58e90a9113
Fixes: 62250c1d0978 ("vhost: extract split ring handling from Rx and Tx functions") Fixes: a922401f35cc ("vhost: add Rx support for packed ring") Cc: stable@dpdk.org Signed-off-by: Tiwei Bie <tiwei.bie@intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
1659 lines
39 KiB
C
1659 lines
39 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2016 Intel Corporation
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <linux/virtio_net.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_vhost.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_arp.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "iotlb.h"
|
|
#include "vhost.h"
|
|
|
|
#define MAX_PKT_BURST 32
|
|
|
|
#define MAX_BATCH_LEN 256
|
|
|
|
static __rte_always_inline bool
|
|
rxvq_is_mergeable(struct virtio_net *dev)
|
|
{
|
|
return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
|
|
}
|
|
|
|
static bool
|
|
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
|
|
{
|
|
return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
|
|
}
|
|
|
|
static __rte_always_inline void *
|
|
alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint64_t desc_addr, uint64_t desc_len)
|
|
{
|
|
void *idesc;
|
|
uint64_t src, dst;
|
|
uint64_t len, remain = desc_len;
|
|
|
|
idesc = rte_malloc(__func__, desc_len, 0);
|
|
if (unlikely(!idesc))
|
|
return 0;
|
|
|
|
dst = (uint64_t)(uintptr_t)idesc;
|
|
|
|
while (remain) {
|
|
len = remain;
|
|
src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
|
|
VHOST_ACCESS_RO);
|
|
if (unlikely(!src || !len)) {
|
|
rte_free(idesc);
|
|
return 0;
|
|
}
|
|
|
|
rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
|
|
|
|
remain -= len;
|
|
dst += len;
|
|
desc_addr += len;
|
|
}
|
|
|
|
return idesc;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
free_ind_table(void *idesc)
|
|
{
|
|
rte_free(idesc);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
do_flush_shadow_used_ring_split(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
uint16_t to, uint16_t from, uint16_t size)
|
|
{
|
|
rte_memcpy(&vq->used->ring[to],
|
|
&vq->shadow_used_split[from],
|
|
size * sizeof(struct vring_used_elem));
|
|
vhost_log_cache_used_vring(dev, vq,
|
|
offsetof(struct vring_used, ring[to]),
|
|
size * sizeof(struct vring_used_elem));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
|
|
{
|
|
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
|
|
|
|
if (used_idx + vq->shadow_used_idx <= vq->size) {
|
|
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
|
|
vq->shadow_used_idx);
|
|
} else {
|
|
uint16_t size;
|
|
|
|
/* update used ring interval [used_idx, vq->size] */
|
|
size = vq->size - used_idx;
|
|
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
|
|
|
|
/* update the left half used ring interval [0, left_size] */
|
|
do_flush_shadow_used_ring_split(dev, vq, 0, size,
|
|
vq->shadow_used_idx - size);
|
|
}
|
|
vq->last_used_idx += vq->shadow_used_idx;
|
|
|
|
rte_smp_wmb();
|
|
|
|
vhost_log_cache_sync(dev, vq);
|
|
|
|
*(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
|
|
vq->shadow_used_idx = 0;
|
|
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
|
|
sizeof(vq->used->idx));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
update_shadow_used_ring_split(struct vhost_virtqueue *vq,
|
|
uint16_t desc_idx, uint16_t len)
|
|
{
|
|
uint16_t i = vq->shadow_used_idx++;
|
|
|
|
vq->shadow_used_split[i].id = desc_idx;
|
|
vq->shadow_used_split[i].len = len;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
flush_shadow_used_ring_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq)
|
|
{
|
|
int i;
|
|
uint16_t used_idx = vq->last_used_idx;
|
|
|
|
/* Split loop in two to save memory barriers */
|
|
for (i = 0; i < vq->shadow_used_idx; i++) {
|
|
vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
|
|
vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
|
|
|
|
used_idx += vq->shadow_used_packed[i].count;
|
|
if (used_idx >= vq->size)
|
|
used_idx -= vq->size;
|
|
}
|
|
|
|
rte_smp_wmb();
|
|
|
|
for (i = 0; i < vq->shadow_used_idx; i++) {
|
|
uint16_t flags;
|
|
|
|
if (vq->shadow_used_packed[i].len)
|
|
flags = VRING_DESC_F_WRITE;
|
|
else
|
|
flags = 0;
|
|
|
|
if (vq->used_wrap_counter) {
|
|
flags |= VRING_DESC_F_USED;
|
|
flags |= VRING_DESC_F_AVAIL;
|
|
} else {
|
|
flags &= ~VRING_DESC_F_USED;
|
|
flags &= ~VRING_DESC_F_AVAIL;
|
|
}
|
|
|
|
vq->desc_packed[vq->last_used_idx].flags = flags;
|
|
|
|
vhost_log_cache_used_vring(dev, vq,
|
|
vq->last_used_idx *
|
|
sizeof(struct vring_packed_desc),
|
|
sizeof(struct vring_packed_desc));
|
|
|
|
vq->last_used_idx += vq->shadow_used_packed[i].count;
|
|
if (vq->last_used_idx >= vq->size) {
|
|
vq->used_wrap_counter ^= 1;
|
|
vq->last_used_idx -= vq->size;
|
|
}
|
|
}
|
|
|
|
rte_smp_wmb();
|
|
vq->shadow_used_idx = 0;
|
|
vhost_log_cache_sync(dev, vq);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
update_shadow_used_ring_packed(struct vhost_virtqueue *vq,
|
|
uint16_t desc_idx, uint16_t len, uint16_t count)
|
|
{
|
|
uint16_t i = vq->shadow_used_idx++;
|
|
|
|
vq->shadow_used_packed[i].id = desc_idx;
|
|
vq->shadow_used_packed[i].len = len;
|
|
vq->shadow_used_packed[i].count = count;
|
|
}
|
|
|
|
static inline void
|
|
do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
|
|
{
|
|
struct batch_copy_elem *elem = vq->batch_copy_elems;
|
|
uint16_t count = vq->batch_copy_nb_elems;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
