numam-dpdk/drivers/net/vmxnet3/vmxnet3_rxtx.c
Andrew Rybchenko fcae1808f8 net/vmxnet3: fix Tx prepare to set positive rte_errno
Fixes: baf3bbae5556 ("net/vmxnet3: add Tx preparation")
Cc: stable@dpdk.org

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Yong Wang <yongwang@vmware.com>
2019-06-13 23:54:30 +09:00

1391 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_prefetch.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_net.h>
#include "base/vmxnet3_defs.h"
#include "vmxnet3_ring.h"
#include "vmxnet3_logs.h"
#include "vmxnet3_ethdev.h"
#define VMXNET3_TX_OFFLOAD_MASK ( \
PKT_TX_VLAN_PKT | \
PKT_TX_IPV6 | \
PKT_TX_IPV4 | \
PKT_TX_L4_MASK | \
PKT_TX_TCP_SEG)
#define VMXNET3_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ VMXNET3_TX_OFFLOAD_MASK)
static const uint32_t rxprod_reg[2] = {VMXNET3_REG_RXPROD, VMXNET3_REG_RXPROD2};
static int vmxnet3_post_rx_bufs(vmxnet3_rx_queue_t*, uint8_t);
static void vmxnet3_tq_tx_complete(vmxnet3_tx_queue_t *);
#ifdef RTE_LIBRTE_VMXNET3_DEBUG_DRIVER_NOT_USED
static void vmxnet3_rxq_dump(struct vmxnet3_rx_queue *);
static void vmxnet3_txq_dump(struct vmxnet3_tx_queue *);
#endif
#ifdef RTE_LIBRTE_VMXNET3_DEBUG_DRIVER_NOT_USED
static void
vmxnet3_rxq_dump(struct vmxnet3_rx_queue *rxq)
{
uint32_t avail = 0;
if (rxq == NULL)
return;
PMD_RX_LOG(DEBUG,
"RXQ: cmd0 base : %p cmd1 base : %p comp ring base : %p.",
rxq->cmd_ring[0].base, rxq->cmd_ring[1].base, rxq->comp_ring.base);
PMD_RX_LOG(DEBUG,
"RXQ: cmd0 basePA : 0x%lx cmd1 basePA : 0x%lx comp ring basePA : 0x%lx.",
(unsigned long)rxq->cmd_ring[0].basePA,
(unsigned long)rxq->cmd_ring[1].basePA,
(unsigned long)rxq->comp_ring.basePA);
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[0]);
PMD_RX_LOG(DEBUG,
"RXQ:cmd0: size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)rxq->cmd_ring[0].size, avail,
rxq->comp_ring.next2proc,
rxq->cmd_ring[0].size - avail);
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[1]);
PMD_RX_LOG(DEBUG, "RXQ:cmd1 size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)rxq->cmd_ring[1].size, avail, rxq->comp_ring.next2proc,
rxq->cmd_ring[1].size - avail);
}
static void
vmxnet3_txq_dump(struct vmxnet3_tx_queue *txq)
{
uint32_t avail = 0;
if (txq == NULL)
return;
PMD_TX_LOG(DEBUG, "TXQ: cmd base : %p comp ring base : %p data ring base : %p.",
txq->cmd_ring.base, txq->comp_ring.base, txq->data_ring.base);
PMD_TX_LOG(DEBUG, "TXQ: cmd basePA : 0x%lx comp ring basePA : 0x%lx data ring basePA : 0x%lx.",
(unsigned long)txq->cmd_ring.basePA,
(unsigned long)txq->comp_ring.basePA,
(unsigned long)txq->data_ring.basePA);
avail = vmxnet3_cmd_ring_desc_avail(&txq->cmd_ring);
PMD_TX_LOG(DEBUG, "TXQ: size=%u; free=%u; next2proc=%u; queued=%u",
(uint32_t)txq->cmd_ring.size, avail,
txq->comp_ring.next2proc, txq->cmd_ring.size - avail);
}
#endif
static void
vmxnet3_tx_cmd_ring_release_mbufs(vmxnet3_cmd_ring_t *ring)
{
while (ring->next2comp != ring->next2fill) {
/* No need to worry about desc ownership, device is quiesced by now. */
vmxnet3_buf_info_t *buf_info = ring->buf_info + ring->next2comp;
if (buf_info->m) {
rte_pktmbuf_free(buf_info->m);
buf_info->m = NULL;
buf_info->bufPA = 0;
buf_info->len = 0;
}
vmxnet3_cmd_ring_adv_next2comp(ring);
}
}
static void
vmxnet3_rx_cmd_ring_release_mbufs(vmxnet3_cmd_ring_t *ring)
{
uint32_t i;
for (i = 0; i < ring->size; i++) {
/* No need to worry about desc ownership, device is quiesced by now. */
vmxnet3_buf_info_t *buf_info = &ring->buf_info[i];
if (buf_info->m) {
rte_pktmbuf_free_seg(buf_info->m);
buf_info->m = NULL;
buf_info->bufPA = 0;
buf_info->len = 0;
}
vmxnet3_cmd_ring_adv_next2comp(ring);
}
}
static void
vmxnet3_cmd_ring_release(vmxnet3_cmd_ring_t *ring)
{
rte_free(ring->buf_info);
ring->buf_info = NULL;
}
void
vmxnet3_dev_tx_queue_release(void *txq)
{
vmxnet3_tx_queue_t *tq = txq;
if (tq != NULL) {
/* Release mbufs */
vmxnet3_tx_cmd_ring_release_mbufs(&tq->cmd_ring);
/* Release the cmd_ring */
vmxnet3_cmd_ring_release(&tq->cmd_ring);
/* Release the memzone */
rte_memzone_free(tq->mz);
/* Release the queue */
