numam-dpdk/drivers/net/i40e/rte_pmd_i40e.c
Wei Zhao 70697032d5 net/i40e: fix queue number error in queue region
when VSI is enabled with smaller number of queues, for example 1 or 6,
it will cause error.

64 is the max number of queues that can be used for RSS, but VSI might
be created with only few queues.

Fixes: 7cbecc2f74 ("net/i40e: support queue region set and flush")

Signed-off-by: Wei Zhao <wei.zhao1@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2017-10-26 02:33:01 +02:00

2988 lines
74 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2017 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_malloc.h>
#include <rte_tailq.h>
#include "base/i40e_prototype.h"
#include "base/i40e_dcb.h"
#include "i40e_ethdev.h"
#include "i40e_pf.h"
#include "i40e_rxtx.h"
#include "rte_pmd_i40e.h"
int
rte_pmd_i40e_ping_vfs(uint16_t port, uint16_t vf)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
i40e_notify_vf_link_status(dev, &pf->vfs[vf]);
return 0;
}
int
rte_pmd_i40e_set_vf_mac_anti_spoof(uint16_t port, uint16_t vf_id, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
struct i40e_vsi_context ctxt;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
/* Check if it has been already on or off */
if (vsi->info.valid_sections &
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SECURITY_VALID)) {
if (on) {
if ((vsi->info.sec_flags &
I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK) ==
I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK)
return 0; /* already on */
} else {
if ((vsi->info.sec_flags &
I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK) == 0)
return 0; /* already off */
}
}
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
if (on)
vsi->info.sec_flags |= I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK;
else
vsi->info.sec_flags &= ~I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK;
memset(&ctxt, 0, sizeof(ctxt));
rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to update VSI params");
}
return ret;
}
static int
i40e_add_rm_all_vlan_filter(struct i40e_vsi *vsi, uint8_t add)
{
uint32_t j, k;
uint16_t vlan_id;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_add_remove_vlan_element_data vlan_data = {0};
int ret;
for (j = 0; j < I40E_VFTA_SIZE; j++) {
if (!vsi->vfta[j])
continue;
for (k = 0; k < I40E_UINT32_BIT_SIZE; k++) {
if (!(vsi->vfta[j] & (1 << k)))
continue;
vlan_id = j * I40E_UINT32_BIT_SIZE + k;
if (!vlan_id)
continue;
vlan_data.vlan_tag = rte_cpu_to_le_16(vlan_id);
if (add)
ret = i40e_aq_add_vlan(hw, vsi->seid,
&vlan_data, 1, NULL);
else
ret = i40e_aq_remove_vlan(hw, vsi->seid,
&vlan_data, 1, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR,
"Failed to add/rm vlan filter");
return ret;
}
}
}
return I40E_SUCCESS;
}
int
rte_pmd_i40e_set_vf_vlan_anti_spoof(uint16_t port, uint16_t vf_id, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
struct i40e_vsi_context ctxt;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
/* Check if it has been already on or off */
if (vsi->vlan_anti_spoof_on == on)
return 0; /* already on or off */
vsi->vlan_anti_spoof_on = on;
if (!vsi->vlan_filter_on) {
ret = i40e_add_rm_all_vlan_filter(vsi, on);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to add/remove VLAN filters.");
return -ENOTSUP;
}
}
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
if (on)
vsi->info.sec_flags |= I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK;
else
vsi->info.sec_flags &= ~I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK;
memset(&ctxt, 0, sizeof(ctxt));
rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to update VSI params");
}
return ret;
}
static int
i40e_vsi_rm_mac_filter(struct i40e_vsi *vsi)
{
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int i, vlan_num;
enum rte_mac_filter_type filter_type;
int ret = I40E_SUCCESS;
void *temp;
/* remove all the MACs */
TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp) {
vlan_num = vsi->vlan_num;
filter_type = f->mac_info.filter_type;
if (filter_type == RTE_MACVLAN_PERFECT_MATCH ||
filter_type == RTE_MACVLAN_HASH_MATCH) {
if (vlan_num == 0) {
PMD_DRV_LOG(ERR, "VLAN number shouldn't be 0");
return I40E_ERR_PARAM;
}
} else if (filter_type == RTE_MAC_PERFECT_MATCH ||
filter_type == RTE_MAC_HASH_MATCH)
vlan_num = 1;
mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0);
if (!mv_f) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
for (i = 0; i < vlan_num; i++) {
mv_f[i].filter_type = filter_type;
rte_memcpy(&mv_f[i].macaddr,
&f->mac_info.mac_addr,
ETH_ADDR_LEN);
}
if (filter_type == RTE_MACVLAN_PERFECT_MATCH ||
filter_type == RTE_MACVLAN_HASH_MATCH) {
ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num,
&f->mac_info.mac_addr);
if (ret != I40E_SUCCESS) {
rte_free(mv_f);
return ret;
}
}
ret = i40e_remove_macvlan_filters(vsi, mv_f, vlan_num);
if (ret != I40E_SUCCESS) {
rte_free(mv_f);
return ret;
}
rte_free(mv_f);
ret = I40E_SUCCESS;
}
return ret;
}
static int
i40e_vsi_restore_mac_filter(struct i40e_vsi *vsi)
{
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int i, vlan_num = 0;
int ret = I40E_SUCCESS;
void *temp;
/* restore all the MACs */
TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp) {
if ((f->mac_info.filter_type == RTE_MACVLAN_PERFECT_MATCH) ||
(f->mac_info.filter_type == RTE_MACVLAN_HASH_MATCH)) {
/**
* If vlan_num is 0, that's the first time to add mac,
* set mask for vlan_id 0.
*/
if (vsi->vlan_num == 0) {
i40e_set_vlan_filter(vsi, 0, 1);
vsi->vlan_num = 1;
}
vlan_num = vsi->vlan_num;
} else if ((f->mac_info.filter_type == RTE_MAC_PERFECT_MATCH) ||
(f->mac_info.filter_type == RTE_MAC_HASH_MATCH))
vlan_num = 1;
mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0);
if (!mv_f) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
for (i = 0; i < vlan_num; i++) {
mv_f[i].filter_type = f->mac_info.filter_type;
rte_memcpy(&mv_f[i].macaddr,
&f->mac_info.mac_addr,
ETH_ADDR_LEN);
}
if (f->mac_info.filter_type == RTE_MACVLAN_PERFECT_MATCH ||
f->mac_info.filter_type == RTE_MACVLAN_HASH_MATCH) {
ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num,
&f->mac_info.mac_addr);
if (ret != I40E_SUCCESS) {
rte_free(mv_f);
return ret;
}
}
ret = i40e_add_macvlan_filters(vsi, mv_f, vlan_num);
if (ret != I40E_SUCCESS) {
rte_free(mv_f);
return ret;
}
rte_free(mv_f);
ret = I40E_SUCCESS;
}
return ret;
}
static int
i40e_vsi_set_tx_loopback(struct i40e_vsi *vsi, uint8_t on)
{
struct i40e_vsi_context ctxt;
struct i40e_hw *hw;
int ret;
if (!vsi)
return -EINVAL;
hw = I40E_VSI_TO_HW(vsi);
/* Use the FW API if FW >= v5.0 */
if (hw->aq.fw_maj_ver < 5) {
PMD_INIT_LOG(ERR, "FW < v5.0, cannot enable loopback");
return -ENOTSUP;
}
/* Check if it has been already on or off */
if (vsi->info.valid_sections &
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID)) {
if (on) {
if ((vsi->info.switch_id &
I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB) ==
I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB)
return 0; /* already on */
} else {
if ((vsi->info.switch_id &
I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB) == 0)
return 0; /* already off */
}
}
/* remove all the MAC and VLAN first */
ret = i40e_vsi_rm_mac_filter(vsi);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to remove MAC filters.");
return ret;
}
if (vsi->vlan_anti_spoof_on || vsi->vlan_filter_on) {
ret = i40e_add_rm_all_vlan_filter(vsi, 0);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to remove VLAN filters.");
return ret;
}
}
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
if (on)
vsi->info.switch_id |= I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB;
else
vsi->info.switch_id &= ~I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB;
memset(&ctxt, 0, sizeof(ctxt));
rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to update VSI params");
return ret;
}
/* add all the MAC and VLAN back */
ret = i40e_vsi_restore_mac_filter(vsi);
if (ret)
return ret;
if (vsi->vlan_anti_spoof_on || vsi->vlan_filter_on) {
ret = i40e_add_rm_all_vlan_filter(vsi, 1);
if (ret)
return ret;
}
return ret;
}
int
rte_pmd_i40e_set_tx_loopback(uint16_t port, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_pf_vf *vf;
struct i40e_vsi *vsi;
uint16_t vf_id;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
/* setup PF TX loopback */
vsi = pf->main_vsi;
ret = i40e_vsi_set_tx_loopback(vsi, on);
if (ret)
return -ENOTSUP;
/* setup TX loopback for all the VFs */
if (!pf->vfs) {
/* if no VF, do nothing. */
return 0;
}
for (vf_id = 0; vf_id < pf->vf_num; vf_id++) {
vf = &pf->vfs[vf_id];
vsi = vf->vsi;
ret = i40e_vsi_set_tx_loopback(vsi, on);
if (ret)
return -ENOTSUP;
}
return ret;
}
int
rte_pmd_i40e_set_vf_unicast_promisc(uint16_t port, uint16_t vf_id, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid,
on, NULL, true);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to set unicast promiscuous mode");
}
return ret;
}
int
rte_pmd_i40e_set_vf_multicast_promisc(uint16_t port, uint16_t vf_id, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid,
on, NULL);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to set multicast promiscuous mode");
}
return ret;
}
int
rte_pmd_i40e_set_vf_mac_addr(uint16_t port, uint16_t vf_id,
struct ether_addr *mac_addr)
{
struct i40e_mac_filter *f;
struct rte_eth_dev *dev;
struct i40e_pf_vf *vf;
struct i40e_vsi *vsi;
struct i40e_pf *pf;
void *temp;
if (i40e_validate_mac_addr((u8 *)mac_addr) != I40E_SUCCESS)
return -EINVAL;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs)
return -EINVAL;
vf = &pf->vfs[vf_id];
vsi = vf->vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
ether_addr_copy(mac_addr, &vf->mac_addr);
/* Remove all existing mac */
TAILQ_FOREACH_SAFE(f, &vsi->mac_list, next, temp)
if (i40e_vsi_delete_mac(vsi, &f->mac_info.mac_addr)
!= I40E_SUCCESS)
PMD_DRV_LOG(WARNING, "Delete MAC failed");
return 0;
}
/* Set vlan strip on/off for specific VF from host */
int
rte_pmd_i40e_set_vf_vlan_stripq(uint16_t port, uint16_t vf_id, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi)
return -EINVAL;
ret = i40e_vsi_config_vlan_stripping(vsi, !!on);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to set VLAN stripping!");
}
return ret;
}
int rte_pmd_i40e_set_vf_vlan_insert(uint16_t port, uint16_t vf_id,
uint16_t vlan_id)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_hw *hw;
struct i40e_vsi *vsi;
struct i40e_vsi_context ctxt;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
if (vlan_id > ETHER_MAX_VLAN_ID) {
PMD_DRV_LOG(ERR, "Invalid VLAN ID.");
return -EINVAL;
}
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw = I40E_PF_TO_HW(pf);
/**
* return -ENODEV if SRIOV not enabled, VF number not configured
* or no queue assigned.
