BIT (1 << 4)
#define MISC_REG_RESET_REG_2_XMAC_SOFT_BIT (1 << 5)
#define PMEG_IF_BYTE_COUNT 8
static void ecore_wr_nw_port(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 addr, u64 data, u8 reg_type, u8 port)
{
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"CMD: %08x, ADDR: 0x%08x, DATA: %08x:%08x\n",
ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) |
(8 << PMEG_IF_BYTE_COUNT),
(reg_type << 25) | (addr << 8) | port,
(u32)((data >> 32) & 0xffffffff),
(u32)(data & 0xffffffff));
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0,
(ecore_rd(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_CMD_BB_B0) &
0xffff00fe) | (8 << PMEG_IF_BYTE_COUNT));
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_ADDR_BB_B0,
(reg_type << 25) | (addr << 8) | port);
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
data & 0xffffffff);
ecore_wr(p_hwfn, p_ptt, CNIG_REG_PMEG_IF_WRDATA_BB_B0,
(data >> 32) & 0xffffffff);
}
#define XLPORT_MODE_REG (0x20a)
#define XLPORT_MAC_CONTROL (0x210)
#define XLPORT_FLOW_CONTROL_CONFIG (0x207)
#define XLPORT_ENABLE_REG (0x20b)
#define XLMAC_CTRL (0x600)
#define XLMAC_MODE (0x601)
#define XLMAC_RX_MAX_SIZE (0x608)
#define XLMAC_TX_CTRL (0x604)
#define XLMAC_PAUSE_CTRL (0x60d)
#define XLMAC_PFC_CTRL (0x60e)
static void ecore_emul_link_init_ah(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u8 port = p_hwfn->port_id;
u32 mac_base = NWM_REG_MAC0 + (port << 2) * NWM_REG_MAC0_SIZE;
ecore_wr(p_hwfn, p_ptt, CNIG_REG_NIG_PORT0_CONF_K2 + (port << 2),
(1 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_ENABLE_0_SHIFT) |
(port << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_NWM_PORT_MAP_0_SHIFT)
| (0 << CNIG_REG_NIG_PORT0_CONF_NIG_PORT_RATE_0_SHIFT));
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_XIF_MODE,
1 << ETH_MAC_REG_XIF_MODE_XGMII_SHIFT);
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_FRM_LENGTH,
9018 << ETH_MAC_REG_FRM_LENGTH_FRM_LENGTH_SHIFT);
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_IPG_LENGTH,
0xc << ETH_MAC_REG_TX_IPG_LENGTH_TXIPG_SHIFT);
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_RX_FIFO_SECTIONS,
8 << ETH_MAC_REG_RX_FIFO_SECTIONS_RX_SECTION_FULL_SHIFT);
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_TX_FIFO_SECTIONS,
(0xA << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_EMPTY_SHIFT) |
(8 << ETH_MAC_REG_TX_FIFO_SECTIONS_TX_SECTION_FULL_SHIFT));
ecore_wr(p_hwfn, p_ptt, mac_base + ETH_MAC_REG_COMMAND_CONFIG, 0xa853);
}
static void ecore_emul_link_init(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u8 loopback = 0, port = p_hwfn->port_id * 2;
DP_INFO(p_hwfn->p_dev, "Configurating Emulation Link %02x\n", port);
if (ECORE_IS_AH(p_hwfn->p_dev)) {
ecore_emul_link_init_ah(p_hwfn, p_ptt);
return;
}
/* XLPORT MAC MODE *//* 0 Quad, 4 Single... */
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MODE_REG, (0x4 << 4) | 0x4, 1,
port);
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_MAC_CONTROL, 0, 1, port);
/* XLMAC: SOFT RESET */
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x40, 0, port);
/* XLMAC: Port Speed >= 10Gbps */
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_MODE, 0x40, 0, port);
/* XLMAC: Max Size */
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_RX_MAX_SIZE, 0x3fff, 0, port);
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_TX_CTRL,
0x01000000800ULL | (0xa << 12) | ((u64)1 << 38),
0, port);
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PAUSE_CTRL, 0x7c000, 0, port);
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_PFC_CTRL,
0x30ffffc000ULL, 0, port);
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL, 0x3 | (loopback << 2), 0,
port); /* XLMAC: TX_EN, RX_EN */
/* XLMAC: TX_EN, RX_EN, SW_LINK_STATUS */
ecore_wr_nw_port(p_hwfn, p_ptt, XLMAC_CTRL,
0x1003 | (loopback << 2), 0, port);
/* Enabled Parallel PFC interface */
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_FLOW_CONTROL_CONFIG, 1, 0, port);
/* XLPORT port enable */
ecore_wr_nw_port(p_hwfn, p_ptt, XLPORT_ENABLE_REG, 0xf, 1, port);
}
static void ecore_link_init(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u8 port)
{
int port_offset = port ? 0x800 : 0;
u32 xmac_rxctrl = 0;
/* Reset of XMAC */
/* FIXME: move to common start */
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
MISC_REG_RESET_REG_2_XMAC_BIT); /* Clear */
OSAL_MSLEEP(1);
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
MISC_REG_RESET_REG_2_XMAC_BIT); /* Set */
ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_CORE_PORT_MODE, 1);
/* Set the number of ports on the Warp Core to 10G */
ecore_wr(p_hwfn, p_ptt, MISC_REG_XMAC_PHY_PORT_MODE, 3);
/* Soft reset of XMAC */
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + 2 * sizeof(u32),
MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
OSAL_MSLEEP(1);
ecore_wr(p_hwfn, p_ptt, MISC_REG_RESET_PL_PDA_VAUX + sizeof(u32),
MISC_REG_RESET_REG_2_XMAC_SOFT_BIT);
/* FIXME: move to common end */
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
ecore_wr(p_hwfn, p_ptt, XMAC_REG_MODE + port_offset, 0x20);
/* Set Max packet size: initialize XMAC block register for port 0 */
ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_MAX_SIZE + port_offset, 0x2710);
/* CRC append for Tx packets: init XMAC block register for port 1 */
ecore_wr(p_hwfn, p_ptt, XMAC_REG_TX_CTRL_LO + port_offset, 0xC800);
/* Enable TX and RX: initialize XMAC block register for port 1 */
ecore_wr(p_hwfn, p_ptt, XMAC_REG_CTRL + port_offset,
XMAC_REG_CTRL_TX_EN | XMAC_REG_CTRL_RX_EN);
xmac_rxctrl = ecore_rd(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset);
xmac_rxctrl |= XMAC_REG_RX_CTRL_PROCESS_VARIABLE_PREAMBLE;
ecore_wr(p_hwfn, p_ptt, XMAC_REG_RX_CTRL + port_offset, xmac_rxctrl);
}
#endif
static enum _ecore_status_t ecore_hw_init_port(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
int hw_mode)
{
enum _ecore_status_t rc = ECORE_SUCCESS;
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
hw_mode);
if (rc != ECORE_SUCCESS)
return rc;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_ASIC(p_hwfn->p_dev))
return ECORE_SUCCESS;
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev)) {
if (ECORE_IS_AH(p_hwfn->p_dev))
return ECORE_SUCCESS;
ecore_link_init(p_hwfn, p_ptt, p_hwfn->port_id);
} else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
if (p_hwfn->p_dev->num_hwfns > 1) {
/* Activate OPTE in CMT */
u32 val;
val = ecore_rd(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV);
val |= 0x10;
ecore_wr(p_hwfn, p_ptt, MISCS_REG_RESET_PL_HV, val);
ecore_wr(p_hwfn, p_ptt, MISC_REG_CLK_100G_MODE, 1);
ecore_wr(p_hwfn, p_ptt, MISCS_REG_CLK_100G_MODE, 1);
ecore_wr(p_hwfn, p_ptt, MISC_REG_OPTE_MODE, 1);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_ENG_CLS_TCP_4_TUPLE_SEARCH, 1);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_ENG_CLS_ENG_ID_TBL, 0x55555555);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_ENG_CLS_ENG_ID_TBL + 0x4,
0x55555555);
}
ecore_emul_link_init(p_hwfn, p_ptt);
} else {
DP_INFO(p_hwfn->p_dev, "link is not being configured\n");
}
#endif
return rc;
}
static enum _ecore_status_t
ecore_hw_init_dpi_size(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
{
u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size;
u32 dpi_bit_shift, dpi_count;
u32 min_dpis;
/* Calculate DPI size
* ------------------
* The PWM region contains Doorbell Pages. The first is reserverd for
* the kernel for, e.g, L2. The others are free to be used by non-
* trusted applications, typically from user space. Each page, called a
* doorbell page is sectioned into windows that allow doorbells to be
* issued in parallel by the kernel/application. The size of such a
* window (a.k.a. WID) is 1kB.
* Summary:
* 1kB WID x N WIDS = DPI page size
* DPI page size x N DPIs = PWM region size
* Notes:
* The size of the DPI page size must be in multiples of OSAL_PAGE_SIZE
* in order to ensure that two applications won't share the same page.
* It also must contain at least one WID per CPU to allow parallelism.
* It also must be a power of 2, since it is stored as a bit shift.
*
* The DPI page size is stored in a register as 'dpi_bit_shift' so that
* 0 is 4kB, 1 is 8kB and etc. Hence the minimum size is 4,096
* containing 4 WIDs.
*/
dpi_page_size_1 = ECORE_WID_SIZE * n_cpus;
dpi_page_size_2 = OSAL_MAX_T(u32, ECORE_WID_SIZE, OSAL_PAGE_SIZE);
dpi_page_size = OSAL_MAX_T(u32, dpi_page_size_1, dpi_page_size_2);
dpi_page_size = OSAL_ROUNDUP_POW_OF_TWO(dpi_page_size);
dpi_bit_shift = OSAL_LOG2(dpi_page_size / 4096);
dpi_count = pwm_region_size / dpi_page_size;
min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
min_dpis = OSAL_MAX_T(u32, ECORE_MIN_DPIS, min_dpis);
/* Update hwfn */
p_hwfn->dpi_size = dpi_page_size;
p_hwfn->dpi_count = dpi_count;
/* Update registers */
ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
if (dpi_count < min_dpis)
return ECORE_NORESOURCES;
return ECORE_SUCCESS;
}
enum ECORE_ROCE_EDPM_MODE {
ECORE_ROCE_EDPM_MODE_ENABLE = 0,
ECORE_ROCE_EDPM_MODE_FORCE_ON = 1,
ECORE_ROCE_EDPM_MODE_DISABLE = 2,
};
static enum _ecore_status_t
ecore_hw_init_pf_doorbell_bar(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 pwm_regsize, norm_regsize;
u32 non_pwm_conn, min_addr_reg1;
u32 db_bar_size, n_cpus;
u32 roce_edpm_mode;
u32 pf_dems_shift;
int rc = ECORE_SUCCESS;
u8 cond;
db_bar_size = ecore_hw_bar_size(p_hwfn, BAR_ID_1);
if (p_hwfn->p_dev->num_hwfns > 1)
db_bar_size /= 2;
/* Calculate doorbell regions
* -----------------------------------
* The doorbell BAR is made of two regions. The first is called normal
* region and the second is called PWM region. In the normal region
* each ICID has its own set of addresses so that writing to that
* specific address identifies the ICID. In the Process Window Mode
* region the ICID is given in the data written to the doorbell. The
* above per PF register denotes the offset in the doorbell BAR in which
* the PWM region begins.
* The normal region has ECORE_PF_DEMS_SIZE bytes per ICID, that is per
* non-PWM connection. The calculation below computes the total non-PWM
* connections. The DORQ_REG_PF_MIN_ADDR_REG1 register is
* in units of 4,096 bytes.