rte_free(tq);
}
}
void
vmxnet3_dev_rx_queue_release(void *rxq)
{
int i;
vmxnet3_rx_queue_t *rq = rxq;
if (rq != NULL) {
/* Release mbufs */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_rx_cmd_ring_release_mbufs(&rq->cmd_ring[i]);
/* Release both the cmd_rings */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_cmd_ring_release(&rq->cmd_ring[i]);
/* Release the memzone */
rte_memzone_free(rq->mz);
/* Release the queue */
rte_free(rq);
}
}
static void
vmxnet3_dev_tx_queue_reset(void *txq)
{
vmxnet3_tx_queue_t *tq = txq;
struct vmxnet3_cmd_ring *ring = &tq->cmd_ring;
struct vmxnet3_comp_ring *comp_ring = &tq->comp_ring;
struct vmxnet3_data_ring *data_ring = &tq->data_ring;
int size;
if (tq != NULL) {
/* Release the cmd_ring mbufs */
vmxnet3_tx_cmd_ring_release_mbufs(&tq->cmd_ring);
}
/* Tx vmxnet rings structure initialization*/
ring->next2fill = 0;
ring->next2comp = 0;
ring->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_TxDesc) * ring->size;
size += sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size;
size += tq->txdata_desc_size * data_ring->size;
memset(ring->base, 0, size);
}
static void
vmxnet3_dev_rx_queue_reset(void *rxq)
{
int i;
vmxnet3_rx_queue_t *rq = rxq;
struct vmxnet3_hw *hw = rq->hw;
struct vmxnet3_cmd_ring *ring0, *ring1;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_rx_data_ring *data_ring = &rq->data_ring;
int size;
/* Release both the cmd_rings mbufs */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++)
vmxnet3_rx_cmd_ring_release_mbufs(&rq->cmd_ring[i]);
ring0 = &rq->cmd_ring[0];
ring1 = &rq->cmd_ring[1];
comp_ring = &rq->comp_ring;
/* Rx vmxnet rings structure initialization */
ring0->next2fill = 0;
ring1->next2fill = 0;
ring0->next2comp = 0;
ring1->next2comp = 0;
ring0->gen = VMXNET3_INIT_GEN;
ring1->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_RxDesc) * (ring0->size + ring1->size);
size += sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
if (VMXNET3_VERSION_GE_3(hw) && rq->data_desc_size)
size += rq->data_desc_size * data_ring->size;
memset(ring0->base, 0, size);
}
void
vmxnet3_dev_clear_queues(struct rte_eth_dev *dev)
{
unsigned i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct vmxnet3_tx_queue *txq = dev->data->tx_queues[i];
if (txq != NULL) {
txq->stopped = TRUE;
vmxnet3_dev_tx_queue_reset(txq);
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct vmxnet3_rx_queue *rxq = dev->data->rx_queues[i];
if (rxq != NULL) {
rxq->stopped = TRUE;
vmxnet3_dev_rx_queue_reset(rxq);
}
}
}
static int
vmxnet3_unmap_pkt(uint16_t eop_idx, vmxnet3_tx_queue_t *txq)
{
int completed = 0;
struct rte_mbuf *mbuf;
/* Release cmd_ring descriptor and free mbuf */
RTE_ASSERT(txq->cmd_ring.base[eop_idx].txd.eop == 1);
mbuf = txq->cmd_ring.buf_info[eop_idx].m;
if (mbuf == NULL)
rte_panic("EOP desc does not point to a valid mbuf");
rte_pktmbuf_free(mbuf);
txq->cmd_ring.buf_info[eop_idx].m = NULL;
while (txq->cmd_ring.next2comp != eop_idx) {
/* no out-of-order completion */
RTE_ASSERT(txq->cmd_ring.base[txq->cmd_ring.next2comp].txd.cq == 0);
vmxnet3_cmd_ring_adv_next2comp(&txq->cmd_ring);
completed++;
}
/* Mark the txd for which tcd was generated as completed */
vmxnet3_cmd_ring_adv_next2comp(&txq->cmd_ring);
return completed + 1;
}
static void
vmxnet3_tq_tx_complete(vmxnet3_tx_queue_t *txq)
{
int completed = 0;
vmxnet3_comp_ring_t *comp_ring = &txq->comp_ring;
struct Vmxnet3_TxCompDesc *tcd = (struct Vmxnet3_TxCompDesc *)
(comp_ring->base + comp_ring->next2proc);
while (tcd->gen == comp_ring->gen) {
completed += vmxnet3_unmap_pkt(tcd->txdIdx, txq);
vmxnet3_comp_ring_adv_next2proc(comp_ring);
tcd = (struct Vmxnet3_TxCompDesc *)(comp_ring->base +
comp_ring->next2proc);
}
PMD_TX_LOG(DEBUG, "Processed %d tx comps & command descs.", completed);
}
uint16_t
vmxnet3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int32_t ret;
uint32_t i;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i != nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Non-TSO packet cannot occupy more than
* VMXNET3_MAX_TXD_PER_PKT TX descriptors.
