numam-dpdk/examples/ipsec-secgw/ipsec.h
Dan Gora b1d295e69e examples/ipsec-secgw: use function to access mbuf private
Update get_priv() to use rte_mbuf_to_priv() to access the private
area in the mbuf.

In inbound_sa_check(), use the application's get_priv() function to
access the private area in the mbuf.

Signed-off-by: Dan Gora <dg@adax.com>
2018-07-13 23:13:52 +02:00

243 lines
5.3 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#ifndef __IPSEC_H__
#define __IPSEC_H__
#include <stdint.h>
#include <rte_byteorder.h>
#include <rte_crypto.h>
#include <rte_security.h>
#include <rte_flow.h>
#define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
#define RTE_LOGTYPE_IPSEC_ESP RTE_LOGTYPE_USER2
#define RTE_LOGTYPE_IPSEC_IPIP RTE_LOGTYPE_USER3
#define MAX_PKT_BURST 32
#define MAX_INFLIGHT 128
#define MAX_QP_PER_LCORE 256
#define MAX_DIGEST_SIZE 32 /* Bytes -- 256 bits */
#define IPSEC_OFFLOAD_ESN_SOFTLIMIT 0xffffff00
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op))
#define uint32_t_to_char(ip, a, b, c, d) do {\
*a = (uint8_t)(ip >> 24 & 0xff);\
*b = (uint8_t)(ip >> 16 & 0xff);\
*c = (uint8_t)(ip >> 8 & 0xff);\
*d = (uint8_t)(ip & 0xff);\
} while (0)
#define DEFAULT_MAX_CATEGORIES 1
#define IPSEC_SA_MAX_ENTRIES (128) /* must be power of 2, max 2 power 30 */
#define SPI2IDX(spi) (spi & (IPSEC_SA_MAX_ENTRIES - 1))
#define INVALID_SPI (0)
#define DISCARD (0x80000000)
#define BYPASS (0x40000000)
#define PROTECT_MASK (0x3fffffff)
#define PROTECT(sa_idx) (SPI2IDX(sa_idx) & PROTECT_MASK) /* SA idx 30 bits */
#define IPSEC_XFORM_MAX 2
#define IP6_VERSION (6)
struct rte_crypto_xform;
struct ipsec_xform;
struct rte_mbuf;
struct ipsec_sa;
typedef int32_t (*ipsec_xform_fn)(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop);
struct ip_addr {
union {
uint32_t ip4;
union {
uint64_t ip6[2];
uint8_t ip6_b[16];
} ip6;
} ip;
};
#define MAX_KEY_SIZE 32
struct ipsec_sa {
uint32_t spi;
uint32_t cdev_id_qp;
uint64_t seq;
uint32_t salt;
union {
struct rte_cryptodev_sym_session *crypto_session;
struct rte_security_session *sec_session;
};
enum rte_crypto_cipher_algorithm cipher_algo;
enum rte_crypto_auth_algorithm auth_algo;
enum rte_crypto_aead_algorithm aead_algo;
uint16_t digest_len;
uint16_t iv_len;
uint16_t block_size;
uint16_t flags;
#define IP4_TUNNEL (1 << 0)
#define IP6_TUNNEL (1 << 1)
#define TRANSPORT (1 << 2)
struct ip_addr src;
struct ip_addr dst;
uint8_t cipher_key[MAX_KEY_SIZE];
uint16_t cipher_key_len;
uint8_t auth_key[MAX_KEY_SIZE];
uint16_t auth_key_len;
uint16_t aad_len;
union {
struct rte_crypto_sym_xform *xforms;
struct rte_security_ipsec_xform *sec_xform;
};
enum rte_security_session_action_type type;
enum rte_security_ipsec_sa_direction direction;
uint16_t portid;
struct rte_security_ctx *security_ctx;
uint32_t ol_flags;
#define MAX_RTE_FLOW_PATTERN (4)
#define MAX_RTE_FLOW_ACTIONS (3)
struct rte_flow_item pattern[MAX_RTE_FLOW_PATTERN];
struct rte_flow_action action[MAX_RTE_FLOW_ACTIONS];
struct rte_flow_attr attr;
union {
struct rte_flow_item_ipv4 ipv4_spec;
struct rte_flow_item_ipv6 ipv6_spec;
};
struct rte_flow_item_esp esp_spec;
struct rte_flow *flow;
struct rte_security_session_conf sess_conf;
} __rte_cache_aligned;
struct ipsec_mbuf_metadata {
struct ipsec_sa *sa;
struct rte_crypto_op cop;
struct rte_crypto_sym_op sym_cop;
uint8_t buf[32];
} __rte_cache_aligned;
struct cdev_qp {
uint16_t id;
uint16_t qp;
uint16_t in_flight;
uint16_t len;
struct rte_crypto_op *buf[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
};
struct ipsec_ctx {
struct rte_hash *cdev_map;
struct sp_ctx *sp4_ctx;
struct sp_ctx *sp6_ctx;
struct sa_ctx *sa_ctx;
uint16_t nb_qps;
uint16_t last_qp;
struct cdev_qp tbl[MAX_QP_PER_LCORE];
struct rte_mempool *session_pool;
struct rte_mbuf *ol_pkts[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
uint16_t ol_pkts_cnt;
};
struct cdev_key {
uint16_t lcore_id;
uint8_t cipher_algo;
uint8_t auth_algo;
uint8_t aead_algo;
};
struct socket_ctx {
struct sa_ctx *sa_in;
struct sa_ctx *sa_out;
struct sp_ctx *sp_ip4_in;
struct sp_ctx *sp_ip4_out;
struct sp_ctx *sp_ip6_in;
struct sp_ctx *sp_ip6_out;
struct rt_ctx *rt_ip4;
struct rt_ctx *rt_ip6;
struct rte_mempool *mbuf_pool;
struct rte_mempool *session_pool;
};
struct cnt_blk {
uint32_t salt;
uint64_t iv;
uint32_t cnt;
} __attribute__((packed));
uint16_t
ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t nb_pkts, uint16_t len);
uint16_t
ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len);
static inline uint16_t
ipsec_metadata_size(void)
{
return sizeof(struct ipsec_mbuf_metadata);
}
static inline struct ipsec_mbuf_metadata *
get_priv(struct rte_mbuf *m)
{
return rte_mbuf_to_priv(m);
}
static inline void *
get_cnt_blk(struct rte_mbuf *m)
{
struct ipsec_mbuf_metadata *priv = get_priv(m);
return &priv->buf[0];
}
static inline void *
get_aad(struct rte_mbuf *m)
{
struct ipsec_mbuf_metadata *priv = get_priv(m);
return &priv->buf[16];
}
static inline void *
get_sym_cop(struct rte_crypto_op *cop)
{
return (cop + 1);
}
int
inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx);
void
inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
struct ipsec_sa *sa[], uint16_t nb_pkts);
void
outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
struct ipsec_sa *sa[], uint16_t nb_pkts);
void
sp4_init(struct socket_ctx *ctx, int32_t socket_id);
void
sp6_init(struct socket_ctx *ctx, int32_t socket_id);
void
sa_init(struct socket_ctx *ctx, int32_t socket_id);
void
rt_init(struct socket_ctx *ctx, int32_t socket_id);
#endif /* __IPSEC_H__ */