*/
non_pwm_conn = ecore_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
OSAL_NULL) +
ecore_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, OSAL_NULL);
norm_regsize = ROUNDUP(ECORE_PF_DEMS_SIZE * non_pwm_conn, 4096);
min_addr_reg1 = norm_regsize / 4096;
pwm_regsize = db_bar_size - norm_regsize;
/* Check that the normal and PWM sizes are valid */
if (db_bar_size < norm_regsize) {
DP_ERR(p_hwfn->p_dev,
"Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
db_bar_size, norm_regsize);
return ECORE_NORESOURCES;
}
if (pwm_regsize < ECORE_MIN_PWM_REGION) {
DP_ERR(p_hwfn->p_dev,
"PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
pwm_regsize, ECORE_MIN_PWM_REGION, db_bar_size,
norm_regsize);
return ECORE_NORESOURCES;
}
/* Calculate number of DPIs */
roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
if ((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE) ||
((roce_edpm_mode == ECORE_ROCE_EDPM_MODE_FORCE_ON))) {
/* Either EDPM is mandatory, or we are attempting to allocate a
* WID per CPU.
*/
n_cpus = OSAL_NUM_ACTIVE_CPU();
rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
}
cond = ((rc) && (roce_edpm_mode == ECORE_ROCE_EDPM_MODE_ENABLE)) ||
(roce_edpm_mode == ECORE_ROCE_EDPM_MODE_DISABLE);
if (cond || p_hwfn->dcbx_no_edpm) {
/* Either EDPM is disabled from user configuration, or it is
* disabled via DCBx, or it is not mandatory and we failed to
* allocated a WID per CPU.
*/
n_cpus = 1;
rc = ecore_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
/* If we entered this flow due to DCBX then the DPM register is
* already configured.
*/
}
DP_INFO(p_hwfn,
"doorbell bar: normal_region_size=%d, pwm_region_size=%d",
norm_regsize, pwm_regsize);
DP_INFO(p_hwfn,
" dpi_size=%d, dpi_count=%d, roce_edpm=%s\n",
p_hwfn->dpi_size, p_hwfn->dpi_count,
((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ?
"disabled" : "enabled");
/* Check return codes from above calls */
if (rc) {
DP_ERR(p_hwfn,
"Failed to allocate enough DPIs\n");
return ECORE_NORESOURCES;
}
/* Update hwfn */
p_hwfn->dpi_start_offset = norm_regsize;
/* Update registers */
/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
pf_dems_shift = OSAL_LOG2(ECORE_PF_DEMS_SIZE / 4);
ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
ecore_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
return ECORE_SUCCESS;
}
static enum _ecore_status_t
ecore_hw_init_pf(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct ecore_tunn_start_params *p_tunn,
int hw_mode,
bool b_hw_start,
enum ecore_int_mode int_mode, bool allow_npar_tx_switch)
{
u8 rel_pf_id = p_hwfn->rel_pf_id;
u32 prs_reg;
enum _ecore_status_t rc = ECORE_SUCCESS;
u16 ctrl;
int pos;
if (p_hwfn->mcp_info) {
struct ecore_mcp_function_info *p_info;
p_info = &p_hwfn->mcp_info->func_info;
if (p_info->bandwidth_min)
p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
/* Update rate limit once we'll actually have a link */
p_hwfn->qm_info.pf_rl = 100000;
}
ecore_cxt_hw_init_pf(p_hwfn);
ecore_int_igu_init_rt(p_hwfn);
/* Set VLAN in NIG if needed */
if (hw_mode & (1 << MODE_MF_SD)) {
DP_VERBOSE(p_hwfn, ECORE_MSG_HW, "Configuring LLH_FUNC_TAG\n");
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
p_hwfn->hw_info.ovlan);
}
/* Enable classification by MAC if needed */
if (hw_mode & (1 << MODE_MF_SI)) {
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"Configuring TAGMAC_CLS_TYPE\n");
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET,
1);
}
/* Protocl Configuration - @@@TBD - should we set 0 otherwise? */
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
(p_hwfn->hw_info.personality == ECORE_PCI_ISCSI) ? 1 : 0);
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
(p_hwfn->hw_info.personality == ECORE_PCI_FCOE) ? 1 : 0);
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
/* perform debug configuration when chip is out of reset */
OSAL_BEFORE_PF_START((void *)p_hwfn->p_dev, p_hwfn->my_id);
/* Cleanup chip from previous driver if such remains exist */
rc = ecore_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
if (rc != ECORE_SUCCESS) {
ecore_hw_err_notify(p_hwfn, ECORE_HW_ERR_RAMROD_FAIL);
return rc;
}
/* PF Init sequence */
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
if (rc)
return rc;
/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
rc = ecore_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
if (rc)
return rc;
/* Pure runtime initializations - directly to the HW */
ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
/* PCI relaxed ordering causes a decrease in the performance on some
* systems. Till a root cause is found, disable this attribute in the
* PCI config space.
*/
/* Not in use @DPDK
* pos = OSAL_PCI_FIND_CAPABILITY(p_hwfn->p_dev, PCI_CAP_ID_EXP);
* if (!pos) {
* DP_NOTICE(p_hwfn, true,
* "Failed to find the PCIe Cap\n");
* return ECORE_IO;
* }
* OSAL_PCI_READ_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, &ctrl);
* ctrl &= ~PCI_EXP_DEVCTL_RELAX_EN;
* OSAL_PCI_WRITE_CONFIG_WORD(p_hwfn->p_dev, pos + PCI_EXP_DEVCTL, ctrl);
*/
rc = ecore_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
if (rc)
return rc;
if (b_hw_start) {
/* enable interrupts */
rc = ecore_int_igu_enable(p_hwfn, p_ptt, int_mode);
if (rc != ECORE_SUCCESS)
return rc;
/* send function start command */
rc = ecore_sp_pf_start(p_hwfn, p_tunn, p_hwfn->p_dev->mf_mode,
allow_npar_tx_switch);
if (rc) {
DP_NOTICE(p_hwfn, true,
"Function start ramrod failed\n");
} else {
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
if (p_hwfn->hw_info.personality == ECORE_PCI_FCOE) {
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1,
(1 << 2));
ecore_wr(p_hwfn, p_ptt,
PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
0x100);
}
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH registers after start PFn\n");
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_TCP: %x\n", prs_reg);
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_UDP: %x\n", prs_reg);
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_FCOE: %x\n", prs_reg);
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_ROCE: %x\n", prs_reg);
prs_reg = ecore_rd(p_hwfn, p_ptt,
PRS_REG_SEARCH_TCP_FIRST_FRAG);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_TCP_FIRST_FRAG: %x\n",
prs_reg);
prs_reg = ecore_rd(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1);
DP_VERBOSE(p_hwfn, ECORE_MSG_STORAGE,
"PRS_REG_SEARCH_TAG1: %x\n", prs_reg);
}
}
return rc;
}
static enum _ecore_status_t
ecore_change_pci_hwfn(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u8 enable)
{
u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
/* Change PF in PXP */
ecore_wr(p_hwfn, p_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
/* wait until value is set - try for 1 second every 50us */
for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
val = ecore_rd(p_hwfn, p_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
if (val == set_val)
break;
OSAL_UDELAY(50);
}
if (val != set_val) {
DP_NOTICE(p_hwfn, true,
"PFID_ENABLE_MASTER wasn't changed after a second\n");
return ECORE_UNKNOWN_ERROR;
}
return ECORE_SUCCESS;
}
static void ecore_reset_mb_shadow(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_main_ptt)
{
/* Read shadow of current MFW mailbox */
ecore_mcp_read_mb(p_hwfn, p_main_ptt);
OSAL_MEMCPY(p_hwfn->mcp_info->mfw_mb_shadow,
p_hwfn->mcp_info->mfw_mb_cur,
p_hwfn->mcp_info->mfw_mb_length);
}
enum _ecore_status_t ecore_hw_init(struct ecore_dev *p_dev,
struct ecore_hw_init_params *p_params)
{
enum _ecore_status_t rc, mfw_rc;
u32 load_code, param;
int i;
if ((p_params->int_mode == ECORE_INT_MODE_MSI) &&
(p_dev->num_hwfns > 1)) {
DP_NOTICE(p_dev, false,
"MSI mode is not supported for CMT devices\n");
return ECORE_INVAL;
}
if (IS_PF(p_dev)) {
rc = ecore_init_fw_data(p_dev, p_params->bin_fw_data);
if (rc != ECORE_SUCCESS)
return rc;
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
if (IS_VF(p_dev)) {
p_hwfn->b_int_enabled = 1;
continue;
}
/* Enable DMAE in PXP */
rc = ecore_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
if (rc != ECORE_SUCCESS)
return rc;
rc = ecore_calc_hw_mode(p_hwfn);
if (rc != ECORE_SUCCESS)
return rc;
/* @@@TBD need to add here:
* Check for fan failure
* Prev_unload
*/
rc = ecore_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code);
if (rc) {
DP_NOTICE(p_hwfn, true,
"Failed sending LOAD_REQ command\n");
return rc;
}
/* CQ75580:
* When coming back from hiberbate state, the registers from
* which shadow is read initially are not initialized. It turns
* out that these registers get initialized during the call to
* ecore_mcp_load_req request. So we need to reread them here
* to get the proper shadow register value.
* Note: This is a workaround for the missinginig MFW
* initialization. It may be removed once the implementation
* is done.
*/
ecore_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
DP_VERBOSE(p_hwfn, ECORE_MSG_SP,
"Load request was sent. Resp:0x%x, Load code: 0x%x\n",
rc, load_code);
/* Only relevant for recovery:
* Clear the indication after the LOAD_REQ command is responded
* by the MFW.
*/
p_dev->recov_in_prog = false;
p_hwfn->first_on_engine = (load_code ==
FW_MSG_CODE_DRV_LOAD_ENGINE);
if (!qm_lock_init) {
OSAL_SPIN_LOCK_INIT(&qm_lock);
qm_lock_init = true;
}
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_ENGINE:
rc = ecore_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.hw_mode);
if (rc)
break;
/* Fall into */
case FW_MSG_CODE_DRV_LOAD_PORT:
rc = ecore_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.hw_mode);
if (rc)
break;
/* Fall into */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
rc = ecore_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
p_params->p_tunn,
p_hwfn->hw_info.hw_mode,
p_params->b_hw_start,
p_params->int_mode,
p_params->allow_npar_tx_switch);
break;
default:
rc = ECORE_NOTIMPL;
break;
}
if (rc != ECORE_SUCCESS)
DP_NOTICE(p_hwfn, true,
"init phase failed for loadcode 0x%x (rc %d)\n",
load_code, rc);
/* ACK mfw regardless of success or failure of initialization */
mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_LOAD_DONE,
0, &load_code, &param);
if (rc != ECORE_SUCCESS)
return rc;
if (mfw_rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, true,
"Failed sending LOAD_DONE command\n");
return mfw_rc;
}
/* send DCBX attention request command */
DP_VERBOSE(p_hwfn, ECORE_MSG_DCB,
"sending phony dcbx set command to trigger DCBx attention handling\n");
mfw_rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_SET_DCBX,
1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
&load_code, &param);
if (mfw_rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, true,
"Failed to send DCBX attention request\n");
return mfw_rc;
}
p_hwfn->hw_init_done = true;
}
return ECORE_SUCCESS;
}
#define ECORE_HW_STOP_RETRY_LIMIT (10)
static void ecore_hw_timers_stop(struct ecore_dev *p_dev,
struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
int i;
/* close timers */
ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
for (i = 0; i < ECORE_HW_STOP_RETRY_LIMIT && !p_dev->recov_in_prog;
i++) {
if ((!ecore_rd(p_hwfn, p_ptt,
TM_REG_PF_SCAN_ACTIVE_CONN)) &&
(!ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
break;
/* Dependent on number of connection/tasks, possibly
* 1ms sleep is required between polls
*/
OSAL_MSLEEP(1);
}
if (i < ECORE_HW_STOP_RETRY_LIMIT)
return;
DP_NOTICE(p_hwfn, true, "Timers linear scans are not over"
" [Connection %02x Tasks %02x]\n",
(u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
(u8)ecore_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
}
void ecore_hw_timers_stop_all(struct ecore_dev *p_dev)
{
int j;
for_each_hwfn(p_dev, j) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
}
}
enum _ecore_status_t ecore_hw_stop(struct ecore_dev *p_dev)
{
enum _ecore_status_t rc = ECORE_SUCCESS, t_rc;
int j;
for_each_hwfn(p_dev, j) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Stopping hw/fw\n");
if (IS_VF(p_dev)) {
ecore_vf_pf_int_cleanup(p_hwfn);
continue;
}
/* mark the hw as uninitialized... */
p_hwfn->hw_init_done = false;
rc = ecore_sp_pf_stop(p_hwfn);
if (rc)
DP_NOTICE(p_hwfn, true,
"Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
/* perform debug action after PF stop was sent */
OSAL_AFTER_PF_STOP((void *)p_hwfn->p_dev, p_hwfn->my_id);
/* close NIG to BRB gate */
ecore_wr(p_hwfn, p_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
/* close parser */
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
/* @@@TBD - clean transmission queues (5.b) */
/* @@@TBD - clean BTB (5.c) */
ecore_hw_timers_stop(p_dev, p_hwfn, p_ptt);
/* @@@TBD - verify DMAE requests are done (8) */
/* Disable Attention Generation */
ecore_int_igu_disable_int(p_hwfn, p_ptt);
ecore_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
ecore_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
/* Need to wait 1ms to guarantee SBs are cleared */
OSAL_MSLEEP(1);
}
if (IS_PF(p_dev)) {
/* Disable DMAE in PXP - in CMT, this should only be done for
* first hw-function, and only after all transactions have
* stopped for all active hw-functions.