*/
if (!hw->func_caps.sr_iov_1_1 || pf->vf_num == 0 ||
pf->vf_nb_qps == 0)
return -ENODEV;
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.pvid = vlan_id;
if (vlan_id > 0)
vsi->info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_INSERT_PVID;
else
vsi->info.port_vlan_flags &= ~I40E_AQ_VSI_PVLAN_INSERT_PVID;
memset(&ctxt, 0, sizeof(ctxt));
rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to update VSI params");
}
return ret;
}
int rte_pmd_i40e_set_vf_broadcast(uint16_t port, uint16_t vf_id,
uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
struct i40e_mac_filter_info filter;
struct ether_addr broadcast = {
.addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff} };
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
if (on > 1) {
PMD_DRV_LOG(ERR, "on should be 0 or 1.");
return -EINVAL;
}
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw = I40E_PF_TO_HW(pf);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
/**
* return -ENODEV if SRIOV not enabled, VF number not configured
* or no queue assigned.
*/
if (!hw->func_caps.sr_iov_1_1 || pf->vf_num == 0 ||
pf->vf_nb_qps == 0) {
PMD_DRV_LOG(ERR, "SRIOV is not enabled or no queue.");
return -ENODEV;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
if (on) {
rte_memcpy(&filter.mac_addr, &broadcast, ETHER_ADDR_LEN);
filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
ret = i40e_vsi_add_mac(vsi, &filter);
} else {
ret = i40e_vsi_delete_mac(vsi, &broadcast);
}
if (ret != I40E_SUCCESS && ret != I40E_ERR_PARAM) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to set VSI broadcast");
} else {
ret = 0;
}
return ret;
}
int rte_pmd_i40e_set_vf_vlan_tag(uint16_t port, uint16_t vf_id, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_hw *hw;
struct i40e_vsi *vsi;
struct i40e_vsi_context ctxt;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
if (on > 1) {
PMD_DRV_LOG(ERR, "on should be 0 or 1.");
return -EINVAL;
}
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw = I40E_PF_TO_HW(pf);
/**
* return -ENODEV if SRIOV not enabled, VF number not configured
* or no queue assigned.
*/
if (!hw->func_caps.sr_iov_1_1 || pf->vf_num == 0 ||
pf->vf_nb_qps == 0) {
PMD_DRV_LOG(ERR, "SRIOV is not enabled or no queue.");
return -ENODEV;
}
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
if (on) {
vsi->info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_TAGGED;
vsi->info.port_vlan_flags &= ~I40E_AQ_VSI_PVLAN_MODE_UNTAGGED;
} else {
vsi->info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_UNTAGGED;
vsi->info.port_vlan_flags &= ~I40E_AQ_VSI_PVLAN_MODE_TAGGED;
}
memset(&ctxt, 0, sizeof(ctxt));
rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to update VSI params");
}
return ret;
}
static int
i40e_vlan_filter_count(struct i40e_vsi *vsi)
{
uint32_t j, k;
uint16_t vlan_id;
int count = 0;
for (j = 0; j < I40E_VFTA_SIZE; j++) {
if (!vsi->vfta[j])
continue;
for (k = 0; k < I40E_UINT32_BIT_SIZE; k++) {
if (!(vsi->vfta[j] & (1 << k)))
continue;
vlan_id = j * I40E_UINT32_BIT_SIZE + k;
if (!vlan_id)
continue;
count++;
}
}
return count;
}
int rte_pmd_i40e_set_vf_vlan_filter(uint16_t port, uint16_t vlan_id,
uint64_t vf_mask, uint8_t on)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_hw *hw;
struct i40e_vsi *vsi;
uint16_t vf_idx;
int ret = I40E_SUCCESS;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
if (vlan_id > ETHER_MAX_VLAN_ID || !vlan_id) {
PMD_DRV_LOG(ERR, "Invalid VLAN ID.");
return -EINVAL;
}
if (vf_mask == 0) {
PMD_DRV_LOG(ERR, "No VF.");
return -EINVAL;
}
if (on > 1) {
PMD_DRV_LOG(ERR, "on is should be 0 or 1.");
return -EINVAL;
}
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw = I40E_PF_TO_HW(pf);
/**
* return -ENODEV if SRIOV not enabled, VF number not configured
* or no queue assigned.
*/
if (!hw->func_caps.sr_iov_1_1 || pf->vf_num == 0 ||
pf->vf_nb_qps == 0) {
PMD_DRV_LOG(ERR, "SRIOV is not enabled or no queue.");
return -ENODEV;
}
for (vf_idx = 0; vf_idx < pf->vf_num && ret == I40E_SUCCESS; vf_idx++) {
if (vf_mask & ((uint64_t)(1ULL << vf_idx))) {
vsi = pf->vfs[vf_idx].vsi;
if (on) {
if (!vsi->vlan_filter_on) {
vsi->vlan_filter_on = true;
i40e_aq_set_vsi_vlan_promisc(hw,
vsi->seid,
false,
NULL);
if (!vsi->vlan_anti_spoof_on)
i40e_add_rm_all_vlan_filter(
vsi, true);
}
ret = i40e_vsi_add_vlan(vsi, vlan_id);
} else {
ret = i40e_vsi_delete_vlan(vsi, vlan_id);
if (!i40e_vlan_filter_count(vsi)) {
vsi->vlan_filter_on = false;
i40e_aq_set_vsi_vlan_promisc(hw,
vsi->seid,
true,
NULL);
}
}
}
}
if (ret != I40E_SUCCESS) {
ret = -ENOTSUP;
PMD_DRV_LOG(ERR, "Failed to set VF VLAN filter, on = %d", on);
}
return ret;
}
int
rte_pmd_i40e_get_vf_stats(uint16_t port,
uint16_t vf_id,
struct rte_eth_stats *stats)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
i40e_update_vsi_stats(vsi);
stats->ipackets = vsi->eth_stats.rx_unicast +
vsi->eth_stats.rx_multicast +
vsi->eth_stats.rx_broadcast;
stats->opackets = vsi->eth_stats.tx_unicast +
vsi->eth_stats.tx_multicast +
vsi->eth_stats.tx_broadcast;
stats->ibytes = vsi->eth_stats.rx_bytes;
stats->obytes = vsi->eth_stats.tx_bytes;
stats->ierrors = vsi->eth_stats.rx_discards;
stats->oerrors = vsi->eth_stats.tx_errors + vsi->eth_stats.tx_discards;
return 0;
}
int
rte_pmd_i40e_reset_vf_stats(uint16_t port,
uint16_t vf_id)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
vsi->offset_loaded = false;
i40e_update_vsi_stats(vsi);
return 0;
}
int
rte_pmd_i40e_set_vf_max_bw(uint16_t port, uint16_t vf_id, uint32_t bw)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
int ret = 0;
int i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
if (bw > I40E_QOS_BW_MAX) {
PMD_DRV_LOG(ERR, "Bandwidth should not be larger than %dMbps.",
I40E_QOS_BW_MAX);
return -EINVAL;
}
if (bw % I40E_QOS_BW_GRANULARITY) {
PMD_DRV_LOG(ERR, "Bandwidth should be the multiple of %dMbps.",
I40E_QOS_BW_GRANULARITY);
return -EINVAL;
}
bw /= I40E_QOS_BW_GRANULARITY;
hw = I40E_VSI_TO_HW(vsi);
/* No change. */
if (bw == vsi->bw_info.bw_limit) {
PMD_DRV_LOG(INFO,
"No change for VF max bandwidth. Nothing to do.");
return 0;
}
/**
* VF bandwidth limitation and TC bandwidth limitation cannot be
* enabled in parallel, quit if TC bandwidth limitation is enabled.