|
|
vhost_log_cache_write(dev, vq, elem[i].log_addr, elem[i].len);
|
|
PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
|
|
}
|
|
|
|
vq->batch_copy_nb_elems = 0;
|
|
}
|
|
|
|
static inline void
|
|
do_data_copy_dequeue(struct vhost_virtqueue *vq)
|
|
{
|
|
struct batch_copy_elem *elem = vq->batch_copy_elems;
|
|
uint16_t count = vq->batch_copy_nb_elems;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
|
|
|
|
vq->batch_copy_nb_elems = 0;
|
|
}
|
|
|
|
/* avoid write operation when necessary, to lessen cache issues */
|
|
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
|
|
if ((var) != (val)) \
|
|
(var) = (val); \
|
|
} while (0)
|
|
|
|
static __rte_always_inline void
|
|
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
|
|
{
|
|
uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
|
|
|
|
if (m_buf->ol_flags & PKT_TX_TCP_SEG)
|
|
csum_l4 |= PKT_TX_TCP_CKSUM;
|
|
|
|
if (csum_l4) {
|
|
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
|
|
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
|
|
|
|
switch (csum_l4) {
|
|
case PKT_TX_TCP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct tcp_hdr,
|
|
cksum));
|
|
break;
|
|
case PKT_TX_UDP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct udp_hdr,
|
|
dgram_cksum));
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct sctp_hdr,
|
|
cksum));
|
|
break;
|
|
}
|
|
} else {
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
|
|
}
|
|
|
|
/* IP cksum verification cannot be bypassed, then calculate here */
|
|
if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
|
|
ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
|
|
m_buf->l2_len);
|
|
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
|
|
}
|
|
|
|
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
|
|
if (m_buf->ol_flags & PKT_TX_IPV4)
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
|
|
else
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
|
|
net_hdr->gso_size = m_buf->tso_segsz;
|
|
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
|
|
+ m_buf->l4_len;
|
|
} else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
|
|
net_hdr->gso_size = m_buf->tso_segsz;
|
|
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
|
|
m_buf->l4_len;
|
|
} else {
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct buf_vector *buf_vec, uint16_t *vec_idx,
|
|
uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
|
|
{
|
|
uint16_t vec_id = *vec_idx;
|
|
|
|
while (desc_len) {
|
|
uint64_t desc_addr;
|
|
uint64_t desc_chunck_len = desc_len;
|
|
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX))
|
|
return -1;
|
|
|
|
desc_addr = vhost_iova_to_vva(dev, vq,
|
|
desc_iova,
|
|
&desc_chunck_len,
|
|
perm);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
buf_vec[vec_id].buf_iova = desc_iova;
|
|
buf_vec[vec_id].buf_addr = desc_addr;
|
|
buf_vec[vec_id].buf_len = desc_chunck_len;
|
|
|
|
desc_len -= desc_chunck_len;
|
|
desc_iova += desc_chunck_len;
|
|
vec_id++;
|
|
}
|
|
*vec_idx = vec_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t avail_idx, uint16_t *vec_idx,
|
|
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
|
|
uint16_t *desc_chain_len, uint8_t perm)
|
|
{
|
|
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
|
|
uint16_t vec_id = *vec_idx;
|
|
uint32_t len = 0;
|
|
uint64_t dlen;
|
|
struct vring_desc *descs = vq->desc;
|
|
struct vring_desc *idesc = NULL;
|
|
|
|
*desc_chain_head = idx;
|
|
|
|
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
|
|
dlen = vq->desc[idx].len;
|
|
descs = (struct vring_desc *)(uintptr_t)
|
|
vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
|
|
&dlen,
|
|
VHOST_ACCESS_RO);
|
|
if (unlikely(!descs))
|
|
return -1;
|
|
|
|
if (unlikely(dlen < vq->desc[idx].len)) {
|
|
/*
|
|
* The indirect desc table is not contiguous
|
|
* in process VA space, we have to copy it.
|
|
*/
|
|
idesc = alloc_copy_ind_table(dev, vq,
|
|
vq->desc[idx].addr, vq->desc[idx].len);
|
|
if (unlikely(!idesc))
|
|
return -1;
|
|
|
|
descs = idesc;
|
|
}
|
|
|
|
idx = 0;
|
|
}
|
|
|
|
while (1) {
|
|
if (unlikely(idx >= vq->size)) {
|
|
free_ind_table(idesc);
|
|
return -1;
|
|
}
|
|
|
|
len += descs[idx].len;
|
|
|
|
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
|
|
descs[idx].addr, descs[idx].len,
|
|
perm))) {
|
|
free_ind_table(idesc);
|
|
return -1;
|
|
}
|
|
|
|
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
|
|
break;
|
|
|
|
idx = descs[idx].next;
|
|
}
|
|
|
|
*desc_chain_len = len;
|
|
*vec_idx = vec_id;
|
|
|
|
if (unlikely(!!idesc))
|
|
free_ind_table(idesc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns -1 on fail, 0 on success
|
|
*/
|
|
static inline int
|
|
reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t size, struct buf_vector *buf_vec,
|
|
uint16_t *num_buffers, uint16_t avail_head,
|
|
uint16_t *nr_vec)
|
|
{
|
|
uint16_t cur_idx;
|
|
uint16_t vec_idx = 0;
|
|
uint16_t max_tries, tries = 0;
|
|
|
|
uint16_t head_idx = 0;
|
|
uint16_t len = 0;
|
|
|
|
*num_buffers = 0;
|
|
cur_idx = vq->last_avail_idx;
|
|
|
|
if (rxvq_is_mergeable(dev))
|
|
max_tries = vq->size - 1;
|
|
else
|
|
max_tries = 1;
|
|
|
|
while (size > 0) {
|
|
if (unlikely(cur_idx == avail_head))
|
|
return -1;
|
|
/*
|
|
* if we tried all available ring items, and still
|
|
* can't get enough buf, it means something abnormal
|
|
* happened.