*/
t_rc = ecore_change_pci_hwfn(&p_dev->hwfns[0],
p_dev->hwfns[0].p_main_ptt, false);
if (t_rc != ECORE_SUCCESS)
rc = t_rc;
}
return rc;
}
void ecore_hw_stop_fastpath(struct ecore_dev *p_dev)
{
int j;
for_each_hwfn(p_dev, j) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
if (IS_VF(p_dev)) {
ecore_vf_pf_int_cleanup(p_hwfn);
continue;
}
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
"Shutting down the fastpath\n");
ecore_wr(p_hwfn, p_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
/* @@@TBD - clean transmission queues (5.b) */
/* @@@TBD - clean BTB (5.c) */
/* @@@TBD - verify DMAE requests are done (8) */
ecore_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
/* Need to wait 1ms to guarantee SBs are cleared */
OSAL_MSLEEP(1);
}
}
void ecore_hw_start_fastpath(struct ecore_hwfn *p_hwfn)
{
struct ecore_ptt *p_ptt = p_hwfn->p_main_ptt;
if (IS_VF(p_hwfn->p_dev))
return;
/* If roce info is allocated it means roce is initialized and should
* be enabled in searcher.
*/
if (p_hwfn->p_rdma_info) {
if (p_hwfn->b_rdma_enabled_in_prs)
ecore_wr(p_hwfn, p_ptt,
p_hwfn->rdma_prs_search_reg, 0x1);
ecore_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x1);
}
/* Re-open incoming traffic */
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
}
static enum _ecore_status_t ecore_reg_assert(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u32 reg,
bool expected)
{
u32 assert_val = ecore_rd(p_hwfn, p_ptt, reg);
if (assert_val != expected) {
DP_NOTICE(p_hwfn, true, "Value at address 0x%08x != 0x%08x\n",
reg, expected);
return ECORE_UNKNOWN_ERROR;
}
return 0;
}
enum _ecore_status_t ecore_hw_reset(struct ecore_dev *p_dev)
{
enum _ecore_status_t rc = ECORE_SUCCESS;
u32 unload_resp, unload_param;
int i;
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
if (IS_VF(p_dev)) {
rc = ecore_vf_pf_reset(p_hwfn);
if (rc)
return rc;
continue;
}
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN, "Resetting hw/fw\n");
/* Check for incorrect states */
if (!p_dev->recov_in_prog) {
ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
QM_REG_USG_CNT_PF_TX, 0);
ecore_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
QM_REG_USG_CNT_PF_OTHER, 0);
/* @@@TBD - assert on incorrect xCFC values (10.b) */
}
/* Disable PF in HW blocks */
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
if (p_dev->recov_in_prog) {
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
"Recovery is in progress -> skip sending unload_req/done\n");
break;
}
/* Send unload command to MCP */
rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_UNLOAD_REQ,
DRV_MB_PARAM_UNLOAD_WOL_MCP,
&unload_resp, &unload_param);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, true,
"ecore_hw_reset: UNLOAD_REQ failed\n");
/* @@TBD - what to do? for now, assume ENG. */
unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
}
rc = ecore_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_UNLOAD_DONE,
0, &unload_resp, &unload_param);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn,
true, "ecore_hw_reset: UNLOAD_DONE failed\n");
/* @@@TBD - Should it really ASSERT here ? */
return rc;
}
}
return rc;
}
/* Free hwfn memory and resources acquired in hw_hwfn_prepare */
static void ecore_hw_hwfn_free(struct ecore_hwfn *p_hwfn)
{
ecore_ptt_pool_free(p_hwfn);
OSAL_FREE(p_hwfn->p_dev, p_hwfn->hw_info.p_igu_info);
}
/* Setup bar access */
static void ecore_hw_hwfn_prepare(struct ecore_hwfn *p_hwfn)
{
/* clear indirect access */
if (ECORE_IS_AH(p_hwfn->p_dev)) {
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_E8_F0, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_EC_F0, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_F0_F0, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_F4_F0, 0);
} else {
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_88_F0, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_90_F0, 0);
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_94_F0, 0);
}
/* Clean Previous errors if such exist */
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id);
/* enable internal target-read */
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
}
static void get_function_id(struct ecore_hwfn *p_hwfn)
{
/* ME Register */
p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn,
PXP_PF_ME_OPAQUE_ADDR);
p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
/* Bits 16-19 from the ME registers are the pf_num */
p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
PXP_CONCRETE_FID_PFID);
p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
PXP_CONCRETE_FID_PORT);
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
"Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
}
static void ecore_hw_set_feat(struct ecore_hwfn *p_hwfn)
{
u32 *feat_num = p_hwfn->hw_info.feat_num;
int num_features = 1;
/* L2 Queues require each: 1 status block. 1 L2 queue */
feat_num[ECORE_PF_L2_QUE] =
OSAL_MIN_T(u32,
RESC_NUM(p_hwfn, ECORE_SB) / num_features,
RESC_NUM(p_hwfn, ECORE_L2_QUEUE));
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
"#PF_L2_QUEUES=%d #ROCE_CNQ=%d #SBS=%d num_features=%d\n",
feat_num[ECORE_PF_L2_QUE],
feat_num[ECORE_RDMA_CNQ],
RESC_NUM(p_hwfn, ECORE_SB), num_features);
}
static enum resource_id_enum
ecore_hw_get_mfw_res_id(enum ecore_resources res_id)
{
enum resource_id_enum mfw_res_id = RESOURCE_NUM_INVALID;
switch (res_id) {
case ECORE_SB:
mfw_res_id = RESOURCE_NUM_SB_E;
break;
case ECORE_L2_QUEUE:
mfw_res_id = RESOURCE_NUM_L2_QUEUE_E;
break;
case ECORE_VPORT:
mfw_res_id = RESOURCE_NUM_VPORT_E;
break;
case ECORE_RSS_ENG:
mfw_res_id = RESOURCE_NUM_RSS_ENGINES_E;
break;
case ECORE_PQ:
mfw_res_id = RESOURCE_NUM_PQ_E;
break;
case ECORE_RL:
mfw_res_id = RESOURCE_NUM_RL_E;
break;
case ECORE_MAC:
case ECORE_VLAN:
/* Each VFC resource can accommodate both a MAC and a VLAN */
mfw_res_id = RESOURCE_VFC_FILTER_E;
break;
case ECORE_ILT:
mfw_res_id = RESOURCE_ILT_E;
break;
case ECORE_LL2_QUEUE:
mfw_res_id = RESOURCE_LL2_QUEUE_E;
break;
case ECORE_RDMA_CNQ_RAM:
case ECORE_CMDQS_CQS:
/* CNQ/CMDQS are the same resource */
mfw_res_id = RESOURCE_CQS_E;
break;
case ECORE_RDMA_STATS_QUEUE:
mfw_res_id = RESOURCE_RDMA_STATS_QUEUE_E;
break;
default:
break;
}
return mfw_res_id;
}
static u32 ecore_hw_get_dflt_resc_num(struct ecore_hwfn *p_hwfn,
enum ecore_resources res_id)
{
u8 num_funcs = p_hwfn->num_funcs_on_engine;
bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
struct ecore_sb_cnt_info sb_cnt_info;
u32 dflt_resc_num = 0;
switch (res_id) {
case ECORE_SB:
OSAL_MEM_ZERO(&sb_cnt_info, sizeof(sb_cnt_info));
ecore_int_get_num_sbs(p_hwfn, &sb_cnt_info);
dflt_resc_num = sb_cnt_info.sb_cnt;
break;
case ECORE_L2_QUEUE:
dflt_resc_num = (b_ah ? MAX_NUM_L2_QUEUES_K2 :
MAX_NUM_L2_QUEUES_BB) / num_funcs;
break;
case ECORE_VPORT:
dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
MAX_NUM_VPORTS_BB) / num_funcs;
break;
case ECORE_RSS_ENG:
dflt_resc_num = (b_ah ? ETH_RSS_ENGINE_NUM_K2 :
ETH_RSS_ENGINE_NUM_BB) / num_funcs;
break;
case ECORE_PQ:
dflt_resc_num = (b_ah ? MAX_QM_TX_QUEUES_K2 :
MAX_QM_TX_QUEUES_BB) / num_funcs;
break;
case ECORE_RL:
dflt_resc_num = MAX_QM_GLOBAL_RLS / num_funcs;
break;
case ECORE_MAC:
case ECORE_VLAN:
/* Each VFC resource can accommodate both a MAC and a VLAN */
dflt_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
break;
case ECORE_ILT:
dflt_resc_num = (b_ah ? PXP_NUM_ILT_RECORDS_K2 :
PXP_NUM_ILT_RECORDS_BB) / num_funcs;
break;
case ECORE_LL2_QUEUE:
dflt_resc_num = MAX_NUM_LL2_RX_QUEUES / num_funcs;
break;
case ECORE_RDMA_CNQ_RAM:
case ECORE_CMDQS_CQS:
/* CNQ/CMDQS are the same resource */
/* @DPDK */
dflt_resc_num = (NUM_OF_GLOBAL_QUEUES / 2) / num_funcs;
break;
case ECORE_RDMA_STATS_QUEUE:
/* @DPDK */
dflt_resc_num = (b_ah ? MAX_NUM_VPORTS_K2 :
MAX_NUM_VPORTS_BB) / num_funcs;
break;
default:
break;
}
return dflt_resc_num;
}
static const char *ecore_hw_get_resc_name(enum ecore_resources res_id)
{
switch (res_id) {
case ECORE_SB:
return "SB";
case ECORE_L2_QUEUE:
return "L2_QUEUE";
case ECORE_VPORT:
return "VPORT";
case ECORE_RSS_ENG:
return "RSS_ENG";
case ECORE_PQ:
return "PQ";
case ECORE_RL:
return "RL";
case ECORE_MAC:
return "MAC";
case ECORE_VLAN:
return "VLAN";
case ECORE_RDMA_CNQ_RAM:
return "RDMA_CNQ_RAM";
case ECORE_ILT:
return "ILT";
case ECORE_LL2_QUEUE:
return "LL2_QUEUE";
case ECORE_CMDQS_CQS:
return "CMDQS_CQS";
case ECORE_RDMA_STATS_QUEUE:
return "RDMA_STATS_QUEUE";
default:
return "UNKNOWN_RESOURCE";
}
}
static enum _ecore_status_t ecore_hw_set_resc_info(struct ecore_hwfn *p_hwfn,
enum ecore_resources res_id,
bool drv_resc_alloc)
{
u32 dflt_resc_num = 0, dflt_resc_start = 0, mcp_resp, mcp_param;
u32 *p_resc_num, *p_resc_start;
struct resource_info resc_info;
enum _ecore_status_t rc;
p_resc_num = &RESC_NUM(p_hwfn, res_id);
p_resc_start = &RESC_START(p_hwfn, res_id);
dflt_resc_num = ecore_hw_get_dflt_resc_num(p_hwfn, res_id);
if (!dflt_resc_num) {
DP_ERR(p_hwfn,
"Failed to get default amount for resource %d [%s]\n",
res_id, ecore_hw_get_resc_name(res_id));
return ECORE_INVAL;
}
dflt_resc_start = dflt_resc_num * p_hwfn->enabled_func_idx;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
*p_resc_num = dflt_resc_num;
*p_resc_start = dflt_resc_start;
goto out;
}
#endif
OSAL_MEM_ZERO(&resc_info, sizeof(resc_info));
resc_info.res_id = ecore_hw_get_mfw_res_id(res_id);
if (resc_info.res_id == RESOURCE_NUM_INVALID) {
DP_ERR(p_hwfn,
"Failed to match resource %d with MFW resources\n",
res_id);
return ECORE_INVAL;
}
rc = ecore_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, &resc_info,
&mcp_resp, &mcp_param);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, true,
"MFW response failure for an allocation request for"
" resource %d [%s]\n",
res_id, ecore_hw_get_resc_name(res_id));
return rc;
}
/* Default driver values are applied in the following cases:
* - The resource allocation MB command is not supported by the MFW
* - There is an internal error in the MFW while processing the request