*
* If bw is 0, means disable bandwidth limitation. Then no need to
* check TC bandwidth limitation.
*/
if (bw) {
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if ((vsi->enabled_tc & BIT_ULL(i)) &&
vsi->bw_info.bw_ets_credits[i])
break;
}
if (i != I40E_MAX_TRAFFIC_CLASS) {
PMD_DRV_LOG(ERR,
"TC max bandwidth has been set on this VF,"
" please disable it first.");
return -EINVAL;
}
}
ret = i40e_aq_config_vsi_bw_limit(hw, vsi->seid, (uint16_t)bw, 0, NULL);
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to set VF %d bandwidth, err(%d).",
vf_id, ret);
return -EINVAL;
}
/* Store the configuration. */
vsi->bw_info.bw_limit = (uint16_t)bw;
vsi->bw_info.bw_max = 0;
return 0;
}
int
rte_pmd_i40e_set_vf_tc_bw_alloc(uint16_t port, uint16_t vf_id,
uint8_t tc_num, uint8_t *bw_weight)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
struct i40e_aqc_configure_vsi_tc_bw_data tc_bw;
int ret = 0;
int i, j;
uint16_t sum;
bool b_change = false;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
if (tc_num > I40E_MAX_TRAFFIC_CLASS) {
PMD_DRV_LOG(ERR, "TCs should be no more than %d.",
I40E_MAX_TRAFFIC_CLASS);
return -EINVAL;
}
sum = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & BIT_ULL(i))
sum++;
}
if (sum != tc_num) {
PMD_DRV_LOG(ERR,
"Weight should be set for all %d enabled TCs.",
sum);
return -EINVAL;
}
sum = 0;
for (i = 0; i < tc_num; i++) {
if (!bw_weight[i]) {
PMD_DRV_LOG(ERR,
"The weight should be 1 at least.");
return -EINVAL;
}
sum += bw_weight[i];
}
if (sum != 100) {
PMD_DRV_LOG(ERR,
"The summary of the TC weight should be 100.");
return -EINVAL;
}
/**
* Create the configuration for all the TCs.
*/
memset(&tc_bw, 0, sizeof(tc_bw));
tc_bw.tc_valid_bits = vsi->enabled_tc;
j = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & BIT_ULL(i)) {
if (bw_weight[j] !=
vsi->bw_info.bw_ets_share_credits[i])
b_change = true;
tc_bw.tc_bw_credits[i] = bw_weight[j];
j++;
}
}
/* No change. */
if (!b_change) {
PMD_DRV_LOG(INFO,
"No change for TC allocated bandwidth."
" Nothing to do.");
return 0;
}
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &tc_bw, NULL);
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to set VF %d TC bandwidth weight, err(%d).",
vf_id, ret);
return -EINVAL;
}
/* Store the configuration. */
j = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & BIT_ULL(i)) {
vsi->bw_info.bw_ets_share_credits[i] = bw_weight[j];
j++;
}
}
return 0;
}
int
rte_pmd_i40e_set_vf_tc_max_bw(uint16_t port, uint16_t vf_id,
uint8_t tc_no, uint32_t bw)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_hw *hw;
struct i40e_aqc_configure_vsi_ets_sla_bw_data tc_bw;
int ret = 0;
int i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid VF ID.");
return -EINVAL;
}
vsi = pf->vfs[vf_id].vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
if (bw > I40E_QOS_BW_MAX) {
PMD_DRV_LOG(ERR, "Bandwidth should not be larger than %dMbps.",
I40E_QOS_BW_MAX);
return -EINVAL;
}
if (bw % I40E_QOS_BW_GRANULARITY) {
PMD_DRV_LOG(ERR, "Bandwidth should be the multiple of %dMbps.",
I40E_QOS_BW_GRANULARITY);
return -EINVAL;
}
bw /= I40E_QOS_BW_GRANULARITY;
if (tc_no >= I40E_MAX_TRAFFIC_CLASS) {
PMD_DRV_LOG(ERR, "TC No. should be less than %d.",
I40E_MAX_TRAFFIC_CLASS);
return -EINVAL;
}
hw = I40E_VSI_TO_HW(vsi);
if (!(vsi->enabled_tc & BIT_ULL(tc_no))) {
PMD_DRV_LOG(ERR, "VF %d TC %d isn't enabled.",
vf_id, tc_no);
return -EINVAL;
}
/* No change. */
if (bw == vsi->bw_info.bw_ets_credits[tc_no]) {
PMD_DRV_LOG(INFO,
"No change for TC max bandwidth. Nothing to do.");
return 0;
}
/**
* VF bandwidth limitation and TC bandwidth limitation cannot be
* enabled in parallel, disable VF bandwidth limitation if it's
* enabled.
* If bw is 0, means disable bandwidth limitation. Then no need to
* care about VF bandwidth limitation configuration.
*/
if (bw && vsi->bw_info.bw_limit) {
ret = i40e_aq_config_vsi_bw_limit(hw, vsi->seid, 0, 0, NULL);
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to disable VF(%d)"
" bandwidth limitation, err(%d).",
vf_id, ret);
return -EINVAL;
}
PMD_DRV_LOG(INFO,
"VF max bandwidth is disabled according"
" to TC max bandwidth setting.");
}
/**
* Get all the TCs' info to create a whole picture.
* Because the incremental change isn't permitted.
*/
memset(&tc_bw, 0, sizeof(tc_bw));
tc_bw.tc_valid_bits = vsi->enabled_tc;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & BIT_ULL(i)) {
tc_bw.tc_bw_credits[i] =
rte_cpu_to_le_16(
vsi->bw_info.bw_ets_credits[i]);
}
}
tc_bw.tc_bw_credits[tc_no] = rte_cpu_to_le_16((uint16_t)bw);
ret = i40e_aq_config_vsi_ets_sla_bw_limit(hw, vsi->seid, &tc_bw, NULL);
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to set VF %d TC %d max bandwidth, err(%d).",
vf_id, tc_no, ret);
return -EINVAL;
}
/* Store the configuration. */
vsi->bw_info.bw_ets_credits[tc_no] = (uint16_t)bw;
return 0;
}
int
rte_pmd_i40e_set_tc_strict_prio(uint16_t port, uint8_t tc_map)
{
struct rte_eth_dev *dev;
struct i40e_pf *pf;
struct i40e_vsi *vsi;
struct i40e_veb *veb;
struct i40e_hw *hw;
struct i40e_aqc_configure_switching_comp_ets_data ets_data;
int i;
int ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
vsi = pf->main_vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
veb = vsi->veb;
if (!veb) {
PMD_DRV_LOG(ERR, "Invalid VEB.");
return -EINVAL;
}
if ((tc_map & veb->enabled_tc) != tc_map) {
PMD_DRV_LOG(ERR,
"TC bitmap isn't the subset of enabled TCs 0x%x.",
veb->enabled_tc);
return -EINVAL;
}
if (tc_map == veb->strict_prio_tc) {
PMD_DRV_LOG(INFO, "No change for TC bitmap. Nothing to do.");
return 0;
}
hw = I40E_VSI_TO_HW(vsi);
/* Disable DCBx if it's the first time to set strict priority. */
if (!veb->strict_prio_tc) {
ret = i40e_aq_stop_lldp(hw, true, NULL);
if (ret)
PMD_DRV_LOG(INFO,
"Failed to disable DCBx as it's already"
" disabled.");
else
PMD_DRV_LOG(INFO,
"DCBx is disabled according to strict"
" priority setting.");
}
memset(&ets_data, 0, sizeof(ets_data));
ets_data.tc_valid_bits = veb->enabled_tc;
ets_data.seepage = I40E_AQ_ETS_SEEPAGE_EN_MASK;
ets_data.tc_strict_priority_flags = tc_map;
/* Get all TCs' bandwidth. */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (veb->enabled_tc & BIT_ULL(i)) {
/* For rubust, if bandwidth is 0, use 1 instead. */
if (veb->bw_info.bw_ets_share_credits[i])
ets_data.tc_bw_share_credits[i] =
veb->bw_info.bw_ets_share_credits[i];
else
ets_data.tc_bw_share_credits[i] =
I40E_QOS_BW_WEIGHT_MIN;
}
}
if (!veb->strict_prio_tc)
ret = i40e_aq_config_switch_comp_ets(
hw, veb->uplink_seid,
&ets_data, i40e_aqc_opc_enable_switching_comp_ets,
NULL);
else if (tc_map)
ret = i40e_aq_config_switch_comp_ets(
hw, veb->uplink_seid,
&ets_data, i40e_aqc_opc_modify_switching_comp_ets,
NULL);
else
ret = i40e_aq_config_switch_comp_ets(
hw, veb->uplink_seid,
&ets_data, i40e_aqc_opc_disable_switching_comp_ets,
NULL);
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to set TCs' strict priority mode."
