9ee64bd404
EFSYS_OPT_LOOPBACK should be enabled to use it. From Solarflare Communications Inc. Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
1063 lines
27 KiB
C
1063 lines
27 KiB
C
/*
|
|
* Copyright (c) 2007-2016 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* The views and conclusions contained in the software and documentation are
|
|
* those of the authors and should not be interpreted as representing official
|
|
* policies, either expressed or implied, of the FreeBSD Project.
|
|
*/
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_family(
|
|
__in uint16_t venid,
|
|
__in uint16_t devid,
|
|
__out efx_family_t *efp)
|
|
{
|
|
if (venid == EFX_PCI_VENID_SFC) {
|
|
switch (devid) {
|
|
#if EFSYS_OPT_SIENA
|
|
case EFX_PCI_DEVID_SIENA_F1_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Siena.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
*efp = EFX_FAMILY_SIENA;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_BETHPAGE:
|
|
case EFX_PCI_DEVID_SIENA:
|
|
*efp = EFX_FAMILY_SIENA;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
case EFX_PCI_DEVID_HUNTINGTON_PF_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Huntington.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
*efp = EFX_FAMILY_HUNTINGTON;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_FARMINGDALE:
|
|
case EFX_PCI_DEVID_GREENPORT:
|
|
*efp = EFX_FAMILY_HUNTINGTON;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_FARMINGDALE_VF:
|
|
case EFX_PCI_DEVID_GREENPORT_VF:
|
|
*efp = EFX_FAMILY_HUNTINGTON;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
case EFX_PCI_DEVID_MEDFORD_PF_UNINIT:
|
|
/*
|
|
* Hardware default for PF0 of uninitialised Medford.
|
|
* manftest must be able to cope with this device id.
|
|
*/
|
|
*efp = EFX_FAMILY_MEDFORD;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_MEDFORD:
|
|
*efp = EFX_FAMILY_MEDFORD;
|
|
return (0);
|
|
|
|
case EFX_PCI_DEVID_MEDFORD_VF:
|
|
*efp = EFX_FAMILY_MEDFORD;
|
|
return (0);
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
case EFX_PCI_DEVID_FALCON: /* Obsolete, not supported */
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
*efp = EFX_FAMILY_INVALID;
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
|
|
#define EFX_BIU_MAGIC0 0x01234567
|
|
#define EFX_BIU_MAGIC1 0xfedcba98
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_biu_test(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_oword_t oword;
|
|
efx_rc_t rc;
|
|
|
|
/*
|
|
* Write magic values to scratch registers 0 and 1, then
|
|
* verify that the values were written correctly. Interleave
|
|
* the accesses to ensure that the BIU is not just reading
|
|
* back the cached value that was last written.
|
|
*/
|
|
EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC0);
|
|
EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
|
|
|
|
EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC1);
|
|
EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
|
|
|
|
EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
|
|
if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC0) {
|
|
rc = EIO;
|
|
goto fail1;
|
|
}
|
|
|
|
EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
|
|
if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC1) {
|
|
rc = EIO;
|
|
goto fail2;
|
|
}
|
|
|
|
/*
|
|
* Perform the same test, with the values swapped. This
|
|
* ensures that subsequent tests don't start with the correct
|
|
* values already written into the scratch registers.
|
|
*/
|
|
EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC1);
|
|
EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
|
|
|
|
EFX_POPULATE_OWORD_1(oword, FRF_AZ_DRIVER_DW0, EFX_BIU_MAGIC0);
|
|
EFX_BAR_TBL_WRITEO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
|
|
|
|
EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 0, &oword, B_TRUE);
|
|
if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC1) {
|
|
rc = EIO;
|
|
goto fail3;
|
|
}
|
|
|
|
EFX_BAR_TBL_READO(enp, FR_AZ_DRIVER_REG, 1, &oword, B_TRUE);
|
|
if (EFX_OWORD_FIELD(oword, FRF_AZ_DRIVER_DW0) != EFX_BIU_MAGIC0) {
|
|
rc = EIO;
|
|
goto fail4;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#if EFSYS_OPT_SIENA
|
|
|
|
static const efx_nic_ops_t __efx_nic_siena_ops = {
|
|
siena_nic_probe, /* eno_probe */
|
|
NULL, /* eno_board_cfg */
|
|
NULL, /* eno_set_drv_limits */
|
|
siena_nic_reset, /* eno_reset */
|
|
siena_nic_init, /* eno_init */
|
|
NULL, /* eno_get_vi_pool */
|
|