|
|
*/
|
|
if (unlikely(++tries > max_tries))
|
|
return -1;
|
|
|
|
if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
|
|
&vec_idx, buf_vec,
|
|
&head_idx, &len,
|
|
VHOST_ACCESS_RW) < 0))
|
|
return -1;
|
|
len = RTE_MIN(len, size);
|
|
update_shadow_used_ring_split(vq, head_idx, len);
|
|
size -= len;
|
|
|
|
cur_idx++;
|
|
*num_buffers += 1;
|
|
}
|
|
|
|
*nr_vec = vec_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf_packed_indirect(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct vring_packed_desc *desc, uint16_t *vec_idx,
|
|
struct buf_vector *buf_vec, uint16_t *len, uint8_t perm)
|
|
{
|
|
uint16_t i;
|
|
uint32_t nr_descs;
|
|
uint16_t vec_id = *vec_idx;
|
|
uint64_t dlen;
|
|
struct vring_packed_desc *descs, *idescs = NULL;
|
|
|
|
dlen = desc->len;
|
|
descs = (struct vring_packed_desc *)(uintptr_t)
|
|
vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO);
|
|
if (unlikely(!descs))
|
|
return -1;
|
|
|
|
if (unlikely(dlen < desc->len)) {
|
|
/*
|
|
* The indirect desc table is not contiguous
|
|
* in process VA space, we have to copy it.
|
|
*/
|
|
idescs = alloc_copy_ind_table(dev, vq, desc->addr, desc->len);
|
|
if (unlikely(!idescs))
|
|
return -1;
|
|
|
|
descs = idescs;
|
|
}
|
|
|
|
nr_descs = desc->len / sizeof(struct vring_packed_desc);
|
|
if (unlikely(nr_descs >= vq->size)) {
|
|
free_ind_table(idescs);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < nr_descs; i++) {
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
|
|
free_ind_table(idescs);
|
|
return -1;
|
|
}
|
|
|
|
*len += descs[i].len;
|
|
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
|
|
descs[i].addr, descs[i].len,
|
|
perm)))
|
|
return -1;
|
|
}
|
|
*vec_idx = vec_id;
|
|
|
|
if (unlikely(!!idescs))
|
|
free_ind_table(idescs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint16_t avail_idx, uint16_t *desc_count,
|
|
struct buf_vector *buf_vec, uint16_t *vec_idx,
|
|
uint16_t *buf_id, uint16_t *len, uint8_t perm)
|
|
{
|
|
bool wrap_counter = vq->avail_wrap_counter;
|
|
struct vring_packed_desc *descs = vq->desc_packed;
|
|
uint16_t vec_id = *vec_idx;
|
|
|
|
if (avail_idx < vq->last_avail_idx)
|
|
wrap_counter ^= 1;
|
|
|
|
if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter)))
|
|
return -1;
|
|
|
|
*desc_count = 0;
|
|
|
|
while (1) {
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX))
|
|
return -1;
|
|
|
|
*desc_count += 1;
|
|
*buf_id = descs[avail_idx].id;
|
|
|
|
if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) {
|
|
if (unlikely(fill_vec_buf_packed_indirect(dev, vq,
|
|
&descs[avail_idx],
|
|
&vec_id, buf_vec,
|
|
len, perm) < 0))
|
|
return -1;
|
|
} else {
|
|
*len += descs[avail_idx].len;
|
|
|
|
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
|
|
descs[avail_idx].addr,
|
|
descs[avail_idx].len,
|
|
perm)))
|
|
return -1;
|
|
}
|
|
|
|
if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0)
|
|
break;
|
|
|
|
if (++avail_idx >= vq->size) {
|
|
avail_idx -= vq->size;
|
|
wrap_counter ^= 1;
|
|
}
|
|
}
|
|
|
|
*vec_idx = vec_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns -1 on fail, 0 on success
|
|
*/
|
|
static inline int
|
|
reserve_avail_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t size, struct buf_vector *buf_vec,
|
|
uint16_t *nr_vec, uint16_t *num_buffers,
|
|
uint16_t *nr_descs)
|
|
{
|
|
uint16_t avail_idx;
|
|
uint16_t vec_idx = 0;
|
|
uint16_t max_tries, tries = 0;
|
|
|
|
uint16_t buf_id = 0;
|
|
uint16_t len = 0;
|
|
uint16_t desc_count;
|
|
|
|
*num_buffers = 0;
|
|
avail_idx = vq->last_avail_idx;
|
|
|
|
if (rxvq_is_mergeable(dev))
|
|
max_tries = vq->size - 1;
|
|
else
|
|
max_tries = 1;
|
|
|
|
while (size > 0) {
|
|
/*
|
|
* if we tried all available ring items, and still
|
|
* can't get enough buf, it means something abnormal
|
|
* happened.