* - The resource ID is unknown to the MFW
*/
if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK &&
mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_DEPRECATED) {
/* @DPDK */
DP_INFO(p_hwfn,
"Resource %d [%s]: No allocation info was received"
" [mcp_resp 0x%x]. Applying default values"
" [num %d, start %d].\n",
res_id, ecore_hw_get_resc_name(res_id), mcp_resp,
dflt_resc_num, dflt_resc_start);
*p_resc_num = dflt_resc_num;
*p_resc_start = dflt_resc_start;
goto out;
}
/* TBD - remove this when revising the handling of the SB resource */
if (res_id == ECORE_SB) {
/* Excluding the slowpath SB */
resc_info.size -= 1;
resc_info.offset -= p_hwfn->enabled_func_idx;
}
*p_resc_num = resc_info.size;
*p_resc_start = resc_info.offset;
if (*p_resc_num != dflt_resc_num || *p_resc_start != dflt_resc_start) {
DP_NOTICE(p_hwfn, false,
"Resource %d [%s]: MFW allocation [num %d, start %d]"
" differs from default values [num %d, start %d]%s\n",
res_id, ecore_hw_get_resc_name(res_id), *p_resc_num,
*p_resc_start, dflt_resc_num, dflt_resc_start,
drv_resc_alloc ? " - Applying default values" : "");
if (drv_resc_alloc) {
*p_resc_num = dflt_resc_num;
*p_resc_start = dflt_resc_start;
}
}
out:
return ECORE_SUCCESS;
}
static enum _ecore_status_t ecore_hw_get_resc(struct ecore_hwfn *p_hwfn,
bool drv_resc_alloc)
{
bool b_ah = ECORE_IS_AH(p_hwfn->p_dev);
enum _ecore_status_t rc;
u8 res_id;
#ifndef ASIC_ONLY
u32 *resc_start = p_hwfn->hw_info.resc_start;
u32 *resc_num = p_hwfn->hw_info.resc_num;
/* For AH, an equal share of the ILT lines between the maximal number of
* PFs is not enough for RoCE. This would be solved by the future
* resource allocation scheme, but isn't currently present for
* FPGA/emulation. For now we keep a number that is sufficient for RoCE
* to work - the BB number of ILT lines divided by its max PFs number.
*/
u32 roce_min_ilt_lines = PXP_NUM_ILT_RECORDS_BB / MAX_NUM_PFS_BB;
#endif
for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++) {
/* @@@TMP for AH:
* Force the driver's default resource allocation in case there
* is a diff with the MFW allocation value.
*/
rc = ecore_hw_set_resc_info(p_hwfn, res_id,
b_ah || drv_resc_alloc);
if (rc != ECORE_SUCCESS)
return rc;
}
#ifndef ASIC_ONLY
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
/* Reduced build contains less PQs */
if (!(p_hwfn->p_dev->b_is_emul_full)) {
resc_num[ECORE_PQ] = 32;
resc_start[ECORE_PQ] = resc_num[ECORE_PQ] *
p_hwfn->enabled_func_idx;
}
/* For AH emulation, since we have a possible maximal number of
* 16 enabled PFs, in case there are not enough ILT lines -
* allocate only first PF as RoCE and have all the other ETH
* only with less ILT lines.
*/
if (!p_hwfn->rel_pf_id && p_hwfn->p_dev->b_is_emul_full)
resc_num[ECORE_ILT] = OSAL_MAX_T(u32,
resc_num[ECORE_ILT],
roce_min_ilt_lines);
}
/* Correct the common ILT calculation if PF0 has more */
if (CHIP_REV_IS_SLOW(p_hwfn->p_dev) &&
p_hwfn->p_dev->b_is_emul_full &&
p_hwfn->rel_pf_id && resc_num[ECORE_ILT] < roce_min_ilt_lines)
resc_start[ECORE_ILT] += roce_min_ilt_lines -
resc_num[ECORE_ILT];
#endif
/* Sanity for ILT */
if ((b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
(!b_ah && (RESC_END(p_hwfn, ECORE_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
DP_NOTICE(p_hwfn, true,
"Can't assign ILT pages [%08x,...,%08x]\n",
RESC_START(p_hwfn, ECORE_ILT), RESC_END(p_hwfn,
ECORE_ILT) -
1);
return ECORE_INVAL;
}
ecore_hw_set_feat(p_hwfn);
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
"The numbers for each resource are:\n");
for (res_id = 0; res_id < ECORE_MAX_RESC; res_id++)
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE, "%s = %d start = %d\n",
ecore_hw_get_resc_name(res_id),
RESC_NUM(p_hwfn, res_id),
RESC_START(p_hwfn, res_id));
return ECORE_SUCCESS;
}
static enum _ecore_status_t ecore_hw_get_nvm_info(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg, dcbx_mode;
u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
struct ecore_mcp_link_params *link;
/* Read global nvm_cfg address */
nvm_cfg_addr = ecore_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
/* Verify MCP has initialized it */
if (!nvm_cfg_addr) {
DP_NOTICE(p_hwfn, false, "Shared memory not initialized\n");
return ECORE_INVAL;
}
/* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
nvm_cfg1_offset = ecore_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
OFFSETOF(struct nvm_cfg1, glob) + OFFSETOF(struct nvm_cfg1_glob,
core_cfg);
core_cfg = ecore_rd(p_hwfn, p_ptt, addr);
switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X40G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X50G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X100G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_F;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X10G_E;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X20G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X40G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X25G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_2X10G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_1X25G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
p_hwfn->hw_info.port_mode = ECORE_PORT_MODE_DE_4X25G;
break;
default:
DP_NOTICE(p_hwfn, true, "Unknown port mode in 0x%08x\n",
core_cfg);
break;
}
/* Read DCBX configuration */
port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
dcbx_mode = ecore_rd(p_hwfn, p_ptt,
port_cfg_addr +
OFFSETOF(struct nvm_cfg1_port, generic_cont0));
dcbx_mode = (dcbx_mode & NVM_CFG1_PORT_DCBX_MODE_MASK)
>> NVM_CFG1_PORT_DCBX_MODE_OFFSET;
switch (dcbx_mode) {
case NVM_CFG1_PORT_DCBX_MODE_DYNAMIC:
p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DYNAMIC;
break;
case NVM_CFG1_PORT_DCBX_MODE_CEE:
p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_CEE;
break;
case NVM_CFG1_PORT_DCBX_MODE_IEEE:
p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_IEEE;
break;
default:
p_hwfn->hw_info.dcbx_mode = ECORE_DCBX_VERSION_DISABLED;
}
/* Read default link configuration */
link = &p_hwfn->mcp_info->link_input;
port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
OFFSETOF(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
link_temp = ecore_rd(p_hwfn, p_ptt,
port_cfg_addr +
OFFSETOF(struct nvm_cfg1_port, speed_cap_mask));
link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
link->speed.advertised_speeds = link_temp;
link_temp = link->speed.advertised_speeds;
p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
link_temp = ecore_rd(p_hwfn, p_ptt,
port_cfg_addr +
OFFSETOF(struct nvm_cfg1_port, link_settings));
switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
link->speed.autoneg = true;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
link->speed.forced_speed = 1000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
link->speed.forced_speed = 10000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
link->speed.forced_speed = 25000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
link->speed.forced_speed = 40000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
link->speed.forced_speed = 50000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
link->speed.forced_speed = 100000;
break;
default:
DP_NOTICE(p_hwfn, true, "Unknown Speed in 0x%08x\n", link_temp);
}
p_hwfn->mcp_info->link_capabilities.default_speed =
link->speed.forced_speed;
p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
link->speed.autoneg;
link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
link->pause.autoneg = !!(link_temp &
NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
link->pause.forced_rx = !!(link_temp &
NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
link->pause.forced_tx = !!(link_temp &
NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
link->loopback_mode = 0;
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
link->speed.forced_speed, link->speed.advertised_speeds,
link->speed.autoneg, link->pause.autoneg);
/* Read Multi-function information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
OFFSETOF(struct nvm_cfg1, glob) +
OFFSETOF(struct nvm_cfg1_glob, generic_cont0);
generic_cont0 = ecore_rd(p_hwfn, p_ptt, addr);
mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
NVM_CFG1_GLOB_MF_MODE_OFFSET;
switch (mf_mode) {
case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
p_hwfn->p_dev->mf_mode = ECORE_MF_OVLAN;
break;
case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
p_hwfn->p_dev->mf_mode = ECORE_MF_NPAR;
break;
case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
p_hwfn->p_dev->mf_mode = ECORE_MF_DEFAULT;
break;
}
DP_INFO(p_hwfn, "Multi function mode is %08x\n",
p_hwfn->p_dev->mf_mode);
/* Read Multi-function information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
OFFSETOF(struct nvm_cfg1, glob) +
OFFSETOF(struct nvm_cfg1_glob, device_capabilities);
device_capabilities = ecore_rd(p_hwfn, p_ptt, addr);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
OSAL_SET_BIT(ECORE_DEV_CAP_ETH,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
OSAL_SET_BIT(ECORE_DEV_CAP_FCOE,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
OSAL_SET_BIT(ECORE_DEV_CAP_ISCSI,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
OSAL_SET_BIT(ECORE_DEV_CAP_ROCE,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_IWARP)
OSAL_SET_BIT(ECORE_DEV_CAP_IWARP,
&p_hwfn->hw_info.device_capabilities);
return ecore_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
}
static void ecore_get_num_funcs(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
struct ecore_dev *p_dev = p_hwfn->p_dev;
num_funcs = ECORE_IS_AH(p_dev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
* in the other bits are selected.
* Bits 1-15 are for functions 1-15, respectively, and their value is
* '0' only for enabled functions (function 0 always exists and
* enabled).
* In case of CMT in BB, only the "even" functions are enabled, and thus
* the number of functions for both hwfns is learnt from the same bits.