NULL, /* eno_get_bar_region */
|
|
#if EFSYS_OPT_DIAG
|
|
siena_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
siena_nic_fini, /* eno_fini */
|
|
siena_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
|
|
static const efx_nic_ops_t __efx_nic_hunt_ops = {
|
|
ef10_nic_probe, /* eno_probe */
|
|
hunt_board_cfg, /* eno_board_cfg */
|
|
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
|
|
ef10_nic_reset, /* eno_reset */
|
|
ef10_nic_init, /* eno_init */
|
|
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
|
|
ef10_nic_get_bar_region, /* eno_get_bar_region */
|
|
#if EFSYS_OPT_DIAG
|
|
ef10_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
ef10_nic_fini, /* eno_fini */
|
|
ef10_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
|
|
static const efx_nic_ops_t __efx_nic_medford_ops = {
|
|
ef10_nic_probe, /* eno_probe */
|
|
medford_board_cfg, /* eno_board_cfg */
|
|
ef10_nic_set_drv_limits, /* eno_set_drv_limits */
|
|
ef10_nic_reset, /* eno_reset */
|
|
ef10_nic_init, /* eno_init */
|
|
ef10_nic_get_vi_pool, /* eno_get_vi_pool */
|
|
ef10_nic_get_bar_region, /* eno_get_bar_region */
|
|
#if EFSYS_OPT_DIAG
|
|
ef10_nic_register_test, /* eno_register_test */
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
ef10_nic_fini, /* eno_fini */
|
|
ef10_nic_unprobe, /* eno_unprobe */
|
|
};
|
|
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_create(
|
|
__in efx_family_t family,
|
|
__in efsys_identifier_t *esip,
|
|
__in efsys_bar_t *esbp,
|
|
__in efsys_lock_t *eslp,
|
|
__deref_out efx_nic_t **enpp)
|
|
{
|
|
efx_nic_t *enp;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(family, >, EFX_FAMILY_INVALID);
|
|
EFSYS_ASSERT3U(family, <, EFX_FAMILY_NTYPES);
|
|
|
|
/* Allocate a NIC object */
|
|
EFSYS_KMEM_ALLOC(esip, sizeof (efx_nic_t), enp);
|
|
|
|
if (enp == NULL) {
|
|
rc = ENOMEM;
|
|
goto fail1;
|
|
}
|
|
|
|
enp->en_magic = EFX_NIC_MAGIC;
|
|
|
|
switch (family) {
|
|
#if EFSYS_OPT_SIENA
|
|
case EFX_FAMILY_SIENA:
|
|
enp->en_enop = &__efx_nic_siena_ops;
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LFSR_HASH_INSERT |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_LOOKAHEAD_SPLIT |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_TX_SRC_FILTERS;
|
|
break;
|
|
#endif /* EFSYS_OPT_SIENA */
|
|
|
|
#if EFSYS_OPT_HUNTINGTON
|
|
case EFX_FAMILY_HUNTINGTON:
|
|
enp->en_enop = &__efx_nic_hunt_ops;
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_MCDI_DMA |
|
|
EFX_FEATURE_PIO_BUFFERS |
|
|
EFX_FEATURE_FW_ASSISTED_TSO |
|
|
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
|
|
EFX_FEATURE_PACKED_STREAM;
|
|
break;
|
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
|
|
|
#if EFSYS_OPT_MEDFORD
|
|
case EFX_FAMILY_MEDFORD:
|
|
enp->en_enop = &__efx_nic_medford_ops;
|
|
/*
|
|
* FW_ASSISTED_TSO omitted as Medford only supports firmware
|
|
* assisted TSO version 2, not the v1 scheme used on Huntington.
|
|
*/
|
|
enp->en_features =
|
|
EFX_FEATURE_IPV6 |
|
|
EFX_FEATURE_LINK_EVENTS |
|
|
EFX_FEATURE_PERIODIC_MAC_STATS |
|
|
EFX_FEATURE_MCDI |
|
|
EFX_FEATURE_MAC_HEADER_FILTERS |
|
|
EFX_FEATURE_MCDI_DMA |
|
|
EFX_FEATURE_PIO_BUFFERS |
|
|
EFX_FEATURE_FW_ASSISTED_TSO_V2 |
|
|
EFX_FEATURE_PACKED_STREAM;
|
|
break;
|
|
#endif /* EFSYS_OPT_MEDFORD */
|
|
|
|
default:
|
|
rc = ENOTSUP;
|
|
goto fail2;
|
|
}
|
|
|
|
enp->en_family = family;
|
|
enp->en_esip = esip;
|
|
enp->en_esbp = esbp;
|
|
enp->en_eslp = eslp;
|
|
|
|
*enpp = enp;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
enp->en_magic = 0;
|
|
|
|
/* Free the NIC object */
|
|
EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_probe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
#if EFSYS_OPT_MCDI
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
|
|
#endif /* EFSYS_OPT_MCDI */
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_PROBE));
|
|
|
|
enop = enp->en_enop;
|
|
if ((rc = enop->eno_probe(enp)) != 0)
|
|
goto fail1;
|
|
|
|
if ((rc = efx_phy_probe(enp)) != 0)
|
|
goto fail2;
|
|
|
|
enp->en_mod_flags |= EFX_MOD_PROBE;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
enop->eno_unprobe(enp);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_set_drv_limits(
|
|
__inout efx_nic_t *enp,
|
|
__in efx_drv_limits_t *edlp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
|
|
if (enop->eno_set_drv_limits != NULL) {
|
|
if ((rc = enop->eno_set_drv_limits(enp, edlp)) != 0)
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_get_bar_region(