*/
if ((ol_flags & PKT_TX_TCP_SEG) == 0 &&
m->nb_segs > VMXNET3_MAX_TXD_PER_PKT) {
rte_errno = EINVAL;
return i;
}
/* check that only supported TX offloads are requested. */
if ((ol_flags & VMXNET3_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
(ol_flags & PKT_TX_L4_MASK) ==
PKT_TX_SCTP_CKSUM) {
rte_errno = ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
return i;
}
uint16_t
vmxnet3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx;
vmxnet3_tx_queue_t *txq = tx_queue;
struct vmxnet3_hw *hw = txq->hw;
Vmxnet3_TxQueueCtrl *txq_ctrl = &txq->shared->ctrl;
uint32_t deferred = rte_le_to_cpu_32(txq_ctrl->txNumDeferred);
if (unlikely(txq->stopped)) {
PMD_TX_LOG(DEBUG, "Tx queue is stopped.");
return 0;
}
/* Free up the comp_descriptors aggressively */
vmxnet3_tq_tx_complete(txq);
nb_tx = 0;
while (nb_tx < nb_pkts) {
Vmxnet3_GenericDesc *gdesc;
vmxnet3_buf_info_t *tbi;
uint32_t first2fill, avail, dw2;
struct rte_mbuf *txm = tx_pkts[nb_tx];
struct rte_mbuf *m_seg = txm;
int copy_size = 0;
bool tso = (txm->ol_flags & PKT_TX_TCP_SEG) != 0;
/* # of descriptors needed for a packet. */
unsigned count = txm->nb_segs;
avail = vmxnet3_cmd_ring_desc_avail(&txq->cmd_ring);
if (count > avail) {
/* Is command ring full? */
if (unlikely(avail == 0)) {
PMD_TX_LOG(DEBUG, "No free ring descriptors");
txq->stats.tx_ring_full++;
txq->stats.drop_total += (nb_pkts - nb_tx);
break;
}
/* Command ring is not full but cannot handle the
* multi-segmented packet. Let's try the next packet
* in this case.
*/
PMD_TX_LOG(DEBUG, "Running out of ring descriptors "
"(avail %d needed %d)", avail, count);
txq->stats.drop_total++;
if (tso)
txq->stats.drop_tso++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
/* Drop non-TSO packet that is excessively fragmented */
if (unlikely(!tso && count > VMXNET3_MAX_TXD_PER_PKT)) {
PMD_TX_LOG(ERR, "Non-TSO packet cannot occupy more than %d tx "
"descriptors. Packet dropped.", VMXNET3_MAX_TXD_PER_PKT);
txq->stats.drop_too_many_segs++;
txq->stats.drop_total++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
if (txm->nb_segs == 1 &&
rte_pktmbuf_pkt_len(txm) <= txq->txdata_desc_size) {
struct Vmxnet3_TxDataDesc *tdd;
/* Skip empty packets */
if (unlikely(rte_pktmbuf_pkt_len(txm) == 0)) {
txq->stats.drop_total++;
rte_pktmbuf_free(txm);
nb_tx++;
continue;
}
tdd = (struct Vmxnet3_TxDataDesc *)
((uint8 *)txq->data_ring.base +
txq->cmd_ring.next2fill *
txq->txdata_desc_size);
copy_size = rte_pktmbuf_pkt_len(txm);
rte_memcpy(tdd->data, rte_pktmbuf_mtod(txm, char *), copy_size);
}
/* use the previous gen bit for the SOP desc */
dw2 = (txq->cmd_ring.gen ^ 0x1) << VMXNET3_TXD_GEN_SHIFT;
first2fill = txq->cmd_ring.next2fill;
do {
/* Remember the transmit buffer for cleanup */
tbi = txq->cmd_ring.buf_info + txq->cmd_ring.next2fill;
/* NB: the following assumes that VMXNET3 maximum
* transmit buffer size (16K) is greater than
* maximum size of mbuf segment size.
*/
gdesc = txq->cmd_ring.base + txq->cmd_ring.next2fill;
/* Skip empty segments */
if (unlikely(m_seg->data_len == 0))
continue;
if (copy_size) {
uint64 offset =
(uint64)txq->cmd_ring.next2fill *
txq->txdata_desc_size;
gdesc->txd.addr =
rte_cpu_to_le_64(txq->data_ring.basePA +
offset);
} else {
gdesc->txd.addr = rte_mbuf_data_iova(m_seg);
}
gdesc->dword[2] = dw2 | m_seg->data_len;
gdesc->dword[3] = 0;
/* move to the next2fill descriptor */
vmxnet3_cmd_ring_adv_next2fill(&txq->cmd_ring);
/* use the right gen for non-SOP desc */
dw2 = txq->cmd_ring.gen << VMXNET3_TXD_GEN_SHIFT;
} while ((m_seg = m_seg->next) != NULL);
/* set the last buf_info for the pkt */
tbi->m = txm;
/* Update the EOP descriptor */
gdesc->dword[3] |= VMXNET3_TXD_EOP | VMXNET3_TXD_CQ;
/* Add VLAN tag if present */
gdesc = txq->cmd_ring.base + first2fill;
if (txm->ol_flags & PKT_TX_VLAN_PKT) {
gdesc->txd.ti = 1;
gdesc->txd.tci = txm->vlan_tci;
}
if (tso) {
uint16_t mss = txm->tso_segsz;
RTE_ASSERT(mss > 0);
gdesc->txd.hlen = txm->l2_len + txm->l3_len + txm->l4_len;
gdesc->txd.om = VMXNET3_OM_TSO;
gdesc->txd.msscof = mss;
deferred += (rte_pktmbuf_pkt_len(txm) - gdesc->txd.hlen + mss - 1) / mss;
} else if (txm->ol_flags & PKT_TX_L4_MASK) {
gdesc->txd.om = VMXNET3_OM_CSUM;
gdesc->txd.hlen = txm->l2_len + txm->l3_len;
switch (txm->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
gdesc->txd.msscof = gdesc->txd.hlen +
offsetof(struct rte_tcp_hdr, cksum);
break;
case PKT_TX_UDP_CKSUM:
gdesc->txd.msscof = gdesc->txd.hlen +
offsetof(struct rte_udp_hdr,
dgram_cksum);
break;
default:
PMD_TX_LOG(WARNING, "requested cksum offload not supported %#llx",
txm->ol_flags & PKT_TX_L4_MASK);
abort();
}
deferred++;
} else {