" err (%d)", ret);
return -EINVAL;
}
veb->strict_prio_tc = tc_map;
/* Enable DCBx again, if all the TCs' strict priority disabled. */
if (!tc_map) {
ret = i40e_aq_start_lldp(hw, NULL);
if (ret) {
PMD_DRV_LOG(ERR,
"Failed to enable DCBx, err(%d).", ret);
return -EINVAL;
}
PMD_DRV_LOG(INFO,
"DCBx is enabled again according to strict"
" priority setting.");
}
return ret;
}
#define I40E_PROFILE_INFO_SIZE sizeof(struct rte_pmd_i40e_profile_info)
#define I40E_MAX_PROFILE_NUM 16
static void
i40e_generate_profile_info_sec(char *name, struct i40e_ddp_version *version,
uint32_t track_id, uint8_t *profile_info_sec,
bool add)
{
struct i40e_profile_section_header *sec = NULL;
struct i40e_profile_info *pinfo;
sec = (struct i40e_profile_section_header *)profile_info_sec;
sec->tbl_size = 1;
sec->data_end = sizeof(struct i40e_profile_section_header) +
sizeof(struct i40e_profile_info);
sec->section.type = SECTION_TYPE_INFO;
sec->section.offset = sizeof(struct i40e_profile_section_header);
sec->section.size = sizeof(struct i40e_profile_info);
pinfo = (struct i40e_profile_info *)(profile_info_sec +
sec->section.offset);
pinfo->track_id = track_id;
memcpy(pinfo->name, name, I40E_DDP_NAME_SIZE);
memcpy(&pinfo->version, version, sizeof(struct i40e_ddp_version));
if (add)
pinfo->op = I40E_DDP_ADD_TRACKID;
else
pinfo->op = I40E_DDP_REMOVE_TRACKID;
}
static enum i40e_status_code
i40e_add_rm_profile_info(struct i40e_hw *hw, uint8_t *profile_info_sec)
{
enum i40e_status_code status = I40E_SUCCESS;
struct i40e_profile_section_header *sec;
uint32_t track_id;
uint32_t offset = 0;
uint32_t info = 0;
sec = (struct i40e_profile_section_header *)profile_info_sec;
track_id = ((struct i40e_profile_info *)(profile_info_sec +
sec->section.offset))->track_id;
status = i40e_aq_write_ddp(hw, (void *)sec, sec->data_end,
track_id, &offset, &info, NULL);
if (status)
PMD_DRV_LOG(ERR, "Failed to add/remove profile info: "
"offset %d, info %d",
offset, info);
return status;
}
/* Check if the profile info exists */
static int
i40e_check_profile_info(uint16_t port, uint8_t *profile_info_sec)
{
struct rte_eth_dev *dev = &rte_eth_devices[port];
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint8_t *buff;
struct rte_pmd_i40e_profile_list *p_list;
struct rte_pmd_i40e_profile_info *pinfo, *p;
uint32_t i;
int ret;
buff = rte_zmalloc("pinfo_list",
(I40E_PROFILE_INFO_SIZE * I40E_MAX_PROFILE_NUM + 4),
0);
if (!buff) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return -1;
}
ret = i40e_aq_get_ddp_list(
hw, (void *)buff,
(I40E_PROFILE_INFO_SIZE * I40E_MAX_PROFILE_NUM + 4),
0, NULL);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to get profile info list.");
rte_free(buff);
return -1;
}
p_list = (struct rte_pmd_i40e_profile_list *)buff;
pinfo = (struct rte_pmd_i40e_profile_info *)(profile_info_sec +
sizeof(struct i40e_profile_section_header));
for (i = 0; i < p_list->p_count; i++) {
p = &p_list->p_info[i];
if (pinfo->track_id == p->track_id) {
PMD_DRV_LOG(INFO, "Profile exists.");
rte_free(buff);
return 1;
}
}
rte_free(buff);
return 0;
}
int
rte_pmd_i40e_process_ddp_package(uint16_t port, uint8_t *buff,
uint32_t size,
enum rte_pmd_i40e_package_op op)
{
struct rte_eth_dev *dev;
struct i40e_hw *hw;
struct i40e_package_header *pkg_hdr;
struct i40e_generic_seg_header *profile_seg_hdr;
struct i40e_generic_seg_header *metadata_seg_hdr;
uint32_t track_id;
uint8_t *profile_info_sec;
int is_exist;
enum i40e_status_code status = I40E_SUCCESS;
if (op != RTE_PMD_I40E_PKG_OP_WR_ADD &&
op != RTE_PMD_I40E_PKG_OP_WR_ONLY &&
op != RTE_PMD_I40E_PKG_OP_WR_DEL) {
PMD_DRV_LOG(ERR, "Operation not supported.");
return -ENOTSUP;
}
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (size < (sizeof(struct i40e_package_header) +
sizeof(struct i40e_metadata_segment) +
sizeof(uint32_t) * 2)) {
PMD_DRV_LOG(ERR, "Buff is invalid.");
return -EINVAL;
}
pkg_hdr = (struct i40e_package_header *)buff;
if (!pkg_hdr) {
PMD_DRV_LOG(ERR, "Failed to fill the package structure");
return -EINVAL;
}
if (pkg_hdr->segment_count < 2) {
PMD_DRV_LOG(ERR, "Segment_count should be 2 at least.");
return -EINVAL;
}
i40e_update_customized_info(dev, buff, size);
/* Find metadata segment */
metadata_seg_hdr = i40e_find_segment_in_package(SEGMENT_TYPE_METADATA,
pkg_hdr);
if (!metadata_seg_hdr) {
PMD_DRV_LOG(ERR, "Failed to find metadata segment header");
return -EINVAL;
}
track_id = ((struct i40e_metadata_segment *)metadata_seg_hdr)->track_id;
if (track_id == I40E_DDP_TRACKID_INVALID) {
PMD_DRV_LOG(ERR, "Invalid track_id");
return -EINVAL;
}
/* Find profile segment */
profile_seg_hdr = i40e_find_segment_in_package(SEGMENT_TYPE_I40E,
pkg_hdr);
if (!profile_seg_hdr) {
PMD_DRV_LOG(ERR, "Failed to find profile segment header");
return -EINVAL;
}
profile_info_sec = rte_zmalloc(
"i40e_profile_info",
sizeof(struct i40e_profile_section_header) +
sizeof(struct i40e_profile_info),
0);
if (!profile_info_sec) {
PMD_DRV_LOG(ERR, "Failed to allocate memory");
return -EINVAL;
}
/* Check if the profile already loaded */
i40e_generate_profile_info_sec(
((struct i40e_profile_segment *)profile_seg_hdr)->name,
&((struct i40e_profile_segment *)profile_seg_hdr)->version,
track_id, profile_info_sec,
op == RTE_PMD_I40E_PKG_OP_WR_ADD);
is_exist = i40e_check_profile_info(port, profile_info_sec);
if (is_exist < 0) {
PMD_DRV_LOG(ERR, "Failed to check profile.");
rte_free(profile_info_sec);
return -EINVAL;
}
if (op == RTE_PMD_I40E_PKG_OP_WR_ADD) {
if (is_exist) {
PMD_DRV_LOG(ERR, "Profile already exists.");
rte_free(profile_info_sec);
return -EEXIST;
}
} else if (op == RTE_PMD_I40E_PKG_OP_WR_DEL) {
if (!is_exist) {
PMD_DRV_LOG(ERR, "Profile does not exist.");
rte_free(profile_info_sec);
return -EACCES;
}
}
if (op == RTE_PMD_I40E_PKG_OP_WR_DEL) {
status = i40e_rollback_profile(
hw,
(struct i40e_profile_segment *)profile_seg_hdr,
track_id);
if (status) {
PMD_DRV_LOG(ERR, "Failed to write profile for delete.");
rte_free(profile_info_sec);
return status;
}
} else {
status = i40e_write_profile(
hw,
(struct i40e_profile_segment *)profile_seg_hdr,
track_id);
if (status) {
if (op == RTE_PMD_I40E_PKG_OP_WR_ADD)
PMD_DRV_LOG(ERR, "Failed to write profile for add.");
else
PMD_DRV_LOG(ERR, "Failed to write profile.");
rte_free(profile_info_sec);
return status;
}
}
if (track_id && (op != RTE_PMD_I40E_PKG_OP_WR_ONLY)) {
/* Modify loaded profiles info list */
status = i40e_add_rm_profile_info(hw, profile_info_sec);
if (status) {
if (op == RTE_PMD_I40E_PKG_OP_WR_ADD)
PMD_DRV_LOG(ERR, "Failed to add profile to info list.");
else
PMD_DRV_LOG(ERR, "Failed to delete profile from info list.");
}
}
rte_free(profile_info_sec);
return status;
}
/* Get number of tvl records in the section */
static unsigned int
i40e_get_tlv_section_size(struct i40e_profile_section_header *sec)
{
unsigned int i, nb_rec, nb_tlv = 0;
struct i40e_profile_tlv_section_record *tlv;
if (!sec)
return nb_tlv;
/* get number of records in the section */
nb_rec = sec->section.size /
sizeof(struct i40e_profile_tlv_section_record);
for (i = 0; i < nb_rec; ) {
tlv = (struct i40e_profile_tlv_section_record *)&sec[1 + i];
i += tlv->len;
nb_tlv++;
}
return nb_tlv;
}
int rte_pmd_i40e_get_ddp_info(uint8_t *pkg_buff, uint32_t pkg_size,