|
|
*/
|
|
if (unlikely(++tries > max_tries))
|
|
return -1;
|
|
|
|
if (unlikely(fill_vec_buf_packed(dev, vq,
|
|
avail_idx, &desc_count,
|
|
buf_vec, &vec_idx,
|
|
&buf_id, &len,
|
|
VHOST_ACCESS_RO) < 0))
|
|
return -1;
|
|
|
|
len = RTE_MIN(len, size);
|
|
update_shadow_used_ring_packed(vq, buf_id, len, desc_count);
|
|
size -= len;
|
|
|
|
avail_idx += desc_count;
|
|
if (avail_idx >= vq->size)
|
|
avail_idx -= vq->size;
|
|
|
|
*nr_descs += desc_count;
|
|
*num_buffers += 1;
|
|
}
|
|
|
|
*nr_vec = vec_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mbuf *m, struct buf_vector *buf_vec,
|
|
uint16_t nr_vec, uint16_t num_buffers)
|
|
{
|
|
uint32_t vec_idx = 0;
|
|
uint32_t mbuf_offset, mbuf_avail;
|
|
uint32_t buf_offset, buf_avail;
|
|
uint64_t buf_addr, buf_iova, buf_len;
|
|
uint32_t cpy_len;
|
|
uint64_t hdr_addr;
|
|
struct rte_mbuf *hdr_mbuf;
|
|
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
|
|
struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
|
|
int error = 0;
|
|
|
|
if (unlikely(m == NULL)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
if (nr_vec > 1)
|
|
rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
hdr_mbuf = m;
|
|
hdr_addr = buf_addr;
|
|
if (unlikely(buf_len < dev->vhost_hlen))
|
|
hdr = &tmp_hdr;
|
|
else
|
|
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
|
|
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
|
|
dev->vid, num_buffers);
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen)) {
|
|
buf_offset = dev->vhost_hlen - buf_len;
|
|
vec_idx++;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
buf_avail = buf_len - buf_offset;
|
|
} else {
|
|
buf_offset = dev->vhost_hlen;
|
|
buf_avail = buf_len - dev->vhost_hlen;
|
|
}
|
|
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
mbuf_offset = 0;
|
|
while (mbuf_avail != 0 || m->next != NULL) {
|
|
/* done with current buf, get the next one */
|
|
if (buf_avail == 0) {
|
|
vec_idx++;
|
|
if (unlikely(vec_idx >= nr_vec)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
/* Prefetch next buffer address. */
|
|
if (vec_idx + 1 < nr_vec)
|
|
rte_prefetch0((void *)(uintptr_t)
|
|
buf_vec[vec_idx + 1].buf_addr);
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
}
|
|
|
|
/* done with current mbuf, get the next one */
|
|
if (mbuf_avail == 0) {
|
|
m = m->next;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
}
|
|
|
|
if (hdr_addr) {
|
|
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
|
|
if (rxvq_is_mergeable(dev))
|
|
ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
|
|
num_buffers);
|
|
|
|
if (unlikely(hdr == &tmp_hdr)) {
|
|
uint64_t len;
|
|
uint64_t remain = dev->vhost_hlen;
|
|
uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
|
|
uint64_t iova = buf_vec[0].buf_iova;
|
|
uint16_t hdr_vec_idx = 0;
|
|
|
|
while (remain) {
|
|
len = RTE_MIN(remain,
|
|
buf_vec[hdr_vec_idx].buf_len);
|
|
dst = buf_vec[hdr_vec_idx].buf_addr;
|
|
rte_memcpy((void *)(uintptr_t)dst,
|
|
(void *)(uintptr_t)src,
|
|
len);
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)dst,
|
|
(uint32_t)len, 0);
|
|
vhost_log_cache_write(dev, vq,
|
|
iova, len);
|
|
|
|
remain -= len;
|
|
iova += len;
|
|
src += len;
|
|
hdr_vec_idx++;
|
|
}
|
|
} else {
|
|
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
|
|
dev->vhost_hlen, 0);
|
|
vhost_log_cache_write(dev, vq,
|
|
buf_vec[0].buf_iova,
|
|
dev->vhost_hlen);
|
|
}
|
|
|
|
hdr_addr = 0;
|
|
}
|
|
|
|
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
|
|
|
|
if (likely(cpy_len > MAX_BATCH_LEN ||
|
|
vq->batch_copy_nb_elems >= vq->size)) {
|
|
rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
|
|
cpy_len);
|
|
vhost_log_cache_write(dev, vq, buf_iova + buf_offset,
|
|
cpy_len);
|
|
PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
|
|
cpy_len, 0);
|
|
} else {
|
|
batch_copy[vq->batch_copy_nb_elems].dst =
|
|
(void *)((uintptr_t)(buf_addr + buf_offset));
|
|
batch_copy[vq->batch_copy_nb_elems].src =
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
|
|
batch_copy[vq->batch_copy_nb_elems].log_addr =
|
|
buf_iova + buf_offset;
|
|
batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
|
|
vq->batch_copy_nb_elems++;
|
|
}
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
buf_avail -= cpy_len;
|
|
buf_offset += cpy_len;
|
|
}
|
|
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
uint32_t pkt_idx = 0;
|
|
uint16_t num_buffers;
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t avail_head;
|
|
|
|
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
|
|
avail_head = *((volatile uint16_t *)&vq->avail->idx);
|
|
|
|
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
|
|
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
|
|
uint16_t nr_vec = 0;
|
|
|
|
if (unlikely(reserve_avail_buf_split(dev, vq,
|
|
pkt_len, buf_vec, &num_buffers,
|
|
avail_head, &nr_vec) < 0)) {
|
|
VHOST_LOG_DEBUG(VHOST_DATA,
|
|
"(%d) failed to get enough desc from vring\n",
|
|
dev->vid);
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
|
|
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
|
|
dev->vid, vq->last_avail_idx,
|
|
vq->last_avail_idx + num_buffers);
|
|
|
|
if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
|
|
buf_vec, nr_vec,
|
|
num_buffers) < 0) {
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
vq->last_avail_idx += num_buffers;
|
|
}
|
|
|
|
do_data_copy_enqueue(dev, vq);
|
|
|
|
if (likely(vq->shadow_used_idx)) {
|
|
flush_shadow_used_ring_split(dev, vq);
|
|
vhost_vring_call_split(dev, vq);
|
|
}
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_rx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
uint32_t pkt_idx = 0;
|
|
uint16_t num_buffers;
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
|
|
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
|
|
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
|
|
uint16_t nr_vec = 0;
|
|
uint16_t nr_descs = 0;
|
|
|
|
if (unlikely(reserve_avail_buf_packed(dev, vq,
|
|
pkt_len, buf_vec, &nr_vec,
|