gdesc->txd.hlen = 0;
gdesc->txd.om = VMXNET3_OM_NONE;
gdesc->txd.msscof = 0;
deferred++;
}
/* flip the GEN bit on the SOP */
rte_compiler_barrier();
gdesc->dword[2] ^= VMXNET3_TXD_GEN;
txq_ctrl->txNumDeferred = rte_cpu_to_le_32(deferred);
nb_tx++;
}
PMD_TX_LOG(DEBUG, "vmxnet3 txThreshold: %u", rte_le_to_cpu_32(txq_ctrl->txThreshold));
if (deferred >= rte_le_to_cpu_32(txq_ctrl->txThreshold)) {
txq_ctrl->txNumDeferred = 0;
/* Notify vSwitch that packets are available. */
VMXNET3_WRITE_BAR0_REG(hw, (VMXNET3_REG_TXPROD + txq->queue_id * VMXNET3_REG_ALIGN),
txq->cmd_ring.next2fill);
}
return nb_tx;
}
static inline void
vmxnet3_renew_desc(vmxnet3_rx_queue_t *rxq, uint8_t ring_id,
struct rte_mbuf *mbuf)
{
uint32_t val;
struct vmxnet3_cmd_ring *ring = &rxq->cmd_ring[ring_id];
struct Vmxnet3_RxDesc *rxd =
(struct Vmxnet3_RxDesc *)(ring->base + ring->next2fill);
vmxnet3_buf_info_t *buf_info = &ring->buf_info[ring->next2fill];
if (ring_id == 0) {
/* Usually: One HEAD type buf per packet
* val = (ring->next2fill % rxq->hw->bufs_per_pkt) ?
* VMXNET3_RXD_BTYPE_BODY : VMXNET3_RXD_BTYPE_HEAD;
*/
/* We use single packet buffer so all heads here */
val = VMXNET3_RXD_BTYPE_HEAD;
} else {
/* All BODY type buffers for 2nd ring */
val = VMXNET3_RXD_BTYPE_BODY;
}
/*
* Load mbuf pointer into buf_info[ring_size]
* buf_info structure is equivalent to cookie for virtio-virtqueue
*/
buf_info->m = mbuf;
buf_info->len = (uint16_t)(mbuf->buf_len - RTE_PKTMBUF_HEADROOM);
buf_info->bufPA = rte_mbuf_data_iova_default(mbuf);
/* Load Rx Descriptor with the buffer's GPA */
rxd->addr = buf_info->bufPA;
/* After this point rxd->addr MUST not be NULL */
rxd->btype = val;
rxd->len = buf_info->len;
/* Flip gen bit at the end to change ownership */
rxd->gen = ring->gen;
vmxnet3_cmd_ring_adv_next2fill(ring);
}
/*
* Allocates mbufs and clusters. Post rx descriptors with buffer details
* so that device can receive packets in those buffers.
* Ring layout:
* Among the two rings, 1st ring contains buffers of type 0 and type 1.
* bufs_per_pkt is set such that for non-LRO cases all the buffers required
* by a frame will fit in 1st ring (1st buf of type0 and rest of type1).
* 2nd ring contains buffers of type 1 alone. Second ring mostly be used
* only for LRO.
*/
static int
vmxnet3_post_rx_bufs(vmxnet3_rx_queue_t *rxq, uint8_t ring_id)
{
int err = 0;
uint32_t i = 0;
struct vmxnet3_cmd_ring *ring = &rxq->cmd_ring[ring_id];
while (vmxnet3_cmd_ring_desc_avail(ring) > 0) {
struct rte_mbuf *mbuf;
/* Allocate blank mbuf for the current Rx Descriptor */
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(mbuf == NULL)) {
PMD_RX_LOG(ERR, "Error allocating mbuf");
rxq->stats.rx_buf_alloc_failure++;
err = ENOMEM;
break;
}
vmxnet3_renew_desc(rxq, ring_id, mbuf);
i++;
}
/* Return error only if no buffers are posted at present */
if (vmxnet3_cmd_ring_desc_avail(ring) >= (ring->size - 1))
return -err;
else
return i;
}
/* MSS not provided by vmxnet3, guess one with available information */
static uint16_t
vmxnet3_guess_mss(struct vmxnet3_hw *hw, const Vmxnet3_RxCompDesc *rcd,
struct rte_mbuf *rxm)
{
uint32_t hlen, slen;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_tcp_hdr *tcp_hdr;
char *ptr;
RTE_ASSERT(rcd->tcp);
ptr = rte_pktmbuf_mtod(rxm, char *);
slen = rte_pktmbuf_data_len(rxm);
hlen = sizeof(struct rte_ether_hdr);
if (rcd->v4) {
if (unlikely(slen < hlen + sizeof(struct rte_ipv4_hdr)))
return hw->mtu - sizeof(struct rte_ipv4_hdr)
- sizeof(struct rte_tcp_hdr);
ipv4_hdr = (struct rte_ipv4_hdr *)(ptr + hlen);
hlen += (ipv4_hdr->version_ihl & RTE_IPV4_HDR_IHL_MASK) *
RTE_IPV4_IHL_MULTIPLIER;
} else if (rcd->v6) {
if (unlikely(slen < hlen + sizeof(struct rte_ipv6_hdr)))
return hw->mtu - sizeof(struct rte_ipv6_hdr) -
sizeof(struct rte_tcp_hdr);
ipv6_hdr = (struct rte_ipv6_hdr *)(ptr + hlen);
hlen += sizeof(struct rte_ipv6_hdr);
if (unlikely(ipv6_hdr->proto != IPPROTO_TCP)) {
int frag;
rte_net_skip_ip6_ext(ipv6_hdr->proto, rxm,
&hlen, &frag);
}
}
if (unlikely(slen < hlen + sizeof(struct rte_tcp_hdr)))
return hw->mtu - hlen - sizeof(struct rte_tcp_hdr) +
sizeof(struct rte_ether_hdr);
tcp_hdr = (struct rte_tcp_hdr *)(ptr + hlen);
hlen += (tcp_hdr->data_off & 0xf0) >> 2;
if (rxm->udata64 > 1)
return (rte_pktmbuf_pkt_len(rxm) - hlen +
rxm->udata64 - 1) / rxm->udata64;
else
return hw->mtu - hlen + sizeof(struct rte_ether_hdr);
}
/* Receive side checksum and other offloads */
static inline void
vmxnet3_rx_offload(struct vmxnet3_hw *hw, const Vmxnet3_RxCompDesc *rcd,
struct rte_mbuf *rxm, const uint8_t sop)
{
uint64_t ol_flags = rxm->ol_flags;
uint32_t packet_type = rxm->packet_type;
/* Offloads set in sop */