uint8_t *info_buff, uint32_t info_size,
enum rte_pmd_i40e_package_info type)
{
uint32_t ret_size;
struct i40e_package_header *pkg_hdr;
struct i40e_generic_seg_header *i40e_seg_hdr;
struct i40e_generic_seg_header *note_seg_hdr;
struct i40e_generic_seg_header *metadata_seg_hdr;
if (!info_buff) {
PMD_DRV_LOG(ERR, "Output info buff is invalid.");
return -EINVAL;
}
if (!pkg_buff || pkg_size < (sizeof(struct i40e_package_header) +
sizeof(struct i40e_metadata_segment) +
sizeof(uint32_t) * 2)) {
PMD_DRV_LOG(ERR, "Package buff is invalid.");
return -EINVAL;
}
pkg_hdr = (struct i40e_package_header *)pkg_buff;
if (pkg_hdr->segment_count < 2) {
PMD_DRV_LOG(ERR, "Segment_count should be 2 at least.");
return -EINVAL;
}
/* Find metadata segment */
metadata_seg_hdr = i40e_find_segment_in_package(SEGMENT_TYPE_METADATA,
pkg_hdr);
/* Find global notes segment */
note_seg_hdr = i40e_find_segment_in_package(SEGMENT_TYPE_NOTES,
pkg_hdr);
/* Find i40e profile segment */
i40e_seg_hdr = i40e_find_segment_in_package(SEGMENT_TYPE_I40E, pkg_hdr);
/* get global header info */
if (type == RTE_PMD_I40E_PKG_INFO_GLOBAL_HEADER) {
struct rte_pmd_i40e_profile_info *info =
(struct rte_pmd_i40e_profile_info *)info_buff;
if (info_size < sizeof(struct rte_pmd_i40e_profile_info)) {
PMD_DRV_LOG(ERR, "Output info buff size is invalid.");
return -EINVAL;
}
if (!metadata_seg_hdr) {
PMD_DRV_LOG(ERR, "Failed to find metadata segment header");
return -EINVAL;
}
memset(info, 0, sizeof(struct rte_pmd_i40e_profile_info));
info->owner = RTE_PMD_I40E_DDP_OWNER_UNKNOWN;
info->track_id =
((struct i40e_metadata_segment *)metadata_seg_hdr)->track_id;
memcpy(info->name,
((struct i40e_metadata_segment *)metadata_seg_hdr)->name,
I40E_DDP_NAME_SIZE);
memcpy(&info->version,
&((struct i40e_metadata_segment *)metadata_seg_hdr)->version,
sizeof(struct i40e_ddp_version));
return I40E_SUCCESS;
}
/* get global note size */
if (type == RTE_PMD_I40E_PKG_INFO_GLOBAL_NOTES_SIZE) {
if (info_size < sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
if (note_seg_hdr == NULL)
ret_size = 0;
else
ret_size = note_seg_hdr->size;
*(uint32_t *)info_buff = ret_size;
return I40E_SUCCESS;
}
/* get global note */
if (type == RTE_PMD_I40E_PKG_INFO_GLOBAL_NOTES) {
if (note_seg_hdr == NULL)
return -ENOTSUP;
if (info_size < note_seg_hdr->size) {
PMD_DRV_LOG(ERR, "Information buffer size is too small");
return -EINVAL;
}
memcpy(info_buff, &note_seg_hdr[1], note_seg_hdr->size);
return I40E_SUCCESS;
}
/* get i40e segment header info */
if (type == RTE_PMD_I40E_PKG_INFO_HEADER) {
struct rte_pmd_i40e_profile_info *info =
(struct rte_pmd_i40e_profile_info *)info_buff;
if (info_size < sizeof(struct rte_pmd_i40e_profile_info)) {
PMD_DRV_LOG(ERR, "Output info buff size is invalid.");
return -EINVAL;
}
if (!metadata_seg_hdr) {
PMD_DRV_LOG(ERR, "Failed to find metadata segment header");
return -EINVAL;
}
if (!i40e_seg_hdr) {
PMD_DRV_LOG(ERR, "Failed to find i40e segment header");
return -EINVAL;
}
memset(info, 0, sizeof(struct rte_pmd_i40e_profile_info));
info->owner = RTE_PMD_I40E_DDP_OWNER_UNKNOWN;
info->track_id =
((struct i40e_metadata_segment *)metadata_seg_hdr)->track_id;
memcpy(info->name,
((struct i40e_profile_segment *)i40e_seg_hdr)->name,
I40E_DDP_NAME_SIZE);
memcpy(&info->version,
&((struct i40e_profile_segment *)i40e_seg_hdr)->version,
sizeof(struct i40e_ddp_version));
return I40E_SUCCESS;
}
/* get number of devices */
if (type == RTE_PMD_I40E_PKG_INFO_DEVID_NUM) {
if (info_size < sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
*(uint32_t *)info_buff =
((struct i40e_profile_segment *)i40e_seg_hdr)->device_table_count;
return I40E_SUCCESS;
}
/* get list of devices */
if (type == RTE_PMD_I40E_PKG_INFO_DEVID_LIST) {
uint32_t dev_num;
dev_num =
((struct i40e_profile_segment *)i40e_seg_hdr)->device_table_count;
if (info_size < sizeof(struct rte_pmd_i40e_ddp_device_id) * dev_num) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
memcpy(info_buff,
((struct i40e_profile_segment *)i40e_seg_hdr)->device_table,
sizeof(struct rte_pmd_i40e_ddp_device_id) * dev_num);
return I40E_SUCCESS;
}
/* get number of protocols */
if (type == RTE_PMD_I40E_PKG_INFO_PROTOCOL_NUM) {
struct i40e_profile_section_header *proto;
if (info_size < sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
proto = i40e_find_section_in_profile(SECTION_TYPE_PROTO,
(struct i40e_profile_segment *)i40e_seg_hdr);
*(uint32_t *)info_buff = i40e_get_tlv_section_size(proto);
return I40E_SUCCESS;
}
/* get list of protocols */
if (type == RTE_PMD_I40E_PKG_INFO_PROTOCOL_LIST) {
uint32_t i, j, nb_tlv, nb_rec, nb_proto_info;
struct rte_pmd_i40e_proto_info *pinfo;
struct i40e_profile_section_header *proto;
struct i40e_profile_tlv_section_record *tlv;
pinfo = (struct rte_pmd_i40e_proto_info *)info_buff;
nb_proto_info = info_size /
sizeof(struct rte_pmd_i40e_proto_info);
for (i = 0; i < nb_proto_info; i++) {
pinfo[i].proto_id = RTE_PMD_I40E_PROTO_UNUSED;
memset(pinfo[i].name, 0, RTE_PMD_I40E_DDP_NAME_SIZE);
}
proto = i40e_find_section_in_profile(SECTION_TYPE_PROTO,
(struct i40e_profile_segment *)i40e_seg_hdr);
nb_tlv = i40e_get_tlv_section_size(proto);
if (nb_tlv == 0)
return I40E_SUCCESS;
if (nb_proto_info < nb_tlv) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
/* get number of records in the section */
nb_rec = proto->section.size /
sizeof(struct i40e_profile_tlv_section_record);
tlv = (struct i40e_profile_tlv_section_record *)&proto[1];
for (i = j = 0; i < nb_rec; j++) {
pinfo[j].proto_id = tlv->data[0];
snprintf(pinfo[j].name, I40E_DDP_NAME_SIZE, "%s",
(const char *)&tlv->data[1]);
i += tlv->len;
tlv = &tlv[tlv->len];
}
return I40E_SUCCESS;
}
/* get number of packet classification types */
if (type == RTE_PMD_I40E_PKG_INFO_PCTYPE_NUM) {
struct i40e_profile_section_header *pctype;
if (info_size < sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
pctype = i40e_find_section_in_profile(SECTION_TYPE_PCTYPE,
(struct i40e_profile_segment *)i40e_seg_hdr);
*(uint32_t *)info_buff = i40e_get_tlv_section_size(pctype);
return I40E_SUCCESS;
}
/* get list of packet classification types */
if (type == RTE_PMD_I40E_PKG_INFO_PCTYPE_LIST) {
uint32_t i, j, nb_tlv, nb_rec, nb_proto_info;
struct rte_pmd_i40e_ptype_info *pinfo;
struct i40e_profile_section_header *pctype;
struct i40e_profile_tlv_section_record *tlv;
pinfo = (struct rte_pmd_i40e_ptype_info *)info_buff;
nb_proto_info = info_size /
sizeof(struct rte_pmd_i40e_ptype_info);
for (i = 0; i < nb_proto_info; i++)
memset(&pinfo[i], RTE_PMD_I40E_PROTO_UNUSED,
sizeof(struct rte_pmd_i40e_ptype_info));
pctype = i40e_find_section_in_profile(SECTION_TYPE_PCTYPE,
(struct i40e_profile_segment *)i40e_seg_hdr);
nb_tlv = i40e_get_tlv_section_size(pctype);
if (nb_tlv == 0)
return I40E_SUCCESS;
if (nb_proto_info < nb_tlv) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
/* get number of records in the section */
nb_rec = pctype->section.size /
sizeof(struct i40e_profile_tlv_section_record);
tlv = (struct i40e_profile_tlv_section_record *)&pctype[1];
for (i = j = 0; i < nb_rec; j++) {
memcpy(&pinfo[j], tlv->data,
sizeof(struct rte_pmd_i40e_ptype_info));
i += tlv->len;
tlv = &tlv[tlv->len];
}
return I40E_SUCCESS;
}