|
&num_buffers, &nr_descs) < 0)) {
|
|
VHOST_LOG_DEBUG(VHOST_DATA,
|
|
"(%d) failed to get enough desc from vring\n",
|
|
dev->vid);
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
|
|
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
|
|
dev->vid, vq->last_avail_idx,
|
|
vq->last_avail_idx + num_buffers);
|
|
|
|
if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
|
|
buf_vec, nr_vec,
|
|
num_buffers) < 0) {
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
vq->last_avail_idx += nr_descs;
|
|
if (vq->last_avail_idx >= vq->size) {
|
|
vq->last_avail_idx -= vq->size;
|
|
vq->avail_wrap_counter ^= 1;
|
|
}
|
|
}
|
|
|
|
do_data_copy_enqueue(dev, vq);
|
|
|
|
if (likely(vq->shadow_used_idx)) {
|
|
flush_shadow_used_ring_packed(dev, vq);
|
|
vhost_vring_call_packed(dev, vq);
|
|
}
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
uint32_t nb_tx = 0;
|
|
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
|
|
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
|
|
rte_spinlock_lock(&vq->access_lock);
|
|
|
|
if (unlikely(vq->enabled == 0))
|
|
goto out_access_unlock;
|
|
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_lock(vq);
|
|
|
|
if (unlikely(vq->access_ok == 0))
|
|
if (unlikely(vring_translate(dev, vq) < 0))
|
|
goto out;
|
|
|
|
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
|
|
if (count == 0)
|
|
goto out;
|
|
|
|
if (vq_is_packed(dev))
|
|
nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count);
|
|
else
|
|
nb_tx = virtio_dev_rx_split(dev, vq, pkts, count);
|
|
|
|
out:
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_unlock(vq);
|
|
|
|
out_access_unlock:
|
|
rte_spinlock_unlock(&vq->access_lock);
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev = get_device(vid);
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"(%d) %s: built-in vhost net backend is disabled.\n",
|
|
dev->vid, __func__);
|
|
return 0;
|
|
}
|
|
|
|
return virtio_dev_rx(dev, queue_id, pkts, count);
|
|
}
|
|
|
|
static inline bool
|
|
virtio_net_with_host_offload(struct virtio_net *dev)
|
|
{
|
|
if (dev->features &
|
|
((1ULL << VIRTIO_NET_F_CSUM) |
|
|
(1ULL << VIRTIO_NET_F_HOST_ECN) |
|
|
(1ULL << VIRTIO_NET_F_HOST_TSO4) |
|
|
(1ULL << VIRTIO_NET_F_HOST_TSO6) |
|
|
(1ULL << VIRTIO_NET_F_HOST_UFO)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
|
|
{
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
void *l3_hdr = NULL;
|
|
struct ether_hdr *eth_hdr;
|
|
uint16_t ethertype;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
|
|
m->l2_len = sizeof(struct ether_hdr);
|
|
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
|
|
|
|
if (ethertype == ETHER_TYPE_VLAN) {
|
|
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
|
|
|
|
m->l2_len += sizeof(struct vlan_hdr);
|
|
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
|
|
}
|
|
|
|
l3_hdr = (char *)eth_hdr + m->l2_len;
|
|
|
|
switch (ethertype) {
|
|
case ETHER_TYPE_IPv4:
|
|
ipv4_hdr = l3_hdr;
|
|
*l4_proto = ipv4_hdr->next_proto_id;
|
|
m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
|
|
*l4_hdr = (char *)l3_hdr + m->l3_len;
|
|
m->ol_flags |= PKT_TX_IPV4;
|
|
break;
|
|
case ETHER_TYPE_IPv6:
|
|
ipv6_hdr = l3_hdr;
|
|
*l4_proto = ipv6_hdr->proto;
|
|
m->l3_len = sizeof(struct ipv6_hdr);
|
|
*l4_hdr = (char *)l3_hdr + m->l3_len;
|
|
m->ol_flags |= PKT_TX_IPV6;
|
|
break;
|
|
default:
|
|
m->l3_len = 0;
|
|
*l4_proto = 0;
|
|
*l4_hdr = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
|
|
{
|
|
uint16_t l4_proto = 0;
|
|
void *l4_hdr = NULL;
|
|
struct tcp_hdr *tcp_hdr = NULL;
|
|
|
|
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
|
|
return;
|
|
|
|
parse_ethernet(m, &l4_proto, &l4_hdr);
|
|
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
|
|
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
|
|
switch (hdr->csum_offset) {
|
|
case (offsetof(struct tcp_hdr, cksum)):
|
|
if (l4_proto == IPPROTO_TCP)
|
|
m->ol_flags |= PKT_TX_TCP_CKSUM;
|
|
break;
|
|
case (offsetof(struct udp_hdr, dgram_cksum)):
|
|
if (l4_proto == IPPROTO_UDP)
|
|
m->ol_flags |= PKT_TX_UDP_CKSUM;
|
|
break;
|
|
case (offsetof(struct sctp_hdr, cksum)):
|
|
if (l4_proto == IPPROTO_SCTP)
|
|
m->ol_flags |= PKT_TX_SCTP_CKSUM;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
|
|
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
|
|
case VIRTIO_NET_HDR_GSO_TCPV4:
|
|
case VIRTIO_NET_HDR_GSO_TCPV6:
|
|
tcp_hdr = l4_hdr;
|
|
m->ol_flags |= PKT_TX_TCP_SEG;
|
|
m->tso_segsz = hdr->gso_size;
|
|
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
break;
|
|
case VIRTIO_NET_HDR_GSO_UDP:
|
|
m->ol_flags |= PKT_TX_UDP_SEG;
|
|
m->tso_segsz = hdr->gso_size;
|
|
m->l4_len = sizeof(struct udp_hdr);
|
|
break;
|
|
default:
|
|
RTE_LOG(WARNING, VHOST_DATA,
|
|
"unsupported gso type %u.\n", hdr->gso_type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
put_zmbuf(struct zcopy_mbuf *zmbuf)
|
|
{
|
|
zmbuf->in_use = 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct buf_vector *buf_vec, uint16_t nr_vec,
|
|
struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
|
|
{
|
|
uint32_t buf_avail, buf_offset;
|
|
uint64_t buf_addr, buf_iova, buf_len;
|
|
uint32_t mbuf_avail, mbuf_offset;
|
|
uint32_t cpy_len;
|
|
struct rte_mbuf *cur = m, *prev = m;
|
|
struct virtio_net_hdr tmp_hdr;
|
|
struct virtio_net_hdr *hdr = NULL;
|
|
/* A counter to avoid desc dead loop chain */
|
|
uint16_t vec_idx = 0;
|
|
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
|
|
int error = 0;
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (likely(nr_vec > 1))
|
|
rte_prefetch0((void *)(uintptr_t)buf_vec[1].buf_addr);
|
|
|
|
if (virtio_net_with_host_offload(dev)) {
|
|
if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
|
|
uint64_t len;
|
|
uint64_t remain = sizeof(struct virtio_net_hdr);
|
|
uint64_t src;
|
|
uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
|
|
uint16_t hdr_vec_idx = 0;
|
|
|
|
/*
|
|
* No luck, the virtio-net header doesn't fit
|
|
* in a contiguous virtual area.