if (sop) {
/* Set packet type */
packet_type |= RTE_PTYPE_L2_ETHER;
/* Check large packet receive */
if (VMXNET3_VERSION_GE_2(hw) &&
rcd->type == VMXNET3_CDTYPE_RXCOMP_LRO) {
const Vmxnet3_RxCompDescExt *rcde =
(const Vmxnet3_RxCompDescExt *)rcd;
rxm->tso_segsz = rcde->mss;
rxm->udata64 = rcde->segCnt;
ol_flags |= PKT_RX_LRO;
}
} else { /* Offloads set in eop */
/* Check for RSS */
if (rcd->rssType != VMXNET3_RCD_RSS_TYPE_NONE) {
ol_flags |= PKT_RX_RSS_HASH;
rxm->hash.rss = rcd->rssHash;
}
/* Check for hardware stripped VLAN tag */
if (rcd->ts) {
ol_flags |= (PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
rxm->vlan_tci = rte_le_to_cpu_16((uint16_t)rcd->tci);
}
/* Check packet type, checksum errors, etc. */
if (rcd->cnc) {
ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
} else {
if (rcd->v4) {
packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
if (rcd->ipc)
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
else
ol_flags |= PKT_RX_IP_CKSUM_BAD;
if (rcd->tuc) {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (rcd->tcp)
packet_type |= RTE_PTYPE_L4_TCP;
else
packet_type |= RTE_PTYPE_L4_UDP;
} else {
if (rcd->tcp) {
packet_type |= RTE_PTYPE_L4_TCP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else if (rcd->udp) {
packet_type |= RTE_PTYPE_L4_UDP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
}
} else if (rcd->v6) {
packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
if (rcd->tuc) {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (rcd->tcp)
packet_type |= RTE_PTYPE_L4_TCP;
else
packet_type |= RTE_PTYPE_L4_UDP;
} else {
if (rcd->tcp) {
packet_type |= RTE_PTYPE_L4_TCP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else if (rcd->udp) {
packet_type |= RTE_PTYPE_L4_UDP;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
}
}
} else {
packet_type |= RTE_PTYPE_UNKNOWN;
}
/* Old variants of vmxnet3 do not provide MSS */
if ((ol_flags & PKT_RX_LRO) && rxm->tso_segsz == 0)
rxm->tso_segsz = vmxnet3_guess_mss(hw,
rcd, rxm);
}
}
rxm->ol_flags = ol_flags;
rxm->packet_type = packet_type;
}
/*
* Process the Rx Completion Ring of given vmxnet3_rx_queue
* for nb_pkts burst and return the number of packets received
*/
uint16_t
vmxnet3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
uint16_t nb_rx;
uint32_t nb_rxd, idx;
uint8_t ring_idx;
vmxnet3_rx_queue_t *rxq;
Vmxnet3_RxCompDesc *rcd;
vmxnet3_buf_info_t *rbi;
Vmxnet3_RxDesc *rxd;
struct rte_mbuf *rxm = NULL;
struct vmxnet3_hw *hw;
nb_rx = 0;
ring_idx = 0;
nb_rxd = 0;
idx = 0;
rxq = rx_queue;
hw = rxq->hw;
rcd = &rxq->comp_ring.base[rxq->comp_ring.next2proc].rcd;
if (unlikely(rxq->stopped)) {
PMD_RX_LOG(DEBUG, "Rx queue is stopped.");
return 0;
}
while (rcd->gen == rxq->comp_ring.gen) {
struct rte_mbuf *newm;
if (nb_rx >= nb_pkts)
break;
newm = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(newm == NULL)) {
PMD_RX_LOG(ERR, "Error allocating mbuf");
rxq->stats.rx_buf_alloc_failure++;
break;
}
idx = rcd->rxdIdx;
ring_idx = vmxnet3_get_ring_idx(hw, rcd->rqID);
rxd = (Vmxnet3_RxDesc *)rxq->cmd_ring[ring_idx].base + idx;
RTE_SET_USED(rxd); /* used only for assert when enabled */
rbi = rxq->cmd_ring[ring_idx].buf_info + idx;
PMD_RX_LOG(DEBUG, "rxd idx: %d ring idx: %d.", idx, ring_idx);
RTE_ASSERT(rcd->len <= rxd->len);
RTE_ASSERT(rbi->m);
/* Get the packet buffer pointer from buf_info */
rxm = rbi->m;
/* Clear descriptor associated buf_info to be reused */
rbi->m = NULL;
rbi->bufPA = 0;
/* Update the index that we received a packet */
rxq->cmd_ring[ring_idx].next2comp = idx;
/* For RCD with EOP set, check if there is frame error */
if (unlikely(rcd->eop && rcd->err)) {
rxq->stats.drop_total++;
rxq->stats.drop_err++;
if (!rcd->fcs) {
rxq->stats.drop_fcs++;
PMD_RX_LOG(ERR, "Recv packet dropped due to frame err.");
}
PMD_RX_LOG(ERR, "Error in received packet rcd#:%d rxd:%d",
(int)(rcd - (struct Vmxnet3_RxCompDesc *)
rxq->comp_ring.base), rcd->rxdIdx);
rte_pktmbuf_free_seg(rxm);
if (rxq->start_seg) {
struct rte_mbuf *start = rxq->start_seg;
rxq->start_seg = NULL;
rte_pktmbuf_free(start);
}
goto rcd_done;
}
/* Initialize newly received packet buffer */
rxm->port = rxq->port_id;
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = (uint16_t)rcd->len;
rxm->data_len = (uint16_t)rcd->len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rxm->ol_flags = 0;
rxm->vlan_tci = 0;
rxm->packet_type = 0;
/*
* If this is the first buffer of the received packet,
* set the pointer to the first mbuf of the packet
* Otherwise, update the total length and the number of segments
* of the current scattered packet, and update the pointer to
* the last mbuf of the current packet.