/* get number of packet types */
if (type == RTE_PMD_I40E_PKG_INFO_PTYPE_NUM) {
struct i40e_profile_section_header *ptype;
if (info_size < sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
ptype = i40e_find_section_in_profile(SECTION_TYPE_PTYPE,
(struct i40e_profile_segment *)i40e_seg_hdr);
*(uint32_t *)info_buff = i40e_get_tlv_section_size(ptype);
return I40E_SUCCESS;
}
/* get list of packet types */
if (type == RTE_PMD_I40E_PKG_INFO_PTYPE_LIST) {
uint32_t i, j, nb_tlv, nb_rec, nb_proto_info;
struct rte_pmd_i40e_ptype_info *pinfo;
struct i40e_profile_section_header *ptype;
struct i40e_profile_tlv_section_record *tlv;
pinfo = (struct rte_pmd_i40e_ptype_info *)info_buff;
nb_proto_info = info_size /
sizeof(struct rte_pmd_i40e_ptype_info);
for (i = 0; i < nb_proto_info; i++)
memset(&pinfo[i], RTE_PMD_I40E_PROTO_UNUSED,
sizeof(struct rte_pmd_i40e_ptype_info));
ptype = i40e_find_section_in_profile(SECTION_TYPE_PTYPE,
(struct i40e_profile_segment *)i40e_seg_hdr);
nb_tlv = i40e_get_tlv_section_size(ptype);
if (nb_tlv == 0)
return I40E_SUCCESS;
if (nb_proto_info < nb_tlv) {
PMD_DRV_LOG(ERR, "Invalid information buffer size");
return -EINVAL;
}
/* get number of records in the section */
nb_rec = ptype->section.size /
sizeof(struct i40e_profile_tlv_section_record);
for (i = j = 0; i < nb_rec; j++) {
tlv = (struct i40e_profile_tlv_section_record *)
&ptype[1 + i];
memcpy(&pinfo[j], tlv->data,
sizeof(struct rte_pmd_i40e_ptype_info));
i += tlv->len;
}
return I40E_SUCCESS;
}
PMD_DRV_LOG(ERR, "Info type %u is invalid.", type);
return -EINVAL;
}
int
rte_pmd_i40e_get_ddp_list(uint16_t port, uint8_t *buff, uint32_t size)
{
struct rte_eth_dev *dev;
struct i40e_hw *hw;
enum i40e_status_code status = I40E_SUCCESS;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
if (size < (I40E_PROFILE_INFO_SIZE * I40E_MAX_PROFILE_NUM + 4))
return -EINVAL;
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
status = i40e_aq_get_ddp_list(hw, (void *)buff,
size, 0, NULL);
return status;
}
static int check_invalid_pkt_type(uint32_t pkt_type)
{
uint32_t l2, l3, l4, tnl, il2, il3, il4;
l2 = pkt_type & RTE_PTYPE_L2_MASK;
l3 = pkt_type & RTE_PTYPE_L3_MASK;
l4 = pkt_type & RTE_PTYPE_L4_MASK;
tnl = pkt_type & RTE_PTYPE_TUNNEL_MASK;
il2 = pkt_type & RTE_PTYPE_INNER_L2_MASK;
il3 = pkt_type & RTE_PTYPE_INNER_L3_MASK;
il4 = pkt_type & RTE_PTYPE_INNER_L4_MASK;
if (l2 &&
l2 != RTE_PTYPE_L2_ETHER &&
l2 != RTE_PTYPE_L2_ETHER_TIMESYNC &&
l2 != RTE_PTYPE_L2_ETHER_ARP &&
l2 != RTE_PTYPE_L2_ETHER_LLDP &&
l2 != RTE_PTYPE_L2_ETHER_NSH &&
l2 != RTE_PTYPE_L2_ETHER_VLAN &&
l2 != RTE_PTYPE_L2_ETHER_QINQ)
return -1;
if (l3 &&
l3 != RTE_PTYPE_L3_IPV4 &&
l3 != RTE_PTYPE_L3_IPV4_EXT &&
l3 != RTE_PTYPE_L3_IPV6 &&
l3 != RTE_PTYPE_L3_IPV4_EXT_UNKNOWN &&
l3 != RTE_PTYPE_L3_IPV6_EXT &&
l3 != RTE_PTYPE_L3_IPV6_EXT_UNKNOWN)
return -1;
if (l4 &&
l4 != RTE_PTYPE_L4_TCP &&
l4 != RTE_PTYPE_L4_UDP &&
l4 != RTE_PTYPE_L4_FRAG &&
l4 != RTE_PTYPE_L4_SCTP &&
l4 != RTE_PTYPE_L4_ICMP &&
l4 != RTE_PTYPE_L4_NONFRAG)
return -1;
if (tnl &&
tnl != RTE_PTYPE_TUNNEL_IP &&
tnl != RTE_PTYPE_TUNNEL_GRENAT &&
tnl != RTE_PTYPE_TUNNEL_VXLAN &&
tnl != RTE_PTYPE_TUNNEL_NVGRE &&
tnl != RTE_PTYPE_TUNNEL_GENEVE &&
tnl != RTE_PTYPE_TUNNEL_GRENAT &&
tnl != RTE_PTYPE_TUNNEL_GTPC &&
tnl != RTE_PTYPE_TUNNEL_GTPU)
return -1;
if (il2 &&
il2 != RTE_PTYPE_INNER_L2_ETHER &&
il2 != RTE_PTYPE_INNER_L2_ETHER_VLAN &&
il2 != RTE_PTYPE_INNER_L2_ETHER_QINQ)
return -1;
if (il3 &&
il3 != RTE_PTYPE_INNER_L3_IPV4 &&
il3 != RTE_PTYPE_INNER_L3_IPV4_EXT &&
il3 != RTE_PTYPE_INNER_L3_IPV6 &&
il3 != RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN &&
il3 != RTE_PTYPE_INNER_L3_IPV6_EXT &&
il3 != RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN)
return -1;
if (il4 &&
il4 != RTE_PTYPE_INNER_L4_TCP &&
il4 != RTE_PTYPE_INNER_L4_UDP &&
il4 != RTE_PTYPE_INNER_L4_FRAG &&
il4 != RTE_PTYPE_INNER_L4_SCTP &&
il4 != RTE_PTYPE_INNER_L4_ICMP &&
il4 != RTE_PTYPE_INNER_L4_NONFRAG)
return -1;
return 0;
}
static int check_invalid_ptype_mapping(
struct rte_pmd_i40e_ptype_mapping *mapping_table,
uint16_t count)
{
int i;
for (i = 0; i < count; i++) {
uint16_t ptype = mapping_table[i].hw_ptype;
uint32_t pkt_type = mapping_table[i].sw_ptype;
if (ptype >= I40E_MAX_PKT_TYPE)
return -1;
if (pkt_type == RTE_PTYPE_UNKNOWN)
continue;
if (pkt_type & RTE_PMD_I40E_PTYPE_USER_DEFINE_MASK)
continue;
if (check_invalid_pkt_type(pkt_type))
return -1;
}
return 0;
}
int
rte_pmd_i40e_ptype_mapping_update(
uint16_t port,
struct rte_pmd_i40e_ptype_mapping *mapping_items,
uint16_t count,
uint8_t exclusive)
{
struct rte_eth_dev *dev;
struct i40e_adapter *ad;
int i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
if (count > I40E_MAX_PKT_TYPE)
return -EINVAL;
if (check_invalid_ptype_mapping(mapping_items, count))
return -EINVAL;
ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
if (exclusive) {
for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
ad->ptype_tbl[i] = RTE_PTYPE_UNKNOWN;
}
for (i = 0; i < count; i++)
ad->ptype_tbl[mapping_items[i].hw_ptype]
= mapping_items[i].sw_ptype;
return 0;
}
int rte_pmd_i40e_ptype_mapping_reset(uint16_t port)
{
struct rte_eth_dev *dev;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
i40e_set_default_ptype_table(dev);
return 0;
}
int rte_pmd_i40e_ptype_mapping_get(
uint16_t port,
struct rte_pmd_i40e_ptype_mapping *mapping_items,
uint16_t size,
uint16_t *count,
uint8_t valid_only)
{
struct rte_eth_dev *dev;
struct i40e_adapter *ad;
int n = 0;
uint16_t i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
for (i = 0; i < I40E_MAX_PKT_TYPE; i++) {
if (n >= size)
break;
if (valid_only && ad->ptype_tbl[i] == RTE_PTYPE_UNKNOWN)
continue;
mapping_items[n].hw_ptype = i;
mapping_items[n].sw_ptype = ad->ptype_tbl[i];
n++;
}
*count = n;
return 0;
}
int rte_pmd_i40e_ptype_mapping_replace(uint16_t port,
uint32_t target,
uint8_t mask,
uint32_t pkt_type)
{
struct rte_eth_dev *dev;
struct i40e_adapter *ad;
uint16_t i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
if (!mask && check_invalid_pkt_type(target))
return -EINVAL;
if (check_invalid_pkt_type(pkt_type))
return -EINVAL;
ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
for (i = 0; i < I40E_MAX_PKT_TYPE; i++) {
if (mask) {
if ((target | ad->ptype_tbl[i]) == target &&
(target & ad->ptype_tbl[i]))
ad->ptype_tbl[i] = pkt_type;
} else {
if (ad->ptype_tbl[i] == target)
ad->ptype_tbl[i] = pkt_type;
}
}
return 0;
}
int
rte_pmd_i40e_add_vf_mac_addr(uint16_t port, uint16_t vf_id,
struct ether_addr *mac_addr)
{
struct rte_eth_dev *dev;
struct i40e_pf_vf *vf;
struct i40e_vsi *vsi;
struct i40e_pf *pf;
struct i40e_mac_filter_info mac_filter;
int ret;
if (i40e_validate_mac_addr((u8 *)mac_addr) != I40E_SUCCESS)
return -EINVAL;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (vf_id >= pf->vf_num || !pf->vfs)
return -EINVAL;
vf = &pf->vfs[vf_id];
vsi = vf->vsi;
if (!vsi) {
PMD_DRV_LOG(ERR, "Invalid VSI.");
return -EINVAL;
}
mac_filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
ether_addr_copy(mac_addr, &mac_filter.mac_addr);
ret = i40e_vsi_add_mac(vsi, &mac_filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MAC filter.");
return -1;
}
return 0;
}
int rte_pmd_i40e_flow_type_mapping_reset(uint16_t port)