*/
reg_function_hide = ecore_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
if (reg_function_hide & 0x1) {
if (ECORE_IS_BB(p_dev)) {
if (ECORE_PATH_ID(p_hwfn) && p_dev->num_hwfns == 1) {
num_funcs = 0;
eng_mask = 0xaaaa;
} else {
num_funcs = 1;
eng_mask = 0x5554;
}
} else {
num_funcs = 1;
eng_mask = 0xfffe;
}
/* Get the number of the enabled functions on the engine */
tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
while (tmp) {
if (tmp & 0x1)
num_funcs++;
tmp >>= 0x1;
}
/* Get the PF index within the enabled functions */
low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
tmp = reg_function_hide & eng_mask & low_pfs_mask;
while (tmp) {
if (tmp & 0x1)
enabled_func_idx--;
tmp >>= 0x1;
}
}
p_hwfn->num_funcs_on_engine = num_funcs;
p_hwfn->enabled_func_idx = enabled_func_idx;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_FPGA(p_dev)) {
DP_NOTICE(p_hwfn, false,
"FPGA: Limit number of PFs to 4 [would affect resource allocation, needed for IOV]\n");
p_hwfn->num_funcs_on_engine = 4;
}
#endif
DP_VERBOSE(p_hwfn, ECORE_MSG_PROBE,
"PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
p_hwfn->rel_pf_id, p_hwfn->abs_pf_id,
p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
}
static void ecore_hw_info_port_num_bb(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 port_mode;
#ifndef ASIC_ONLY
/* Read the port mode */
if (CHIP_REV_IS_FPGA(p_hwfn->p_dev))
port_mode = 4;
else if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) &&
(p_hwfn->p_dev->num_hwfns > 1))
/* In CMT on emulation, assume 1 port */
port_mode = 1;
else
#endif
port_mode = ecore_rd(p_hwfn, p_ptt,
CNIG_REG_NW_PORT_MODE_BB_B0);
if (port_mode < 3) {
p_hwfn->p_dev->num_ports_in_engines = 1;
} else if (port_mode <= 5) {
p_hwfn->p_dev->num_ports_in_engines = 2;
} else {
DP_NOTICE(p_hwfn, true, "PORT MODE: %d not supported\n",
p_hwfn->p_dev->num_ports_in_engines);
/* Default num_ports_in_engines to something */
p_hwfn->p_dev->num_ports_in_engines = 1;
}
}
static void ecore_hw_info_port_num_ah(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 port;
int i;
p_hwfn->p_dev->num_ports_in_engines = 0;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev)) {
port = ecore_rd(p_hwfn, p_ptt, MISCS_REG_ECO_RESERVED);
switch ((port & 0xf000) >> 12) {
case 1:
p_hwfn->p_dev->num_ports_in_engines = 1;
break;
case 3:
p_hwfn->p_dev->num_ports_in_engines = 2;
break;
case 0xf:
p_hwfn->p_dev->num_ports_in_engines = 4;
break;
default:
DP_NOTICE(p_hwfn, false,
"Unknown port mode in ECO_RESERVED %08x\n",
port);
}
} else
#endif
for (i = 0; i < MAX_NUM_PORTS_K2; i++) {
port = ecore_rd(p_hwfn, p_ptt,
CNIG_REG_NIG_PORT0_CONF_K2 + (i * 4));
if (port & 1)
p_hwfn->p_dev->num_ports_in_engines++;
}
}
static void ecore_hw_info_port_num(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
if (ECORE_IS_BB(p_hwfn->p_dev))
ecore_hw_info_port_num_bb(p_hwfn, p_ptt);
else
ecore_hw_info_port_num_ah(p_hwfn, p_ptt);
}
static enum _ecore_status_t
ecore_get_hw_info(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
enum ecore_pci_personality personality, bool drv_resc_alloc)
{
enum _ecore_status_t rc;
/* Since all information is common, only first hwfns should do this */
if (IS_LEAD_HWFN(p_hwfn)) {
rc = ecore_iov_hw_info(p_hwfn);
if (rc != ECORE_SUCCESS)
return rc;
}
/* TODO In get_hw_info, amoungst others:
* Get MCP FW revision and determine according to it the supported
* featrues (e.g. DCB)
* Get boot mode
* ecore_get_pcie_width_speed, WOL capability.
* Number of global CQ-s (for storage
*/
ecore_hw_info_port_num(p_hwfn, p_ptt);
#ifndef ASIC_ONLY
if (CHIP_REV_IS_ASIC(p_hwfn->p_dev)) {
#endif
rc = ecore_hw_get_nvm_info(p_hwfn, p_ptt);
if (rc != ECORE_SUCCESS)
return rc;
#ifndef ASIC_ONLY
}
#endif
rc = ecore_int_igu_read_cam(p_hwfn, p_ptt);
if (rc != ECORE_SUCCESS)
return rc;
#ifndef ASIC_ONLY
if (CHIP_REV_IS_ASIC(p_hwfn->p_dev) && ecore_mcp_is_init(p_hwfn)) {
#endif
OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr,
p_hwfn->mcp_info->func_info.mac, ETH_ALEN);
#ifndef ASIC_ONLY
} else {
static u8 mcp_hw_mac[6] = { 0, 2, 3, 4, 5, 6 };
OSAL_MEMCPY(p_hwfn->hw_info.hw_mac_addr, mcp_hw_mac, ETH_ALEN);
p_hwfn->hw_info.hw_mac_addr[5] = p_hwfn->abs_pf_id;
}
#endif
if (ecore_mcp_is_init(p_hwfn)) {
if (p_hwfn->mcp_info->func_info.ovlan != ECORE_MCP_VLAN_UNSET)
p_hwfn->hw_info.ovlan =
p_hwfn->mcp_info->func_info.ovlan;
ecore_mcp_cmd_port_init(p_hwfn, p_ptt);
}
if (personality != ECORE_PCI_DEFAULT) {
p_hwfn->hw_info.personality = personality;
} else if (ecore_mcp_is_init(p_hwfn)) {
enum ecore_pci_personality protocol;
protocol = p_hwfn->mcp_info->func_info.protocol;
p_hwfn->hw_info.personality = protocol;
}
#ifndef ASIC_ONLY
/* To overcome ILT lack for emulation, until at least until we'll have
* a definite answer from system about it, allow only PF0 to be RoCE.
*/
if (CHIP_REV_IS_EMUL(p_hwfn->p_dev) && ECORE_IS_AH(p_hwfn->p_dev)) {
if (!p_hwfn->rel_pf_id)
p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
else
p_hwfn->hw_info.personality = ECORE_PCI_ETH;
}
#endif
/* although in BB some constellations may support more than 4 tcs,
* that can result in performance penalty in some cases. 4
* represents a good tradeoff between performance and flexibility.
*/
p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
/* start out with a single active tc. This can be increased either
* by dcbx negotiation or by upper layer driver
*/
p_hwfn->hw_info.num_active_tc = 1;
ecore_get_num_funcs(p_hwfn, p_ptt);
/* In case of forcing the driver's default resource allocation, calling
* ecore_hw_get_resc() should come after initializing the personality
* and after getting the number of functions, since the calculation of
* the resources/features depends on them.
* This order is not harmful if not forcing.
*/
return ecore_hw_get_resc(p_hwfn, drv_resc_alloc);
}
#define ECORE_DEV_ID_MASK 0xff00
#define ECORE_DEV_ID_MASK_BB 0x1600
#define ECORE_DEV_ID_MASK_AH 0x8000
static enum _ecore_status_t ecore_get_dev_info(struct ecore_dev *p_dev)
{
struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
u32 tmp;
/* Read Vendor Id / Device Id */
OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_VENDOR_ID_OFFSET,
&p_dev->vendor_id);
OSAL_PCI_READ_CONFIG_WORD(p_dev, PCICFG_DEVICE_ID_OFFSET,
&p_dev->device_id);
/* Determine type */
if ((p_dev->device_id & ECORE_DEV_ID_MASK) == ECORE_DEV_ID_MASK_AH)
p_dev->type = ECORE_DEV_TYPE_AH;
else
p_dev->type = ECORE_DEV_TYPE_BB;
p_dev->chip_num = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_NUM);
p_dev->chip_rev = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_REV);
MASK_FIELD(CHIP_REV, p_dev->chip_rev);
/* Learn number of HW-functions */
tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CMT_ENABLED_FOR_PAIR);
if (tmp & (1 << p_hwfn->rel_pf_id)) {
DP_NOTICE(p_dev->hwfns, false, "device in CMT mode\n");
p_dev->num_hwfns = 2;
} else {
p_dev->num_hwfns = 1;
}
#ifndef ASIC_ONLY
if (CHIP_REV_IS_EMUL(p_dev)) {
/* For some reason we have problems with this register
* in B0 emulation; Simply assume no CMT
*/
DP_NOTICE(p_dev->hwfns, false,
"device on emul - assume no CMT\n");
p_dev->num_hwfns = 1;
}
#endif
p_dev->chip_bond_id = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_TEST_REG) >> 4;
MASK_FIELD(CHIP_BOND_ID, p_dev->chip_bond_id);
p_dev->chip_metal = (u16)ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_METAL);
MASK_FIELD(CHIP_METAL, p_dev->chip_metal);
DP_INFO(p_dev->hwfns,
"Chip details - %s%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
ECORE_IS_BB(p_dev) ? "BB" : "AH",
CHIP_REV_IS_A0(p_dev) ? 0 : 1,
p_dev->chip_num, p_dev->chip_rev, p_dev->chip_bond_id,
p_dev->chip_metal);
if (ECORE_IS_BB(p_dev) && CHIP_REV_IS_A0(p_dev)) {
DP_NOTICE(p_dev->hwfns, false,
"The chip type/rev (BB A0) is not supported!\n");
return ECORE_ABORTED;
}
#ifndef ASIC_ONLY
if (CHIP_REV_IS_EMUL(p_dev) && ECORE_IS_AH(p_dev))
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_PLL_MAIN_CTRL_4, 0x1);
if (CHIP_REV_IS_EMUL(p_dev)) {
tmp = ecore_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_ECO_RESERVED);
if (tmp & (1 << 29)) {
DP_NOTICE(p_hwfn, false,
"Emulation: Running on a FULL build\n");
p_dev->b_is_emul_full = true;
} else {
DP_NOTICE(p_hwfn, false,
"Emulation: Running on a REDUCED build\n");
}
}
#endif
return ECORE_SUCCESS;
}
#ifndef LINUX_REMOVE
void ecore_prepare_hibernate(struct ecore_dev *p_dev)
{
int j;
if (IS_VF(p_dev))
return;
for_each_hwfn(p_dev, j) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[j];
DP_VERBOSE(p_hwfn, ECORE_MSG_IFDOWN,
"Mark hw/fw uninitialized\n");
p_hwfn->hw_init_done = false;
p_hwfn->first_on_engine = false;
ecore_ptt_invalidate(p_hwfn);
}
}
#endif
static enum _ecore_status_t
ecore_hw_prepare_single(struct ecore_hwfn *p_hwfn,
void OSAL_IOMEM * p_regview,
void OSAL_IOMEM * p_doorbells,
struct ecore_hw_prepare_params *p_params)
{
struct ecore_dev *p_dev = p_hwfn->p_dev;
struct ecore_mdump_info mdump_info;
enum _ecore_status_t rc = ECORE_SUCCESS;
/* Split PCI bars evenly between hwfns */
p_hwfn->regview = p_regview;
p_hwfn->doorbells = p_doorbells;
if (IS_VF(p_dev))
return ecore_vf_hw_prepare(p_hwfn);
/* Validate that chip access is feasible */
if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
DP_ERR(p_hwfn,
"Reading the ME register returns all Fs; Preventing further chip access\n");
return ECORE_INVAL;
}
get_function_id(p_hwfn);
/* Allocate PTT pool */
rc = ecore_ptt_pool_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed to prepare hwfn's hw\n");
goto err0;
}
/* Allocate the main PTT */
p_hwfn->p_main_ptt = ecore_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
/* First hwfn learns basic information, e.g., number of hwfns */
if (!p_hwfn->my_id) {
rc = ecore_get_dev_info(p_dev);
if (rc != ECORE_SUCCESS)
goto err1;
}
ecore_hw_hwfn_prepare(p_hwfn);
/* Initialize MCP structure */
rc = ecore_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed initializing mcp command\n");
goto err1;
}
/* Read the device configuration information from the HW and SHMEM */
rc = ecore_get_hw_info(p_hwfn, p_hwfn->p_main_ptt,
p_params->personality, p_params->drv_resc_alloc);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed to get HW information\n");
goto err2;
}
/* Sending a mailbox to the MFW should be after ecore_get_hw_info() is
* called, since among others it sets the ports number in an engine.