*/
if (rcd->sop) {
RTE_ASSERT(rxd->btype == VMXNET3_RXD_BTYPE_HEAD);
if (unlikely(rcd->len == 0)) {
RTE_ASSERT(rcd->eop);
PMD_RX_LOG(DEBUG,
"Rx buf was skipped. rxring[%d][%d])",
ring_idx, idx);
rte_pktmbuf_free_seg(rxm);
goto rcd_done;
}
if (vmxnet3_rx_data_ring(hw, rcd->rqID)) {
uint8_t *rdd = rxq->data_ring.base +
idx * rxq->data_desc_size;
RTE_ASSERT(VMXNET3_VERSION_GE_3(hw));
rte_memcpy(rte_pktmbuf_mtod(rxm, char *),
rdd, rcd->len);
}
rxq->start_seg = rxm;
rxq->last_seg = rxm;
vmxnet3_rx_offload(hw, rcd, rxm, 1);
} else {
struct rte_mbuf *start = rxq->start_seg;
RTE_ASSERT(rxd->btype == VMXNET3_RXD_BTYPE_BODY);
if (rxm->data_len) {
start->pkt_len += rxm->data_len;
start->nb_segs++;
rxq->last_seg->next = rxm;
rxq->last_seg = rxm;
} else {
rte_pktmbuf_free_seg(rxm);
}
}
if (rcd->eop) {
struct rte_mbuf *start = rxq->start_seg;
vmxnet3_rx_offload(hw, rcd, start, 0);
rx_pkts[nb_rx++] = start;
rxq->start_seg = NULL;
}
rcd_done:
rxq->cmd_ring[ring_idx].next2comp = idx;
VMXNET3_INC_RING_IDX_ONLY(rxq->cmd_ring[ring_idx].next2comp,
rxq->cmd_ring[ring_idx].size);
/* It's time to renew descriptors */
vmxnet3_renew_desc(rxq, ring_idx, newm);
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[ring_idx] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[ring_idx].next2fill);
}
/* Advance to the next descriptor in comp_ring */
vmxnet3_comp_ring_adv_next2proc(&rxq->comp_ring);
rcd = &rxq->comp_ring.base[rxq->comp_ring.next2proc].rcd;
nb_rxd++;
if (nb_rxd > rxq->cmd_ring[0].size) {
PMD_RX_LOG(ERR, "Used up quota of receiving packets,"
" relinquish control.");
break;
}
}
if (unlikely(nb_rxd == 0)) {
uint32_t avail;
for (ring_idx = 0; ring_idx < VMXNET3_RX_CMDRING_SIZE; ring_idx++) {
avail = vmxnet3_cmd_ring_desc_avail(&rxq->cmd_ring[ring_idx]);
if (unlikely(avail > 0)) {
/* try to alloc new buf and renew descriptors */
vmxnet3_post_rx_bufs(rxq, ring_idx);
}
}
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
for (ring_idx = 0; ring_idx < VMXNET3_RX_CMDRING_SIZE; ring_idx++) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[ring_idx] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[ring_idx].next2fill);
}
}
}
return nb_rx;
}
int
vmxnet3_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
const struct rte_memzone *mz;
struct vmxnet3_tx_queue *txq;
struct vmxnet3_cmd_ring *ring;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_data_ring *data_ring;
int size;
PMD_INIT_FUNC_TRACE();
txq = rte_zmalloc("ethdev_tx_queue", sizeof(struct vmxnet3_tx_queue),
RTE_CACHE_LINE_SIZE);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "Can not allocate tx queue structure");
return -ENOMEM;
}
txq->queue_id = queue_idx;
txq->port_id = dev->data->port_id;
txq->shared = NULL; /* set in vmxnet3_setup_driver_shared() */
txq->hw = hw;
txq->qid = queue_idx;
txq->stopped = TRUE;
txq->txdata_desc_size = hw->txdata_desc_size;
ring = &txq->cmd_ring;
comp_ring = &txq->comp_ring;
data_ring = &txq->data_ring;
/* Tx vmxnet ring length should be between 512-4096 */
if (nb_desc < VMXNET3_DEF_TX_RING_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Tx Ring Size Min: %u",
VMXNET3_DEF_TX_RING_SIZE);
return -EINVAL;
} else if (nb_desc > VMXNET3_TX_RING_MAX_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Tx Ring Size Max: %u",
VMXNET3_TX_RING_MAX_SIZE);
return -EINVAL;
} else {
ring->size = nb_desc;
ring->size &= ~VMXNET3_RING_SIZE_MASK;
}
comp_ring->size = data_ring->size = ring->size;
/* Tx vmxnet rings structure initialization*/
ring->next2fill = 0;
ring->next2comp = 0;
ring->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_TxDesc) * ring->size;
size += sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size;
size += txq->txdata_desc_size * data_ring->size;
mz = rte_eth_dma_zone_reserve(dev, "txdesc", queue_idx, size,
VMXNET3_RING_BA_ALIGN, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating queue descriptors zone");
return -ENOMEM;
}
txq->mz = mz;
memset(mz->addr, 0, mz->len);
/* cmd_ring initialization */
ring->base = mz->addr;
ring->basePA = mz->iova;
/* comp_ring initialization */
comp_ring->base = ring->base + ring->size;
comp_ring->basePA = ring->basePA +
(sizeof(struct Vmxnet3_TxDesc) * ring->size);
/* data_ring initialization */
data_ring->base = (Vmxnet3_TxDataDesc *)(comp_ring->base + comp_ring->size);
data_ring->basePA = comp_ring->basePA +
(sizeof(struct Vmxnet3_TxCompDesc) * comp_ring->size);
/* cmd_ring0 buf_info allocation */