|
|
*/
|
|
while (remain) {
|
|
len = RTE_MIN(remain,
|
|
buf_vec[hdr_vec_idx].buf_len);
|
|
src = buf_vec[hdr_vec_idx].buf_addr;
|
|
rte_memcpy((void *)(uintptr_t)dst,
|
|
(void *)(uintptr_t)src, len);
|
|
|
|
remain -= len;
|
|
dst += len;
|
|
hdr_vec_idx++;
|
|
}
|
|
|
|
hdr = &tmp_hdr;
|
|
} else {
|
|
hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
|
|
rte_prefetch0(hdr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A virtio driver normally uses at least 2 desc buffers
|
|
* for Tx: the first for storing the header, and others
|
|
* for storing the data.
|
|
*/
|
|
if (unlikely(buf_len < dev->vhost_hlen)) {
|
|
buf_offset = dev->vhost_hlen - buf_len;
|
|
vec_idx++;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
buf_avail = buf_len - buf_offset;
|
|
} else if (buf_len == dev->vhost_hlen) {
|
|
if (unlikely(++vec_idx >= nr_vec))
|
|
goto out;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
} else {
|
|
buf_offset = dev->vhost_hlen;
|
|
buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
|
|
}
|
|
|
|
rte_prefetch0((void *)(uintptr_t)
|
|
(buf_addr + buf_offset));
|
|
|
|
PRINT_PACKET(dev,
|
|
(uintptr_t)(buf_addr + buf_offset),
|
|
(uint32_t)buf_avail, 0);
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
while (1) {
|
|
uint64_t hpa;
|
|
|
|
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
|
|
|
|
/*
|
|
* A desc buf might across two host physical pages that are
|
|
* not continuous. In such case (gpa_to_hpa returns 0), data
|
|
* will be copied even though zero copy is enabled.
|
|
*/
|
|
if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
|
|
buf_iova + buf_offset, cpy_len)))) {
|
|
cur->data_len = cpy_len;
|
|
cur->data_off = 0;
|
|
cur->buf_addr =
|
|
(void *)(uintptr_t)(buf_addr + buf_offset);
|
|
cur->buf_iova = hpa;
|
|
|
|
/*
|
|
* In zero copy mode, one mbuf can only reference data
|
|
* for one or partial of one desc buff.
|
|
*/
|
|
mbuf_avail = cpy_len;
|
|
} else {
|
|
if (likely(cpy_len > MAX_BATCH_LEN ||
|
|
vq->batch_copy_nb_elems >= vq->size ||
|
|
(hdr && cur == m))) {
|
|
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
|
|
mbuf_offset),
|
|
(void *)((uintptr_t)(buf_addr +
|
|
buf_offset)),
|
|
cpy_len);
|
|
} else {
|
|
batch_copy[vq->batch_copy_nb_elems].dst =
|
|
rte_pktmbuf_mtod_offset(cur, void *,
|
|
mbuf_offset);
|
|
batch_copy[vq->batch_copy_nb_elems].src =
|
|
(void *)((uintptr_t)(buf_addr +
|
|
buf_offset));
|
|
batch_copy[vq->batch_copy_nb_elems].len =
|
|
cpy_len;
|
|
vq->batch_copy_nb_elems++;
|
|
}
|
|
}
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
buf_avail -= cpy_len;
|
|
buf_offset += cpy_len;
|
|
|
|
/* This buf reaches to its end, get the next one */
|
|
if (buf_avail == 0) {
|
|
if (++vec_idx >= nr_vec)
|
|
break;
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
/*
|
|
* Prefecth desc n + 1 buffer while
|
|
* desc n buffer is processed.
|
|
*/
|
|
if (vec_idx + 1 < nr_vec)
|
|
rte_prefetch0((void *)(uintptr_t)
|
|
buf_vec[vec_idx + 1].buf_addr);
|
|
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)buf_addr,
|
|
(uint32_t)buf_avail, 0);
|
|
}
|
|
|
|
/*
|
|
* This mbuf reaches to its end, get a new one
|
|
* to hold more data.