{
struct rte_eth_dev *dev;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
i40e_set_default_pctype_table(dev);
return 0;
}
int rte_pmd_i40e_flow_type_mapping_get(
uint16_t port,
struct rte_pmd_i40e_flow_type_mapping *mapping_items)
{
struct rte_eth_dev *dev;
struct i40e_adapter *ad;
uint16_t i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
mapping_items[i].flow_type = i;
mapping_items[i].pctype = ad->pctypes_tbl[i];
}
return 0;
}
int
rte_pmd_i40e_flow_type_mapping_update(
uint16_t port,
struct rte_pmd_i40e_flow_type_mapping *mapping_items,
uint16_t count,
uint8_t exclusive)
{
struct rte_eth_dev *dev;
struct i40e_adapter *ad;
int i;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
if (count > I40E_FLOW_TYPE_MAX)
return -EINVAL;
for (i = 0; i < count; i++)
if (mapping_items[i].flow_type >= I40E_FLOW_TYPE_MAX ||
mapping_items[i].flow_type == RTE_ETH_FLOW_UNKNOWN ||
(mapping_items[i].pctype &
(1ULL << I40E_FILTER_PCTYPE_INVALID)))
return -EINVAL;
ad = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
if (exclusive) {
for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
ad->pctypes_tbl[i] = 0ULL;
ad->flow_types_mask = 0ULL;
}
for (i = 0; i < count; i++) {
ad->pctypes_tbl[mapping_items[i].flow_type] =
mapping_items[i].pctype;
if (mapping_items[i].pctype)
ad->flow_types_mask |=
(1ULL << mapping_items[i].flow_type);
else
ad->flow_types_mask &=
~(1ULL << mapping_items[i].flow_type);
}
for (i = 0, ad->pctypes_mask = 0ULL; i < I40E_FLOW_TYPE_MAX; i++)
ad->pctypes_mask |= ad->pctypes_tbl[i];
return 0;
}
int
rte_pmd_i40e_query_vfid_by_mac(uint16_t port, const struct ether_addr *vf_mac)
{
struct rte_eth_dev *dev;
struct ether_addr *mac;
struct i40e_pf *pf;
int vf_id;
struct i40e_pf_vf *vf;
uint16_t vf_num;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
dev = &rte_eth_devices[port];
if (!is_i40e_supported(dev))
return -ENOTSUP;
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
vf_num = pf->vf_num;
for (vf_id = 0; vf_id < vf_num; vf_id++) {
vf = &pf->vfs[vf_id];
mac = &vf->mac_addr;
if (is_same_ether_addr(mac, vf_mac))
return vf_id;
}
return -EINVAL;
}
static int
i40e_vsi_update_queue_region_mapping(struct i40e_hw *hw,
struct i40e_pf *pf)
{
uint16_t i;
struct i40e_vsi *vsi = pf->main_vsi;
uint16_t queue_offset, bsf, tc_index;
struct i40e_vsi_context ctxt;
struct i40e_aqc_vsi_properties_data *vsi_info;
struct i40e_queue_regions *region_info =
&pf->queue_region;
int32_t ret = -EINVAL;
if (!region_info->queue_region_number) {
PMD_INIT_LOG(ERR, "there is no that region id been set before");
return ret;
}
memset(&ctxt, 0, sizeof(struct i40e_vsi_context));
/* Update Queue Pairs Mapping for currently enabled UPs */
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.info = vsi->info;
vsi_info = &ctxt.info;
memset(vsi_info->tc_mapping, 0, sizeof(uint16_t) * 8);
memset(vsi_info->queue_mapping, 0, sizeof(uint16_t) * 16);
/* Configure queue region and queue mapping parameters,
* for enabled queue region, allocate queues to this region.
*/
for (i = 0; i < region_info->queue_region_number; i++) {
tc_index = region_info->region[i].region_id;
bsf = rte_bsf32(region_info->region[i].queue_num);
queue_offset = region_info->region[i].queue_start_index;
vsi_info->tc_mapping[tc_index] = rte_cpu_to_le_16(
(queue_offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT));
}
/* Associate queue number with VSI, Keep vsi->nb_qps unchanged */
vsi_info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
vsi_info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
vsi_info->valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID);
/* Update the VSI after updating the VSI queue-mapping information */
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to configure queue region mapping = %d ",
hw->aq.asq_last_status);
return ret;
}
/* update the local VSI info with updated queue map */
rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping,
sizeof(vsi->info.tc_mapping));
rte_memcpy(&vsi->info.queue_mapping,
&ctxt.info.queue_mapping,
sizeof(vsi->info.queue_mapping));
vsi->info.mapping_flags = ctxt.info.mapping_flags;
vsi->info.valid_sections = 0;
return 0;
}
static int
i40e_queue_region_set_region(struct i40e_pf *pf,
struct rte_pmd_i40e_queue_region_conf *conf_ptr)
{
uint16_t i;
struct i40e_vsi *main_vsi = pf->main_vsi;
struct i40e_queue_regions *info = &pf->queue_region;
int32_t ret = -EINVAL;
if (!((rte_is_power_of_2(conf_ptr->queue_num)) &&
conf_ptr->queue_num <= 64)) {
PMD_DRV_LOG(ERR, "The region sizes should be any of the following values: 1, 2, 4, 8, 16, 32, 64 as long as the "
"total number of queues do not exceed the VSI allocation");
return ret;
}
if (conf_ptr->region_id > I40E_REGION_MAX_INDEX) {
PMD_DRV_LOG(ERR, "the queue region max index is 7");
return ret;
}
if ((conf_ptr->queue_start_index + conf_ptr->queue_num)
> main_vsi->nb_used_qps) {
PMD_DRV_LOG(ERR, "the queue index exceeds the VSI range");
return ret;
}
for (i = 0; i < info->queue_region_number; i++)
if (conf_ptr->region_id == info->region[i].region_id)
break;
if (i == info->queue_region_number &&
i <= I40E_REGION_MAX_INDEX) {
info->region[i].region_id = conf_ptr->region_id;
info->region[i].queue_num = conf_ptr->queue_num;
info->region[i].queue_start_index =
conf_ptr->queue_start_index;
info->queue_region_number++;
} else {
PMD_DRV_LOG(ERR, "queue region number exceeds maxnum 8 or the queue region id has been set before");
return ret;
}
return 0;
}
static int
i40e_queue_region_set_flowtype(struct i40e_pf *pf,
struct rte_pmd_i40e_queue_region_conf *rss_region_conf)
{
int32_t ret = -EINVAL;
struct i40e_queue_regions *info = &pf->queue_region;
uint16_t i, j;
uint16_t region_index, flowtype_index;
/* For the pctype or hardware flowtype of packet,
* the specific index for each type has been defined
* in file i40e_type.h as enum i40e_filter_pctype.
*/
if (rss_region_conf->region_id > I40E_PFQF_HREGION_MAX_INDEX) {
PMD_DRV_LOG(ERR, "the queue region max index is 7");
return ret;
}
if (rss_region_conf->hw_flowtype >= I40E_FILTER_PCTYPE_MAX) {
PMD_DRV_LOG(ERR, "the hw_flowtype or PCTYPE max index is 63");
return ret;
}
for (i = 0; i < info->queue_region_number; i++)
if (rss_region_conf->region_id == info->region[i].region_id)
break;
if (i == info->queue_region_number) {
PMD_DRV_LOG(ERR, "that region id has not been set before");
ret = -EINVAL;
return ret;
}
region_index = i;
for (i = 0; i < info->queue_region_number; i++) {
for (j = 0; j < info->region[i].flowtype_num; j++) {
if (rss_region_conf->hw_flowtype ==
info->region[i].hw_flowtype[j]) {
PMD_DRV_LOG(ERR, "that hw_flowtype has been set before");
return 0;
}
}
}
flowtype_index = info->region[region_index].flowtype_num;
info->region[region_index].hw_flowtype[flowtype_index] =
rss_region_conf->hw_flowtype;
info->region[region_index].flowtype_num++;
return 0;
}
static void
i40e_queue_region_pf_flowtype_conf(struct i40e_hw *hw,
struct i40e_pf *pf)
{
uint8_t hw_flowtype;
uint32_t pfqf_hregion;
uint16_t i, j, index;
struct i40e_queue_regions *info = &pf->queue_region;
/* For the pctype or hardware flowtype of packet,
* the specific index for each type has been defined
* in file i40e_type.h as enum i40e_filter_pctype.