ring->buf_info = rte_zmalloc("tx_ring_buf_info",
ring->size * sizeof(vmxnet3_buf_info_t), RTE_CACHE_LINE_SIZE);
if (ring->buf_info == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating tx_buf_info structure");
return -ENOMEM;
}
/* Update the data portion with txq */
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
int
vmxnet3_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
__rte_unused const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
const struct rte_memzone *mz;
struct vmxnet3_rx_queue *rxq;
struct vmxnet3_hw *hw = dev->data->dev_private;
struct vmxnet3_cmd_ring *ring0, *ring1, *ring;
struct vmxnet3_comp_ring *comp_ring;
struct vmxnet3_rx_data_ring *data_ring;
int size;
uint8_t i;
char mem_name[32];
PMD_INIT_FUNC_TRACE();
rxq = rte_zmalloc("ethdev_rx_queue", sizeof(struct vmxnet3_rx_queue),
RTE_CACHE_LINE_SIZE);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "Can not allocate rx queue structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->queue_id = queue_idx;
rxq->port_id = dev->data->port_id;
rxq->shared = NULL; /* set in vmxnet3_setup_driver_shared() */
rxq->hw = hw;
rxq->qid1 = queue_idx;
rxq->qid2 = queue_idx + hw->num_rx_queues;
rxq->data_ring_qid = queue_idx + 2 * hw->num_rx_queues;
rxq->data_desc_size = hw->rxdata_desc_size;
rxq->stopped = TRUE;
ring0 = &rxq->cmd_ring[0];
ring1 = &rxq->cmd_ring[1];
comp_ring = &rxq->comp_ring;
data_ring = &rxq->data_ring;
/* Rx vmxnet rings length should be between 256-4096 */
if (nb_desc < VMXNET3_DEF_RX_RING_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Rx Ring Size Min: 256");
return -EINVAL;
} else if (nb_desc > VMXNET3_RX_RING_MAX_SIZE) {
PMD_INIT_LOG(ERR, "VMXNET3 Rx Ring Size Max: 4096");
return -EINVAL;
} else {
ring0->size = nb_desc;
ring0->size &= ~VMXNET3_RING_SIZE_MASK;
ring1->size = ring0->size;
}
comp_ring->size = ring0->size + ring1->size;
data_ring->size = ring0->size;
/* Rx vmxnet rings structure initialization */
ring0->next2fill = 0;
ring1->next2fill = 0;
ring0->next2comp = 0;
ring1->next2comp = 0;
ring0->gen = VMXNET3_INIT_GEN;
ring1->gen = VMXNET3_INIT_GEN;
comp_ring->next2proc = 0;
comp_ring->gen = VMXNET3_INIT_GEN;
size = sizeof(struct Vmxnet3_RxDesc) * (ring0->size + ring1->size);
size += sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
if (VMXNET3_VERSION_GE_3(hw) && rxq->data_desc_size)
size += rxq->data_desc_size * data_ring->size;
mz = rte_eth_dma_zone_reserve(dev, "rxdesc", queue_idx, size,
VMXNET3_RING_BA_ALIGN, socket_id);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating queue descriptors zone");
return -ENOMEM;
}
rxq->mz = mz;
memset(mz->addr, 0, mz->len);
/* cmd_ring0 initialization */
ring0->base = mz->addr;
ring0->basePA = mz->iova;
/* cmd_ring1 initialization */
ring1->base = ring0->base + ring0->size;
ring1->basePA = ring0->basePA + sizeof(struct Vmxnet3_RxDesc) * ring0->size;
/* comp_ring initialization */
comp_ring->base = ring1->base + ring1->size;
comp_ring->basePA = ring1->basePA + sizeof(struct Vmxnet3_RxDesc) *
ring1->size;
/* data_ring initialization */
if (VMXNET3_VERSION_GE_3(hw) && rxq->data_desc_size) {
data_ring->base =
(uint8_t *)(comp_ring->base + comp_ring->size);
data_ring->basePA = comp_ring->basePA +
sizeof(struct Vmxnet3_RxCompDesc) * comp_ring->size;
}
/* cmd_ring0-cmd_ring1 buf_info allocation */
for (i = 0; i < VMXNET3_RX_CMDRING_SIZE; i++) {
ring = &rxq->cmd_ring[i];
ring->rid = i;
snprintf(mem_name, sizeof(mem_name), "rx_ring_%d_buf_info", i);
ring->buf_info = rte_zmalloc(mem_name,
ring->size * sizeof(vmxnet3_buf_info_t),
RTE_CACHE_LINE_SIZE);
if (ring->buf_info == NULL) {
PMD_INIT_LOG(ERR, "ERROR: Creating rx_buf_info structure");
return -ENOMEM;
}
}
/* Update the data portion with rxq */
dev->data->rx_queues[queue_idx] = rxq;
return 0;
}
/*
* Initializes Receive Unit
* Load mbufs in rx queue in advance
*/
int
vmxnet3_dev_rxtx_init(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
int i, ret;
uint8_t j;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < hw->num_rx_queues; i++) {
vmxnet3_rx_queue_t *rxq = dev->data->rx_queues[i];
for (j = 0; j < VMXNET3_RX_CMDRING_SIZE; j++) {
/* Passing 0 as alloc_num will allocate full ring */
ret = vmxnet3_post_rx_bufs(rxq, j);
if (ret <= 0) {
PMD_INIT_LOG(ERR,
"ERROR: Posting Rxq: %d buffers ring: %d",
i, j);
return -ret;
}
/*
* Updating device with the index:next2fill to fill the
* mbufs for coming packets.