|
|
*/
|
|
if (mbuf_avail == 0) {
|
|
cur = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(cur == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA, "Failed to "
|
|
"allocate memory for mbuf.\n");
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
if (unlikely(dev->dequeue_zero_copy))
|
|
rte_mbuf_refcnt_update(cur, 1);
|
|
|
|
prev->next = cur;
|
|
prev->data_len = mbuf_offset;
|
|
m->nb_segs += 1;
|
|
m->pkt_len += mbuf_offset;
|
|
prev = cur;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
}
|
|
}
|
|
|
|
prev->data_len = mbuf_offset;
|
|
m->pkt_len += mbuf_offset;
|
|
|
|
if (hdr)
|
|
vhost_dequeue_offload(hdr, m);
|
|
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
static __rte_always_inline struct zcopy_mbuf *
|
|
get_zmbuf(struct vhost_virtqueue *vq)
|
|
{
|
|
uint16_t i;
|
|
uint16_t last;
|
|
int tries = 0;
|
|
|
|
/* search [last_zmbuf_idx, zmbuf_size) */
|
|
i = vq->last_zmbuf_idx;
|
|
last = vq->zmbuf_size;
|
|
|
|
again:
|
|
for (; i < last; i++) {
|
|
if (vq->zmbufs[i].in_use == 0) {
|
|
vq->last_zmbuf_idx = i + 1;
|
|
vq->zmbufs[i].in_use = 1;
|
|
return &vq->zmbufs[i];
|
|
}
|
|
}
|
|
|
|
tries++;
|
|
if (tries == 1) {
|
|
/* search [0, last_zmbuf_idx) */
|
|
i = 0;
|
|
last = vq->last_zmbuf_idx;
|
|
goto again;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static __rte_always_inline bool
|
|
mbuf_is_consumed(struct rte_mbuf *m)
|
|
{
|
|
while (m) {
|
|
if (rte_mbuf_refcnt_read(m) > 1)
|
|
return false;
|
|
m = m->next;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
restore_mbuf(struct rte_mbuf *m)
|
|
{
|
|
uint32_t mbuf_size, priv_size;
|
|
|
|
while (m) {
|
|
priv_size = rte_pktmbuf_priv_size(m->pool);
|
|
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
|
|
/* start of buffer is after mbuf structure and priv data */
|
|
|
|
m->buf_addr = (char *)m + mbuf_size;
|
|
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
|
|
m = m->next;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline uint16_t
|
|
virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
uint16_t i;
|
|
uint16_t free_entries;
|
|
|
|
if (unlikely(dev->dequeue_zero_copy)) {
|
|
struct zcopy_mbuf *zmbuf, *next;
|
|
|
|
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
|
|
zmbuf != NULL; zmbuf = next) {
|
|
next = TAILQ_NEXT(zmbuf, next);
|
|
|
|
if (mbuf_is_consumed(zmbuf->mbuf)) {
|
|
update_shadow_used_ring_split(vq,
|
|
zmbuf->desc_idx, 0);
|
|
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
|
|
restore_mbuf(zmbuf->mbuf);
|
|
rte_pktmbuf_free(zmbuf->mbuf);
|
|
put_zmbuf(zmbuf);
|
|
vq->nr_zmbuf -= 1;
|
|
}
|
|
}
|
|
|
|
flush_shadow_used_ring_split(dev, vq);
|
|
vhost_vring_call_split(dev, vq);
|
|
}
|
|
|
|
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
|
|
|
|
free_entries = *((volatile uint16_t *)&vq->avail->idx) -
|
|
vq->last_avail_idx;
|
|
if (free_entries == 0)
|
|
return 0;
|
|
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
|
|
|
|
count = RTE_MIN(count, MAX_PKT_BURST);
|
|
count = RTE_MIN(count, free_entries);
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
|
|
dev->vid, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t head_idx, dummy_len;
|
|
uint16_t nr_vec = 0;
|
|
int err;
|
|
|
|
if (unlikely(fill_vec_buf_split(dev, vq,
|
|
vq->last_avail_idx + i,
|
|
&nr_vec, buf_vec,
|
|
&head_idx, &dummy_len,
|
|
VHOST_ACCESS_RO) < 0))
|
|
break;
|
|
|
|
if (likely(dev->dequeue_zero_copy == 0))
|
|
update_shadow_used_ring_split(vq, head_idx, 0);
|
|
|
|
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
|
|
|
|
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(pkts[i] == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"Failed to allocate memory for mbuf.\n");
|
|
break;
|
|
}
|
|
|
|
err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
|
|
mbuf_pool);
|
|
if (unlikely(err)) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
break;
|
|
}
|
|
|
|
if (unlikely(dev->dequeue_zero_copy)) {
|
|
struct zcopy_mbuf *zmbuf;
|
|
|
|
zmbuf = get_zmbuf(vq);
|
|
if (!zmbuf) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
break;
|
|
}
|
|
zmbuf->mbuf = pkts[i];
|
|
zmbuf->desc_idx = head_idx;
|
|
|
|
/*
|
|
* Pin lock the mbuf; we will check later to see
|
|
* whether the mbuf is freed (when we are the last
|
|
* user) or not. If that's the case, we then could
|
|
* update the used ring safely.