*/
if (p_params->initiate_pf_flr && p_hwfn == ECORE_LEADING_HWFN(p_dev) &&
!p_dev->recov_in_prog) {
rc = ecore_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
if (rc != ECORE_SUCCESS)
DP_NOTICE(p_hwfn, false, "Failed to initiate PF FLR\n");
}
/* Check if mdump logs are present and update the epoch value */
if (p_hwfn == ECORE_LEADING_HWFN(p_hwfn->p_dev)) {
rc = ecore_mcp_mdump_get_info(p_hwfn, p_hwfn->p_main_ptt,
&mdump_info);
if (rc == ECORE_SUCCESS && mdump_info.num_of_logs > 0) {
DP_NOTICE(p_hwfn, false,
"* * * IMPORTANT - HW ERROR register dump captured by device * * *\n");
}
ecore_mcp_mdump_set_values(p_hwfn, p_hwfn->p_main_ptt,
p_params->epoch);
}
/* Allocate the init RT array and initialize the init-ops engine */
rc = ecore_init_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, true, "Failed to allocate the init array\n");
goto err2;
}
#ifndef ASIC_ONLY
if (CHIP_REV_IS_FPGA(p_dev)) {
DP_NOTICE(p_hwfn, false,
"FPGA: workaround; Prevent DMAE parities\n");
ecore_wr(p_hwfn, p_hwfn->p_main_ptt, PCIE_REG_PRTY_MASK, 7);
DP_NOTICE(p_hwfn, false,
"FPGA: workaround: Set VF bar0 size\n");
ecore_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_VF_BAR0_SIZE, 4);
}
#endif
return rc;
err2:
if (IS_LEAD_HWFN(p_hwfn))
ecore_iov_free_hw_info(p_dev);
ecore_mcp_free(p_hwfn);
err1:
ecore_hw_hwfn_free(p_hwfn);
err0:
return rc;
}
enum _ecore_status_t ecore_hw_prepare(struct ecore_dev *p_dev,
struct ecore_hw_prepare_params *p_params)
{
struct ecore_hwfn *p_hwfn = ECORE_LEADING_HWFN(p_dev);
enum _ecore_status_t rc;
p_dev->chk_reg_fifo = p_params->chk_reg_fifo;
/* Store the precompiled init data ptrs */
if (IS_PF(p_dev))
ecore_init_iro_array(p_dev);
/* Initialize the first hwfn - will learn number of hwfns */
rc = ecore_hw_prepare_single(p_hwfn,
p_dev->regview,
p_dev->doorbells, p_params);
if (rc != ECORE_SUCCESS)
return rc;
p_params->personality = p_hwfn->hw_info.personality;
/* initilalize 2nd hwfn if necessary */
if (p_dev->num_hwfns > 1) {
void OSAL_IOMEM *p_regview, *p_doorbell;
u8 OSAL_IOMEM *addr;
/* adjust bar offset for second engine */
addr = (u8 OSAL_IOMEM *)p_dev->regview +
ecore_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
p_regview = (void OSAL_IOMEM *)addr;
addr = (u8 OSAL_IOMEM *)p_dev->doorbells +
ecore_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
p_doorbell = (void OSAL_IOMEM *)addr;
/* prepare second hw function */
rc = ecore_hw_prepare_single(&p_dev->hwfns[1], p_regview,
p_doorbell, p_params);
/* in case of error, need to free the previously
* initiliazed hwfn 0.
*/
if (rc != ECORE_SUCCESS) {
if (IS_PF(p_dev)) {
ecore_init_free(p_hwfn);
ecore_mcp_free(p_hwfn);
ecore_hw_hwfn_free(p_hwfn);
} else {
DP_NOTICE(p_dev, true,
"What do we need to free when VF hwfn1 init fails\n");
}
return rc;
}
}
return rc;
}
void ecore_hw_remove(struct ecore_dev *p_dev)
{
int i;
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
if (IS_VF(p_dev)) {
ecore_vf_pf_release(p_hwfn);
continue;
}
ecore_init_free(p_hwfn);
ecore_hw_hwfn_free(p_hwfn);
ecore_mcp_free(p_hwfn);
OSAL_MUTEX_DEALLOC(&p_hwfn->dmae_info.mutex);
}
ecore_iov_free_hw_info(p_dev);
}
static void ecore_chain_free_next_ptr(struct ecore_dev *p_dev,
struct ecore_chain *p_chain)
{
void *p_virt = p_chain->p_virt_addr, *p_virt_next = OSAL_NULL;
dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
struct ecore_chain_next *p_next;
u32 size, i;
if (!p_virt)
return;
size = p_chain->elem_size * p_chain->usable_per_page;
for (i = 0; i < p_chain->page_cnt; i++) {
if (!p_virt)
break;
p_next = (struct ecore_chain_next *)((u8 *)p_virt + size);
p_virt_next = p_next->next_virt;
p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
OSAL_DMA_FREE_COHERENT(p_dev, p_virt, p_phys,
ECORE_CHAIN_PAGE_SIZE);
p_virt = p_virt_next;
p_phys = p_phys_next;
}
}
static void ecore_chain_free_single(struct ecore_dev *p_dev,
struct ecore_chain *p_chain)
{
if (!p_chain->p_virt_addr)
return;
OSAL_DMA_FREE_COHERENT(p_dev, p_chain->p_virt_addr,
p_chain->p_phys_addr, ECORE_CHAIN_PAGE_SIZE);
}
static void ecore_chain_free_pbl(struct ecore_dev *p_dev,
struct ecore_chain *p_chain)
{
void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
u8 *p_pbl_virt = (u8 *)p_chain->pbl.p_virt_table;
u32 page_cnt = p_chain->page_cnt, i, pbl_size;
if (!pp_virt_addr_tbl)
return;
if (!p_chain->pbl.p_virt_table)
goto out;
for (i = 0; i < page_cnt; i++) {
if (!pp_virt_addr_tbl[i])
break;
OSAL_DMA_FREE_COHERENT(p_dev, pp_virt_addr_tbl[i],
*(dma_addr_t *)p_pbl_virt,
ECORE_CHAIN_PAGE_SIZE);
p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
}
pbl_size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
if (!p_chain->pbl.external)
OSAL_DMA_FREE_COHERENT(p_dev, p_chain->pbl.p_virt_table,
p_chain->pbl.p_phys_table, pbl_size);
out:
OSAL_VFREE(p_dev, p_chain->pbl.pp_virt_addr_tbl);
}
void ecore_chain_free(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
{
switch (p_chain->mode) {
case ECORE_CHAIN_MODE_NEXT_PTR:
ecore_chain_free_next_ptr(p_dev, p_chain);
break;
case ECORE_CHAIN_MODE_SINGLE:
ecore_chain_free_single(p_dev, p_chain);
break;
case ECORE_CHAIN_MODE_PBL:
ecore_chain_free_pbl(p_dev, p_chain);
break;
}
}
static enum _ecore_status_t
ecore_chain_alloc_sanity_check(struct ecore_dev *p_dev,
enum ecore_chain_cnt_type cnt_type,
osal_size_t elem_size, u32 page_cnt)
{
u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
/* The actual chain size can be larger than the maximal possible value
* after rounding up the requested elements number to pages, and after
* taking into acount the unusuable elements (next-ptr elements).
* The size of a "u16" chain can be (U16_MAX + 1) since the chain
* size/capacity fields are of a u32 type.
*/
if ((cnt_type == ECORE_CHAIN_CNT_TYPE_U16 &&
chain_size > ((u32)ECORE_U16_MAX + 1)) ||
(cnt_type == ECORE_CHAIN_CNT_TYPE_U32 &&
chain_size > ECORE_U32_MAX)) {
DP_NOTICE(p_dev, true,
"The actual chain size (0x%lx) is larger than the maximal possible value\n",
(unsigned long)chain_size);
return ECORE_INVAL;
}
return ECORE_SUCCESS;
}
static enum _ecore_status_t
ecore_chain_alloc_next_ptr(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
{
void *p_virt = OSAL_NULL, *p_virt_prev = OSAL_NULL;
dma_addr_t p_phys = 0;
u32 i;
for (i = 0; i < p_chain->page_cnt; i++) {
p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
ECORE_CHAIN_PAGE_SIZE);
if (!p_virt) {
DP_NOTICE(p_dev, true,
"Failed to allocate chain memory\n");
return ECORE_NOMEM;
}
if (i == 0) {
ecore_chain_init_mem(p_chain, p_virt, p_phys);
ecore_chain_reset(p_chain);
} else {
ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
p_virt, p_phys);
}
p_virt_prev = p_virt;
}
/* Last page's next element should point to the beginning of the
* chain.
*/
ecore_chain_init_next_ptr_elem(p_chain, p_virt_prev,
p_chain->p_virt_addr,
p_chain->p_phys_addr);
return ECORE_SUCCESS;
}
static enum _ecore_status_t
ecore_chain_alloc_single(struct ecore_dev *p_dev, struct ecore_chain *p_chain)
{
dma_addr_t p_phys = 0;
void *p_virt = OSAL_NULL;
p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys, ECORE_CHAIN_PAGE_SIZE);
if (!p_virt) {
DP_NOTICE(p_dev, true, "Failed to allocate chain memory\n");
return ECORE_NOMEM;
}
ecore_chain_init_mem(p_chain, p_virt, p_phys);
ecore_chain_reset(p_chain);
return ECORE_SUCCESS;
}
static enum _ecore_status_t
ecore_chain_alloc_pbl(struct ecore_dev *p_dev,
struct ecore_chain *p_chain,
struct ecore_chain_ext_pbl *ext_pbl)
{
void *p_virt = OSAL_NULL;
u8 *p_pbl_virt = OSAL_NULL;
void **pp_virt_addr_tbl = OSAL_NULL;
dma_addr_t p_phys = 0, p_pbl_phys = 0;
u32 page_cnt = p_chain->page_cnt, size, i;
size = page_cnt * sizeof(*pp_virt_addr_tbl);
pp_virt_addr_tbl = (void **)OSAL_VALLOC(p_dev, size);
if (!pp_virt_addr_tbl) {
DP_NOTICE(p_dev, true,
"Failed to allocate memory for the chain virtual addresses table\n");
return ECORE_NOMEM;
}
OSAL_MEM_ZERO(pp_virt_addr_tbl, size);
/* The allocation of the PBL table is done with its full size, since it
* is expected to be successive.
* ecore_chain_init_pbl_mem() is called even in a case of an allocation
* failure, since pp_virt_addr_tbl was previously allocated, and it
* should be saved to allow its freeing during the error flow.