*/
for (i = 0; i < info->queue_region_number; i++) {
for (j = 0; j < info->region[i].flowtype_num; j++) {
hw_flowtype = info->region[i].hw_flowtype[j];
index = hw_flowtype >> 3;
pfqf_hregion =
i40e_read_rx_ctl(hw, I40E_PFQF_HREGION(index));
if ((hw_flowtype & 0x7) == 0) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_0_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_0_SHIFT;
} else if ((hw_flowtype & 0x7) == 1) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_1_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_1_SHIFT;
} else if ((hw_flowtype & 0x7) == 2) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_2_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_2_SHIFT;
} else if ((hw_flowtype & 0x7) == 3) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_3_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_3_SHIFT;
} else if ((hw_flowtype & 0x7) == 4) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_4_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_4_SHIFT;
} else if ((hw_flowtype & 0x7) == 5) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_5_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_5_SHIFT;
} else if ((hw_flowtype & 0x7) == 6) {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_6_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_6_SHIFT;
} else {
pfqf_hregion |= info->region[i].region_id <<
I40E_PFQF_HREGION_REGION_7_SHIFT;
pfqf_hregion |= 1 <<
I40E_PFQF_HREGION_OVERRIDE_ENA_7_SHIFT;
}
i40e_write_rx_ctl(hw, I40E_PFQF_HREGION(index),
pfqf_hregion);
}
}
}
static int
i40e_queue_region_set_user_priority(struct i40e_pf *pf,
struct rte_pmd_i40e_queue_region_conf *rss_region_conf)
{
struct i40e_queue_regions *info = &pf->queue_region;
int32_t ret = -EINVAL;
uint16_t i, j, region_index;
if (rss_region_conf->user_priority >= I40E_MAX_USER_PRIORITY) {
PMD_DRV_LOG(ERR, "the queue region max index is 7");
return ret;
}
if (rss_region_conf->region_id > I40E_REGION_MAX_INDEX) {
PMD_DRV_LOG(ERR, "the region_id max index is 7");
return ret;
}
for (i = 0; i < info->queue_region_number; i++)
if (rss_region_conf->region_id == info->region[i].region_id)
break;
if (i == info->queue_region_number) {
PMD_DRV_LOG(ERR, "that region id has not been set before");
ret = -EINVAL;
return ret;
}
region_index = i;
for (i = 0; i < info->queue_region_number; i++) {
for (j = 0; j < info->region[i].user_priority_num; j++) {
if (info->region[i].user_priority[j] ==
rss_region_conf->user_priority) {
PMD_DRV_LOG(ERR, "that user priority has been set before");
return 0;
}
}
}
j = info->region[region_index].user_priority_num;
info->region[region_index].user_priority[j] =
rss_region_conf->user_priority;
info->region[region_index].user_priority_num++;
return 0;
}
static int
i40e_queue_region_dcb_configure(struct i40e_hw *hw,
struct i40e_pf *pf)
{
struct i40e_dcbx_config dcb_cfg_local;
struct i40e_dcbx_config *dcb_cfg;
struct i40e_queue_regions *info = &pf->queue_region;
struct i40e_dcbx_config *old_cfg = &hw->local_dcbx_config;
int32_t ret = -EINVAL;
uint16_t i, j, prio_index, region_index;
uint8_t tc_map, tc_bw, bw_lf;
if (!info->queue_region_number) {
PMD_DRV_LOG(ERR, "No queue region been set before");
return ret;
}
dcb_cfg = &dcb_cfg_local;
memset(dcb_cfg, 0, sizeof(struct i40e_dcbx_config));
/* assume each tc has the same bw */
tc_bw = I40E_MAX_PERCENT / info->queue_region_number;
for (i = 0; i < info->queue_region_number; i++)
dcb_cfg->etscfg.tcbwtable[i] = tc_bw;
/* to ensure the sum of tcbw is equal to 100 */
bw_lf = I40E_MAX_PERCENT % info->queue_region_number;
for (i = 0; i < bw_lf; i++)
dcb_cfg->etscfg.tcbwtable[i]++;
/* assume each tc has the same Transmission Selection Algorithm */
for (i = 0; i < info->queue_region_number; i++)
dcb_cfg->etscfg.tsatable[i] = I40E_IEEE_TSA_ETS;
for (i = 0; i < info->queue_region_number; i++) {
for (j = 0; j < info->region[i].user_priority_num; j++) {
prio_index = info->region[i].user_priority[j];
region_index = info->region[i].region_id;
dcb_cfg->etscfg.prioritytable[prio_index] =
region_index;
}
}
/* FW needs one App to configure HW */
dcb_cfg->numapps = I40E_DEFAULT_DCB_APP_NUM;
dcb_cfg->app[0].selector = I40E_APP_SEL_ETHTYPE;
dcb_cfg->app[0].priority = I40E_DEFAULT_DCB_APP_PRIO;
dcb_cfg->app[0].protocolid = I40E_APP_PROTOID_FCOE;
tc_map = RTE_LEN2MASK(info->queue_region_number, uint8_t);
dcb_cfg->pfc.willing = 0;
dcb_cfg->pfc.pfccap = I40E_MAX_TRAFFIC_CLASS;
dcb_cfg->pfc.pfcenable = tc_map;
/* Copy the new config to the current config */
*old_cfg = *dcb_cfg;
old_cfg->etsrec = old_cfg->etscfg;
ret = i40e_set_dcb_config(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Set queue region DCB Config failed, err %s aq_err %s",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
return 0;
}
int
i40e_flush_queue_region_all_conf(struct rte_eth_dev *dev,
struct i40e_hw *hw, struct i40e_pf *pf, uint16_t on)
{
int32_t ret = -EINVAL;
struct i40e_queue_regions *info = &pf->queue_region;
struct i40e_vsi *main_vsi = pf->main_vsi;
if (on) {
i40e_queue_region_pf_flowtype_conf(hw, pf);
ret = i40e_vsi_update_queue_region_mapping(hw, pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to flush queue region mapping.");
return ret;
}
ret = i40e_queue_region_dcb_configure(hw, pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to flush dcb.");
return ret;
}
return 0;
}
info->queue_region_number = 1;
info->region[0].queue_num = main_vsi->nb_used_qps;
info->region[0].queue_start_index = 0;
ret = i40e_vsi_update_queue_region_mapping(hw, pf);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(INFO, "Failed to flush queue region mapping.");
ret = i40e_dcb_init_configure(dev, TRUE);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to flush dcb.");
pf->flags &= ~I40E_FLAG_DCB;
}
i40e_init_queue_region_conf(dev);
return 0;
}
static int
i40e_queue_region_pf_check_rss(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint64_t hena;
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1))) << 32;
if (!hena)
return -ENOTSUP;
return 0;
}
static int
i40e_queue_region_get_all_info(struct i40e_pf *pf,
struct i40e_queue_regions *regions_ptr)
{
struct i40e_queue_regions *info = &pf->queue_region;
rte_memcpy(regions_ptr, info,
sizeof(struct i40e_queue_regions));
return 0;
}
int rte_pmd_i40e_rss_queue_region_conf(uint16_t port_id,
enum rte_pmd_i40e_queue_region_op op_type, void *arg)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int32_t ret;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, -ENODEV);
if (!is_i40e_supported(dev))
return -ENOTSUP;
if (!(!i40e_queue_region_pf_check_rss(pf)))
return -ENOTSUP;
/* This queue region feature only support pf by now. It should
* be called after dev_start, and will be clear after dev_stop.
* "RTE_PMD_I40E_RSS_QUEUE_REGION_ALL_FLUSH_ON"
* is just an enable function which server for other configuration,
* it is for all configuration about queue region from up layer,
* at first will only keep in DPDK softwarestored in driver,
* only after "FLUSH_ON", it commit all configuration to HW.
* Because PMD had to set hardware configuration at a time, so
* it will record all up layer command at first.
* "RTE_PMD_I40E_RSS_QUEUE_REGION_ALL_FLUSH_OFF" is
* just clean all configuration about queue region just now,
* and restore all to DPDK i40e driver default
* config when start up.
*/
switch (op_type) {
case RTE_PMD_I40E_RSS_QUEUE_REGION_SET:
ret = i40e_queue_region_set_region(pf,
(struct rte_pmd_i40e_queue_region_conf *)arg);
break;
case RTE_PMD_I40E_RSS_QUEUE_REGION_FLOWTYPE_SET:
ret = i40e_queue_region_set_flowtype(pf,
(struct rte_pmd_i40e_queue_region_conf *)arg);
break;
case RTE_PMD_I40E_RSS_QUEUE_REGION_USER_PRIORITY_SET:
ret = i40e_queue_region_set_user_priority(pf,
(struct rte_pmd_i40e_queue_region_conf *)arg);
break;
case RTE_PMD_I40E_RSS_QUEUE_REGION_ALL_FLUSH_ON:
ret = i40e_flush_queue_region_all_conf(dev, hw, pf, 1);
break;
case RTE_PMD_I40E_RSS_QUEUE_REGION_ALL_FLUSH_OFF:
ret = i40e_flush_queue_region_all_conf(dev, hw, pf, 0);
break;
case RTE_PMD_I40E_RSS_QUEUE_REGION_INFO_GET:
ret = i40e_queue_region_get_all_info(pf,
(struct i40e_queue_regions *)arg);
break;
default:
PMD_DRV_LOG(WARNING, "op type (%d) not supported",
op_type);
ret = -EINVAL;
}
I40E_WRITE_FLUSH(hw);
return ret;
}
int rte_pmd_i40e_flow_add_del_packet_template(
uint16_t port,
const struct rte_pmd_i40e_pkt_template_conf *conf,
uint8_t add)
{
struct rte_eth_dev *dev = &rte_eth_devices[port];
struct i40e_fdir_filter_conf filter_conf;
RTE_ETH_VALID_PORTID_OR_ERR_RET(port, -ENODEV);
if (!is_i40e_supported(dev))
return -ENOTSUP;
memset(&filter_conf, 0, sizeof(filter_conf));
filter_conf.soft_id = conf->soft_id;
filter_conf.input.flow.raw_flow.pctype = conf->input.pctype;
filter_conf.input.flow.raw_flow.packet = conf->input.packet;
filter_conf.input.flow.raw_flow.length = conf->input.length;
filter_conf.input.flow_ext.pkt_template = true;
filter_conf.action.rx_queue = conf->action.rx_queue;
filter_conf.action.behavior =
(enum i40e_fdir_behavior)conf->action.behavior;
filter_conf.action.report_status =
(enum i40e_fdir_status)conf->action.report_status;
filter_conf.action.flex_off = conf->action.flex_off;
return i40e_flow_add_del_fdir_filter(dev, &filter_conf, add);
}