|
|
*/
|
|
rte_mbuf_refcnt_update(pkts[i], 1);
|
|
|
|
vq->nr_zmbuf += 1;
|
|
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
|
|
}
|
|
}
|
|
vq->last_avail_idx += i;
|
|
|
|
if (likely(dev->dequeue_zero_copy == 0)) {
|
|
do_data_copy_dequeue(vq);
|
|
if (unlikely(i < count))
|
|
vq->shadow_used_idx = i;
|
|
flush_shadow_used_ring_split(dev, vq);
|
|
vhost_vring_call_split(dev, vq);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static __rte_always_inline uint16_t
|
|
virtio_dev_tx_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
uint16_t i;
|
|
|
|
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
|
|
|
|
if (unlikely(dev->dequeue_zero_copy)) {
|
|
struct zcopy_mbuf *zmbuf, *next;
|
|
|
|
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
|
|
zmbuf != NULL; zmbuf = next) {
|
|
next = TAILQ_NEXT(zmbuf, next);
|
|
|
|
if (mbuf_is_consumed(zmbuf->mbuf)) {
|
|
update_shadow_used_ring_packed(vq,
|
|
zmbuf->desc_idx,
|
|
0,
|
|
zmbuf->desc_count);
|
|
|
|
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
|
|
restore_mbuf(zmbuf->mbuf);
|
|
rte_pktmbuf_free(zmbuf->mbuf);
|
|
put_zmbuf(zmbuf);
|
|
vq->nr_zmbuf -= 1;
|
|
}
|
|
}
|
|
|
|
flush_shadow_used_ring_packed(dev, vq);
|
|
vhost_vring_call_packed(dev, vq);
|
|
}
|
|
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
|
|
|
|
count = RTE_MIN(count, MAX_PKT_BURST);
|
|
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
|
|
dev->vid, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t buf_id, dummy_len;
|
|
uint16_t desc_count, nr_vec = 0;
|
|
int err;
|
|
|
|
if (unlikely(fill_vec_buf_packed(dev, vq,
|
|
vq->last_avail_idx, &desc_count,
|
|
buf_vec, &nr_vec,
|
|
&buf_id, &dummy_len,
|
|
VHOST_ACCESS_RW) < 0))
|
|
break;
|
|
|
|
if (likely(dev->dequeue_zero_copy == 0))
|
|
update_shadow_used_ring_packed(vq, buf_id, 0,
|
|
desc_count);
|
|
|
|
rte_prefetch0((void *)(uintptr_t)buf_vec[0].buf_addr);
|
|
|
|
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(pkts[i] == NULL)) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"Failed to allocate memory for mbuf.\n");
|
|
break;
|
|
}
|
|
|
|
err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
|
|
mbuf_pool);
|
|
if (unlikely(err)) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
break;
|
|
}
|
|
|
|
if (unlikely(dev->dequeue_zero_copy)) {
|
|
struct zcopy_mbuf *zmbuf;
|
|
|
|
zmbuf = get_zmbuf(vq);
|
|
if (!zmbuf) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
break;
|
|
}
|
|
zmbuf->mbuf = pkts[i];
|
|
zmbuf->desc_idx = buf_id;
|
|
zmbuf->desc_count = desc_count;
|
|
|
|
/*
|
|
* Pin lock the mbuf; we will check later to see
|
|
* whether the mbuf is freed (when we are the last
|
|
* user) or not. If that's the case, we then could
|
|
* update the used ring safely.
|
|
*/
|
|
rte_mbuf_refcnt_update(pkts[i], 1);
|
|
|
|
vq->nr_zmbuf += 1;
|
|
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
|
|
}
|
|
|
|
vq->last_avail_idx += desc_count;
|
|
if (vq->last_avail_idx >= vq->size) {
|
|
vq->last_avail_idx -= vq->size;
|
|
vq->avail_wrap_counter ^= 1;
|
|
}
|
|
}
|
|
|
|
if (likely(dev->dequeue_zero_copy == 0)) {
|
|
do_data_copy_dequeue(vq);
|
|
if (unlikely(i < count))
|
|
vq->shadow_used_idx = i;
|
|
flush_shadow_used_ring_packed(dev, vq);
|
|
vhost_vring_call_packed(dev, vq);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev;
|
|
struct rte_mbuf *rarp_mbuf = NULL;
|
|
struct vhost_virtqueue *vq;
|
|
|
|
dev = get_device(vid);
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"(%d) %s: built-in vhost net backend is disabled.\n",
|
|
dev->vid, __func__);
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
|
|
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
|
|
if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
|
|
return 0;
|
|
|
|
if (unlikely(vq->enabled == 0)) {
|
|
count = 0;
|
|
goto out_access_unlock;
|
|
}
|
|
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_lock(vq);
|
|
|
|
if (unlikely(vq->access_ok == 0))
|
|
if (unlikely(vring_translate(dev, vq) < 0)) {
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Construct a RARP broadcast packet, and inject it to the "pkts"
|
|
* array, to looks like that guest actually send such packet.
|
|
*
|
|
* Check user_send_rarp() for more information.
|
|
*
|
|
* broadcast_rarp shares a cacheline in the virtio_net structure
|
|
* with some fields that are accessed during enqueue and
|
|
* rte_atomic16_cmpset() causes a write if using cmpxchg. This could
|
|
* result in false sharing between enqueue and dequeue.
|
|
*
|
|
* Prevent unnecessary false sharing by reading broadcast_rarp first
|
|
* and only performing cmpset if the read indicates it is likely to
|
|
* be set.
|
|
*/
|
|
if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
|
|
rte_atomic16_cmpset((volatile uint16_t *)
|
|
&dev->broadcast_rarp.cnt, 1, 0))) {
|
|
|
|
rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
|
|
if (rarp_mbuf == NULL) {
|
|
RTE_LOG(ERR, VHOST_DATA,
|
|
"Failed to make RARP packet.\n");
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
count -= 1;
|
|
}
|
|
|
|
if (vq_is_packed(dev))
|
|
count = virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count);
|
|
else
|
|
count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
|
|
|
|
out:
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_unlock(vq);
|
|
|
|
out_access_unlock:
|
|
rte_spinlock_unlock(&vq->access_lock);
|
|
|
|
if (unlikely(rarp_mbuf != NULL)) {
|
|
/*
|
|
* Inject it to the head of "pkts" array, so that switch's mac
|
|
* learning table will get updated first.
|
|
*/
|
|
memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
|
|
pkts[0] = rarp_mbuf;
|
|
count += 1;
|
|
}
|
|
|
|
return count;
|
|
}
|