*/
size = page_cnt * ECORE_CHAIN_PBL_ENTRY_SIZE;
if (ext_pbl == OSAL_NULL) {
p_pbl_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_pbl_phys, size);
} else {
p_pbl_virt = ext_pbl->p_pbl_virt;
p_pbl_phys = ext_pbl->p_pbl_phys;
p_chain->pbl.external = true;
}
ecore_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
pp_virt_addr_tbl);
if (!p_pbl_virt) {
DP_NOTICE(p_dev, true, "Failed to allocate chain pbl memory\n");
return ECORE_NOMEM;
}
for (i = 0; i < page_cnt; i++) {
p_virt = OSAL_DMA_ALLOC_COHERENT(p_dev, &p_phys,
ECORE_CHAIN_PAGE_SIZE);
if (!p_virt) {
DP_NOTICE(p_dev, true,
"Failed to allocate chain memory\n");
return ECORE_NOMEM;
}
if (i == 0) {
ecore_chain_init_mem(p_chain, p_virt, p_phys);
ecore_chain_reset(p_chain);
}
/* Fill the PBL table with the physical address of the page */
*(dma_addr_t *)p_pbl_virt = p_phys;
/* Keep the virtual address of the page */
p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
p_pbl_virt += ECORE_CHAIN_PBL_ENTRY_SIZE;
}
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_chain_alloc(struct ecore_dev *p_dev,
enum ecore_chain_use_mode intended_use,
enum ecore_chain_mode mode,
enum ecore_chain_cnt_type cnt_type,
u32 num_elems, osal_size_t elem_size,
struct ecore_chain *p_chain,
struct ecore_chain_ext_pbl *ext_pbl)
{
u32 page_cnt;
enum _ecore_status_t rc = ECORE_SUCCESS;
if (mode == ECORE_CHAIN_MODE_SINGLE)
page_cnt = 1;
else
page_cnt = ECORE_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
rc = ecore_chain_alloc_sanity_check(p_dev, cnt_type, elem_size,
page_cnt);
if (rc) {
DP_NOTICE(p_dev, true,
"Cannot allocate a chain with the given arguments:\n"
"[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
intended_use, mode, cnt_type, num_elems, elem_size);
return rc;
}
ecore_chain_init_params(p_chain, page_cnt, (u8)elem_size, intended_use,
mode, cnt_type, p_dev->dp_ctx);
switch (mode) {
case ECORE_CHAIN_MODE_NEXT_PTR:
rc = ecore_chain_alloc_next_ptr(p_dev, p_chain);
break;
case ECORE_CHAIN_MODE_SINGLE:
rc = ecore_chain_alloc_single(p_dev, p_chain);
break;
case ECORE_CHAIN_MODE_PBL:
rc = ecore_chain_alloc_pbl(p_dev, p_chain, ext_pbl);
break;
}
if (rc)
goto nomem;
return ECORE_SUCCESS;
nomem:
ecore_chain_free(p_dev, p_chain);
return rc;
}
enum _ecore_status_t ecore_fw_l2_queue(struct ecore_hwfn *p_hwfn,
u16 src_id, u16 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, ECORE_L2_QUEUE)) {
u16 min, max;
min = (u16)RESC_START(p_hwfn, ECORE_L2_QUEUE);
max = min + RESC_NUM(p_hwfn, ECORE_L2_QUEUE);
DP_NOTICE(p_hwfn, true,
"l2_queue id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return ECORE_INVAL;
}
*dst_id = RESC_START(p_hwfn, ECORE_L2_QUEUE) + src_id;
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_fw_vport(struct ecore_hwfn *p_hwfn,
u8 src_id, u8 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, ECORE_VPORT)) {
u8 min, max;
min = (u8)RESC_START(p_hwfn, ECORE_VPORT);
max = min + RESC_NUM(p_hwfn, ECORE_VPORT);
DP_NOTICE(p_hwfn, true,
"vport id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return ECORE_INVAL;
}
*dst_id = RESC_START(p_hwfn, ECORE_VPORT) + src_id;
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_fw_rss_eng(struct ecore_hwfn *p_hwfn,
u8 src_id, u8 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, ECORE_RSS_ENG)) {
u8 min, max;
min = (u8)RESC_START(p_hwfn, ECORE_RSS_ENG);
max = min + RESC_NUM(p_hwfn, ECORE_RSS_ENG);
DP_NOTICE(p_hwfn, true,
"rss_eng id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return ECORE_INVAL;
}
*dst_id = RESC_START(p_hwfn, ECORE_RSS_ENG) + src_id;
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_llh_add_mac_filter(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 *p_filter)
{
u32 high, low, en;
int i;
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
return ECORE_SUCCESS;
high = p_filter[1] | (p_filter[0] << 8);
low = p_filter[5] | (p_filter[4] << 8) |
(p_filter[3] << 16) | (p_filter[2] << 24);
/* Find a free entry and utilize it */
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
en = ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
if (en)
continue;
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32), low);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32), high);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
break;
}
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
DP_NOTICE(p_hwfn, false,
"Failed to find an empty LLH filter to utilize\n");
return ECORE_INVAL;
}
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"MAC: %x:%x:%x:%x:%x:%x is added at %d\n",
p_filter[0], p_filter[1], p_filter[2],
p_filter[3], p_filter[4], p_filter[5], i);
return ECORE_SUCCESS;
}
void ecore_llh_remove_mac_filter(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt, u8 *p_filter)
{
u32 high, low;
int i;
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
return;
high = p_filter[1] | (p_filter[0] << 8);
low = p_filter[5] | (p_filter[4] << 8) |
(p_filter[3] << 16) | (p_filter[2] << 24);
/* Find the entry and clean it */
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
if (ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32)) != low)
continue;
if (ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32)) != high)
continue;
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32), 0);
break;
}
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
DP_NOTICE(p_hwfn, false,
"Tried to remove a non-configured filter\n");
}
enum _ecore_status_t
ecore_llh_add_protocol_filter(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 source_port_or_eth_type,
u16 dest_port,
enum ecore_llh_port_filter_type_t type)
{
u32 high, low, en;
int i;
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
return ECORE_SUCCESS;
high = 0;
low = 0;
switch (type) {
case ECORE_LLH_FILTER_ETHERTYPE:
high = source_port_or_eth_type;
break;
case ECORE_LLH_FILTER_TCP_SRC_PORT:
case ECORE_LLH_FILTER_UDP_SRC_PORT:
low = source_port_or_eth_type << 16;
break;
case ECORE_LLH_FILTER_TCP_DEST_PORT:
case ECORE_LLH_FILTER_UDP_DEST_PORT:
low = dest_port;
break;
case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
low = (source_port_or_eth_type << 16) | dest_port;
break;
default:
DP_NOTICE(p_hwfn, true,
"Non valid LLH protocol filter type %d\n", type);
return ECORE_INVAL;
}
/* Find a free entry and utilize it */
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
en = ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32));
if (en)
continue;
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32), low);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32), high);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 1);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
i * sizeof(u32), 1 << type);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1);
break;
}
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
DP_NOTICE(p_hwfn, false,
"Failed to find an empty LLH filter to utilize\n");
return ECORE_NORESOURCES;
}
switch (type) {
case ECORE_LLH_FILTER_ETHERTYPE:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"ETH type %x is added at %d\n",
source_port_or_eth_type, i);
break;
case ECORE_LLH_FILTER_TCP_SRC_PORT:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"TCP src port %x is added at %d\n",
source_port_or_eth_type, i);
break;
case ECORE_LLH_FILTER_UDP_SRC_PORT:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"UDP src port %x is added at %d\n",
source_port_or_eth_type, i);
break;
case ECORE_LLH_FILTER_TCP_DEST_PORT:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"TCP dst port %x is added at %d\n", dest_port, i);
break;
case ECORE_LLH_FILTER_UDP_DEST_PORT:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"UDP dst port %x is added at %d\n", dest_port, i);
break;
case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"TCP src/dst ports %x/%x are added at %d\n",
source_port_or_eth_type, dest_port, i);
break;
case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
DP_VERBOSE(p_hwfn, ECORE_MSG_HW,
"UDP src/dst ports %x/%x are added at %d\n",
source_port_or_eth_type, dest_port, i);
break;
}
return ECORE_SUCCESS;
}
void
ecore_llh_remove_protocol_filter(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 source_port_or_eth_type,
u16 dest_port,
enum ecore_llh_port_filter_type_t type)
{
u32 high, low;
int i;
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
return;
high = 0;
low = 0;
switch (type) {
case ECORE_LLH_FILTER_ETHERTYPE:
high = source_port_or_eth_type;
break;
case ECORE_LLH_FILTER_TCP_SRC_PORT:
case ECORE_LLH_FILTER_UDP_SRC_PORT:
low = source_port_or_eth_type << 16;
break;
case ECORE_LLH_FILTER_TCP_DEST_PORT:
case ECORE_LLH_FILTER_UDP_DEST_PORT:
low = dest_port;
break;
case ECORE_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
case ECORE_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
low = (source_port_or_eth_type << 16) | dest_port;
break;
default:
DP_NOTICE(p_hwfn, true,
"Non valid LLH protocol filter type %d\n", type);
return;
}
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
if (!ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)))
continue;
if (!ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32)))
continue;
if (!(ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
i * sizeof(u32)) & (1 << type)))
continue;
if (ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32)) != low)
continue;
if (ecore_rd(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32)) != high)
continue;
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE +
i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32), 0);
break;
}
if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE)
DP_NOTICE(p_hwfn, false,
"Tried to remove a non-configured filter\n");
}
void ecore_llh_clear_all_filters(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
int i;
if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn)))
return;
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
2 * i * sizeof(u32), 0);
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_FUNC_FILTER_VALUE +
(2 * i + 1) * sizeof(u32), 0);
}
}
enum _ecore_status_t
ecore_llh_set_function_as_default(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
if (IS_MF_DEFAULT(p_hwfn) && ECORE_IS_BB(p_hwfn->p_dev)) {
ecore_wr(p_hwfn, p_ptt,
NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR,
1 << p_hwfn->abs_pf_id / 2);
ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, 0);
return ECORE_SUCCESS;
}
DP_NOTICE(p_hwfn, false,
"This function can't be set as default\n");
return ECORE_INVAL;
}
static enum _ecore_status_t ecore_set_coalesce(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 hw_addr, void *p_eth_qzone,
osal_size_t eth_qzone_size,
u8 timeset)
{
struct coalescing_timeset *p_coal_timeset;
if (IS_VF(p_hwfn->p_dev)) {
DP_NOTICE(p_hwfn, true, "VF coalescing config not supported\n");
return ECORE_INVAL;
}
if (p_hwfn->p_dev->int_coalescing_mode != ECORE_COAL_MODE_ENABLE) {
DP_NOTICE(p_hwfn, true,
"Coalescing configuration not enabled\n");
return ECORE_INVAL;
}
p_coal_timeset = p_eth_qzone;
OSAL_MEMSET(p_eth_qzone, 0, eth_qzone_size);
SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
ecore_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
return ECORE_SUCCESS;
}
enum _ecore_status_t ecore_set_rxq_coalesce(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 coalesce, u8 qid, u16 sb_id)
{
struct ustorm_eth_queue_zone eth_qzone;
u8 timeset, timer_res;
u16 fw_qid = 0;
u32 address;
enum _ecore_status_t rc;
/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
if (coalesce <= 0x7F) {
timer_res = 0;
} else if (coalesce <= 0xFF) {
timer_res = 1;
} else if (coalesce <= 0x1FF) {
timer_res = 2;
} else {
DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
return ECORE_INVAL;
}
timeset = (u8)(coalesce >> timer_res);
rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
if (rc != ECORE_SUCCESS)
return rc;
rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false);
if (rc != ECORE_SUCCESS)
goto out;
address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
sizeof(struct ustorm_eth_queue_zone), timeset);
if (rc != ECORE_SUCCESS)
goto out;
p_hwfn->p_dev->rx_coalesce_usecs = coalesce;
out:
return rc;
}
enum _ecore_status_t ecore_set_txq_coalesce(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 coalesce, u8 qid, u16 sb_id)
{
struct xstorm_eth_queue_zone eth_qzone;
u8 timeset, timer_res;
u16 fw_qid = 0;
u32 address;
enum _ecore_status_t rc;
/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
if (coalesce <= 0x7F) {
timer_res = 0;
} else if (coalesce <= 0xFF) {
timer_res = 1;
} else if (coalesce <= 0x1FF) {
timer_res = 2;
} else {
DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
return ECORE_INVAL;
}
timeset = (u8)(coalesce >> timer_res);
rc = ecore_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid);
if (rc != ECORE_SUCCESS)
return rc;
rc = ecore_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true);
if (rc != ECORE_SUCCESS)
goto out;
address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid);
rc = ecore_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
sizeof(struct xstorm_eth_queue_zone), timeset);
if (rc != ECORE_SUCCESS)
goto out;
p_hwfn->p_dev->tx_coalesce_usecs = coalesce;
out:
return rc;
}
/* Calculate final WFQ values for all vports and configure it.