*/
if (unlikely(rxq->shared->ctrl.updateRxProd)) {
VMXNET3_WRITE_BAR0_REG(hw, rxprod_reg[j] + (rxq->queue_id * VMXNET3_REG_ALIGN),
rxq->cmd_ring[j].next2fill);
}
}
rxq->stopped = FALSE;
rxq->start_seg = NULL;
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct vmxnet3_tx_queue *txq = dev->data->tx_queues[i];
txq->stopped = FALSE;
}
return 0;
}
static uint8_t rss_intel_key[40] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
/*
* Additional RSS configurations based on vmxnet v4+ APIs
*/
int
vmxnet3_v4_rss_configure(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
Vmxnet3_DriverShared *shared = hw->shared;
Vmxnet3_CmdInfo *cmdInfo = &shared->cu.cmdInfo;
struct rte_eth_rss_conf *port_rss_conf;
uint64_t rss_hf;
uint32_t ret;
PMD_INIT_FUNC_TRACE();
cmdInfo->setRSSFields = 0;
port_rss_conf = &dev->data->dev_conf.rx_adv_conf.rss_conf;
rss_hf = port_rss_conf->rss_hf &
(VMXNET3_V4_RSS_MASK | VMXNET3_RSS_OFFLOAD_ALL);
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
cmdInfo->setRSSFields |= VMXNET3_RSS_FIELDS_TCPIP4;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
cmdInfo->setRSSFields |= VMXNET3_RSS_FIELDS_TCPIP6;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
cmdInfo->setRSSFields |= VMXNET3_RSS_FIELDS_UDPIP4;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
cmdInfo->setRSSFields |= VMXNET3_RSS_FIELDS_UDPIP6;
VMXNET3_WRITE_BAR1_REG(hw, VMXNET3_REG_CMD,
VMXNET3_CMD_SET_RSS_FIELDS);
ret = VMXNET3_READ_BAR1_REG(hw, VMXNET3_REG_CMD);
if (ret != VMXNET3_SUCCESS) {
PMD_DRV_LOG(ERR, "Set RSS fields (v4) failed: %d", ret);
}
return ret;
}
/*
* Configure RSS feature
*/
int
vmxnet3_rss_configure(struct rte_eth_dev *dev)
{
struct vmxnet3_hw *hw = dev->data->dev_private;
struct VMXNET3_RSSConf *dev_rss_conf;
struct rte_eth_rss_conf *port_rss_conf;
uint64_t rss_hf;
uint8_t i, j;
PMD_INIT_FUNC_TRACE();
dev_rss_conf = hw->rss_conf;
port_rss_conf = &dev->data->dev_conf.rx_adv_conf.rss_conf;
/* loading hashFunc */
dev_rss_conf->hashFunc = VMXNET3_RSS_HASH_FUNC_TOEPLITZ;
/* loading hashKeySize */
dev_rss_conf->hashKeySize = VMXNET3_RSS_MAX_KEY_SIZE;
/* loading indTableSize: Must not exceed VMXNET3_RSS_MAX_IND_TABLE_SIZE (128)*/
dev_rss_conf->indTableSize = (uint16_t)(hw->num_rx_queues * 4);
if (port_rss_conf->rss_key == NULL) {
/* Default hash key */
port_rss_conf->rss_key = rss_intel_key;
}
/* loading hashKey */
memcpy(&dev_rss_conf->hashKey[0], port_rss_conf->rss_key,
dev_rss_conf->hashKeySize);
/* loading indTable */
for (i = 0, j = 0; i < dev_rss_conf->indTableSize; i++, j++) {
if (j == dev->data->nb_rx_queues)
j = 0;
dev_rss_conf->indTable[i] = j;
}
/* loading hashType */
dev_rss_conf->hashType = 0;
rss_hf = port_rss_conf->rss_hf & VMXNET3_RSS_OFFLOAD_ALL;
if (rss_hf & ETH_RSS_IPV4)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_TCP_IPV4;
if (rss_hf & ETH_RSS_IPV6)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_IPV6;
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
dev_rss_conf->hashType |= VMXNET3_RSS_HASH_TYPE_TCP_IPV6;
return VMXNET3_SUCCESS;
}