* After this configuration each vport must have
* approx min rate = vport_wfq * min_pf_rate / ECORE_WFQ_UNIT
*/
static void ecore_configure_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 min_pf_rate)
{
struct init_qm_vport_params *vport_params;
int i;
vport_params = p_hwfn->qm_info.qm_vport_params;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
vport_params[i].vport_wfq = (wfq_speed * ECORE_WFQ_UNIT) /
min_pf_rate;
ecore_init_vport_wfq(p_hwfn, p_ptt,
vport_params[i].first_tx_pq_id,
vport_params[i].vport_wfq);
}
}
static void
ecore_init_wfq_default_param(struct ecore_hwfn *p_hwfn, u32 min_pf_rate)
{
int i;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
}
static void ecore_disable_wfq_for_all_vports(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 min_pf_rate)
{
struct init_qm_vport_params *vport_params;
int i;
vport_params = p_hwfn->qm_info.qm_vport_params;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
ecore_init_wfq_default_param(p_hwfn, min_pf_rate);
ecore_init_vport_wfq(p_hwfn, p_ptt,
vport_params[i].first_tx_pq_id,
vport_params[i].vport_wfq);
}
}
/* This function performs several validations for WFQ
* configuration and required min rate for a given vport
* 1. req_rate must be greater than one percent of min_pf_rate.
* 2. req_rate should not cause other vports [not configured for WFQ explicitly]
* rates to get less than one percent of min_pf_rate.
* 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
*/
static enum _ecore_status_t ecore_init_wfq_param(struct ecore_hwfn *p_hwfn,
u16 vport_id, u32 req_rate,
u32 min_pf_rate)
{
u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
int non_requested_count = 0, req_count = 0, i, num_vports;
num_vports = p_hwfn->qm_info.num_vports;
/* Accounting for the vports which are configured for WFQ explicitly */
for (i = 0; i < num_vports; i++) {
u32 tmp_speed;
if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) {
req_count++;
tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
total_req_min_rate += tmp_speed;
}
}
/* Include current vport data as well */
req_count++;
total_req_min_rate += req_rate;
non_requested_count = num_vports - req_count;
/* validate possible error cases */
if (req_rate > min_pf_rate) {
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Vport [%d] - Requested rate[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
vport_id, req_rate, min_pf_rate);
return ECORE_INVAL;
}
if (req_rate < min_pf_rate / ECORE_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
vport_id, req_rate, min_pf_rate);
return ECORE_INVAL;
}
/* TBD - for number of vports greater than 100 */
if (num_vports > ECORE_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Number of vports is greater than %d\n",
ECORE_WFQ_UNIT);
return ECORE_INVAL;
}
if (total_req_min_rate > min_pf_rate) {
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
total_req_min_rate, min_pf_rate);
return ECORE_INVAL;
}
/* Data left for non requested vports */
total_left_rate = min_pf_rate - total_req_min_rate;
left_rate_per_vp = total_left_rate / non_requested_count;
/* validate if non requested get < 1% of min bw */
if (left_rate_per_vp < min_pf_rate / ECORE_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
left_rate_per_vp, min_pf_rate);
return ECORE_INVAL;
}
/* now req_rate for given vport passes all scenarios.
* assign final wfq rates to all vports.
*/
p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
p_hwfn->qm_info.wfq_data[vport_id].configured = true;
for (i = 0; i < num_vports; i++) {
if (p_hwfn->qm_info.wfq_data[i].configured)
continue;
p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
}
return ECORE_SUCCESS;
}
static int __ecore_configure_vport_wfq(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 vp_id, u32 rate)
{
struct ecore_mcp_link_state *p_link;
int rc = ECORE_SUCCESS;
p_link = &p_hwfn->p_dev->hwfns[0].mcp_info->link_output;
if (!p_link->min_pf_rate) {
p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
p_hwfn->qm_info.wfq_data[vp_id].configured = true;
return rc;
}
rc = ecore_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
if (rc == ECORE_SUCCESS)
ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt,
p_link->min_pf_rate);
else
DP_NOTICE(p_hwfn, false,
"Validation failed while configuring min rate\n");
return rc;
}
static int __ecore_configure_vp_wfq_on_link_change(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 min_pf_rate)
{
bool use_wfq = false;
int rc = ECORE_SUCCESS;
u16 i;
/* Validate all pre configured vports for wfq */
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
u32 rate;
if (!p_hwfn->qm_info.wfq_data[i].configured)
continue;
rate = p_hwfn->qm_info.wfq_data[i].min_speed;
use_wfq = true;
rc = ecore_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
if (rc != ECORE_SUCCESS) {
DP_NOTICE(p_hwfn, false,
"WFQ validation failed while configuring min rate\n");
break;
}
}
if (rc == ECORE_SUCCESS && use_wfq)
ecore_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
else
ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
return rc;
}
/* Main API for ecore clients to configure vport min rate.
* vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
* rate - Speed in Mbps needs to be assigned to a given vport.
*/
int ecore_configure_vport_wfq(struct ecore_dev *p_dev, u16 vp_id, u32 rate)
{
int i, rc = ECORE_INVAL;
/* TBD - for multiple hardware functions - that is 100 gig */
if (p_dev->num_hwfns > 1) {
DP_NOTICE(p_dev, false,
"WFQ configuration is not supported for this device\n");
return rc;
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
struct ecore_ptt *p_ptt;
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt)
return ECORE_TIMEOUT;
rc = __ecore_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
if (rc != ECORE_SUCCESS) {
ecore_ptt_release(p_hwfn, p_ptt);
return rc;
}
ecore_ptt_release(p_hwfn, p_ptt);
}
return rc;
}
/* API to configure WFQ from mcp link change */
void ecore_configure_vp_wfq_on_link_change(struct ecore_dev *p_dev,
u32 min_pf_rate)
{
int i;
/* TBD - for multiple hardware functions - that is 100 gig */
if (p_dev->num_hwfns > 1) {
DP_VERBOSE(p_dev, ECORE_MSG_LINK,
"WFQ configuration is not supported for this device\n");
return;
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
__ecore_configure_vp_wfq_on_link_change(p_hwfn,
p_hwfn->p_dpc_ptt,
min_pf_rate);
}
}
int __ecore_configure_pf_max_bandwidth(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct ecore_mcp_link_state *p_link,
u8 max_bw)
{
int rc = ECORE_SUCCESS;
p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
if (!p_link->line_speed && (max_bw != 100))
return rc;
p_link->speed = (p_link->line_speed * max_bw) / 100;
p_hwfn->qm_info.pf_rl = p_link->speed;
/* Since the limiter also affects Tx-switched traffic, we don't want it
* to limit such traffic in case there's no actual limit.
* In that case, set limit to imaginary high boundary.
*/
if (max_bw == 100)
p_hwfn->qm_info.pf_rl = 100000;
rc = ecore_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
p_hwfn->qm_info.pf_rl);
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Configured MAX bandwidth to be %08x Mb/sec\n",
p_link->speed);
return rc;
}
/* Main API to configure PF max bandwidth where bw range is [1 - 100] */
int ecore_configure_pf_max_bandwidth(struct ecore_dev *p_dev, u8 max_bw)
{
int i, rc = ECORE_INVAL;
if (max_bw < 1 || max_bw > 100) {
DP_NOTICE(p_dev, false, "PF max bw valid range is [1-100]\n");
return rc;
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
struct ecore_mcp_link_state *p_link;
struct ecore_ptt *p_ptt;
p_link = &p_lead->mcp_info->link_output;
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt)
return ECORE_TIMEOUT;
rc = __ecore_configure_pf_max_bandwidth(p_hwfn, p_ptt,
p_link, max_bw);
ecore_ptt_release(p_hwfn, p_ptt);
if (rc != ECORE_SUCCESS)
break;
}
return rc;
}
int __ecore_configure_pf_min_bandwidth(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct ecore_mcp_link_state *p_link,
u8 min_bw)
{
int rc = ECORE_SUCCESS;
p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
p_hwfn->qm_info.pf_wfq = min_bw;
if (!p_link->line_speed)
return rc;
p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
rc = ecore_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
DP_VERBOSE(p_hwfn, ECORE_MSG_LINK,
"Configured MIN bandwidth to be %d Mb/sec\n",
p_link->min_pf_rate);
return rc;
}
/* Main API to configure PF min bandwidth where bw range is [1-100] */
int ecore_configure_pf_min_bandwidth(struct ecore_dev *p_dev, u8 min_bw)
{
int i, rc = ECORE_INVAL;
if (min_bw < 1 || min_bw > 100) {
DP_NOTICE(p_dev, false, "PF min bw valid range is [1-100]\n");
return rc;
}
for_each_hwfn(p_dev, i) {
struct ecore_hwfn *p_hwfn = &p_dev->hwfns[i];
struct ecore_hwfn *p_lead = ECORE_LEADING_HWFN(p_dev);
struct ecore_mcp_link_state *p_link;
struct ecore_ptt *p_ptt;
p_link = &p_lead->mcp_info->link_output;
p_ptt = ecore_ptt_acquire(p_hwfn);
if (!p_ptt)
return ECORE_TIMEOUT;
rc = __ecore_configure_pf_min_bandwidth(p_hwfn, p_ptt,
p_link, min_bw);
if (rc != ECORE_SUCCESS) {
ecore_ptt_release(p_hwfn, p_ptt);
return rc;
}
if (p_link->min_pf_rate) {
u32 min_rate = p_link->min_pf_rate;
rc = __ecore_configure_vp_wfq_on_link_change(p_hwfn,
p_ptt,
min_rate);
}
ecore_ptt_release(p_hwfn, p_ptt);
}
return rc;
}
void ecore_clean_wfq_db(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
{
struct ecore_mcp_link_state *p_link;
p_link = &p_hwfn->mcp_info->link_output;
if (p_link->min_pf_rate)
ecore_disable_wfq_for_all_vports(p_hwfn, p_ptt,
p_link->min_pf_rate);
OSAL_MEMSET(p_hwfn->qm_info.wfq_data, 0,
sizeof(*p_hwfn->qm_info.wfq_data) *
p_hwfn->qm_info.num_vports);
}
int ecore_device_num_engines(struct ecore_dev *p_dev)
{
return ECORE_IS_BB(p_dev) ? 2 : 1;
}
int ecore_device_num_ports(struct ecore_dev *p_dev)
{
/* in CMT always only one port */
if (p_dev->num_hwfns > 1)
return 1;
return p_dev->num_ports_in_engines * ecore_device_num_engines(p_dev);
}
void ecore_set_fw_mac_addr(__le16 *fw_msb,
__le16 *fw_mid,
__le16 *fw_lsb,
u8 *mac)
{
((u8 *)fw_msb)[0] = mac[1];
((u8 *)fw_msb)[1] = mac[0];
((u8 *)fw_mid)[0] = mac[3];
((u8 *)fw_mid)[1] = mac[2];
((u8 *)fw_lsb)[0] = mac[5];
((u8 *)fw_lsb)[1] = mac[4];
}