|
|
__in efx_nic_t *enp,
|
|
__in efx_nic_region_t region,
|
|
__out uint32_t *offsetp,
|
|
__out size_t *sizep)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
|
|
|
|
if (enop->eno_get_bar_region == NULL) {
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
if ((rc = (enop->eno_get_bar_region)(enp,
|
|
region, offsetp, sizep)) != 0) {
|
|
goto fail2;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_get_vi_pool(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *evq_countp,
|
|
__out uint32_t *rxq_countp,
|
|
__out uint32_t *txq_countp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NIC);
|
|
|
|
if (enop->eno_get_vi_pool != NULL) {
|
|
uint32_t vi_count = 0;
|
|
|
|
if ((rc = (enop->eno_get_vi_pool)(enp, &vi_count)) != 0)
|
|
goto fail1;
|
|
|
|
*evq_countp = vi_count;
|
|
*rxq_countp = vi_count;
|
|
*txq_countp = vi_count;
|
|
} else {
|
|
/* Use NIC limits as default value */
|
|
*evq_countp = encp->enc_evq_limit;
|
|
*rxq_countp = encp->enc_rxq_limit;
|
|
*txq_countp = encp->enc_txq_limit;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_init(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
|
|
if (enp->en_mod_flags & EFX_MOD_NIC) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if ((rc = enop->eno_init(enp)) != 0)
|
|
goto fail2;
|
|
|
|
enp->en_mod_flags |= EFX_MOD_NIC;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
efx_nic_fini(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
|
|
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_NIC);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
|
|
|
|
enop->eno_fini(enp);
|
|
|
|
enp->en_mod_flags &= ~EFX_MOD_NIC;
|
|
}
|
|
|
|
void
|
|
efx_nic_unprobe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
#if EFSYS_OPT_MCDI
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_MCDI);
|
|
#endif /* EFSYS_OPT_MCDI */
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_INTR));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EV));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
|
|
|
|
efx_phy_unprobe(enp);
|
|
|
|
enop->eno_unprobe(enp);
|
|
|
|
enp->en_mod_flags &= ~EFX_MOD_PROBE;
|
|
}
|
|
|
|
void
|
|
efx_nic_destroy(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efsys_identifier_t *esip = enp->en_esip;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, ==, 0);
|
|
|
|
enp->en_family = EFX_FAMILY_INVALID;
|
|
enp->en_esip = NULL;
|
|
enp->en_esbp = NULL;
|
|
enp->en_eslp = NULL;
|
|
|
|
enp->en_enop = NULL;
|
|
|
|
enp->en_magic = 0;
|
|
|
|
/* Free the NIC object */
|
|
EFSYS_KMEM_FREE(esip, sizeof (efx_nic_t), enp);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_reset(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
unsigned int mod_flags;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
|
|
/*
|
|
* All modules except the MCDI, PROBE, NVRAM, VPD, MON
|
|
* (which we do not reset here) must have been shut down or never
|
|
* initialized.
|
|
*
|
|
* A rule of thumb here is: If the controller or MC reboots, is *any*
|
|
* state lost. If it's lost and needs reapplying, then the module
|
|
* *must* not be initialised during the reset.
|
|
*/
|
|
mod_flags = enp->en_mod_flags;
|
|
mod_flags &= ~(EFX_MOD_MCDI | EFX_MOD_PROBE | EFX_MOD_NVRAM |
|
|
EFX_MOD_VPD | EFX_MOD_MON);
|
|
EFSYS_ASSERT3U(mod_flags, ==, 0);
|
|
if (mod_flags != 0) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
if ((rc = enop->eno_reset(enp)) != 0)
|
|
goto fail2;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
const efx_nic_cfg_t *
|
|
efx_nic_cfg_get(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
|
|
return (&(enp->en_nic_cfg));
|
|
}
|
|
|
|
#if EFSYS_OPT_DIAG
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_register_test(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
|
|
|
|
if ((rc = enop->eno_register_test(enp)) != 0)
|
|
goto fail1;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_test_registers(
|
|
__in efx_nic_t *enp,
|
|
__in efx_register_set_t *rsp,
|
|
__in size_t count)
|
|
{
|
|
unsigned int bit;
|
|
efx_oword_t original;
|
|
efx_oword_t reg;
|
|
efx_oword_t buf;
|
|
efx_rc_t rc;
|
|
|
|
while (count > 0) {
|
|
/* This function is only suitable for registers */
|
|
EFSYS_ASSERT(rsp->rows == 1);
|
|
|
|
/* bit sweep on and off */
|
|
EFSYS_BAR_READO(enp->en_esbp, rsp->address, &original,
|
|
B_TRUE);
|
|
for (bit = 0; bit < 128; bit++) {
|
|
/* Is this bit in the mask? */
|
|
if (~(rsp->mask.eo_u32[bit >> 5]) & (1 << bit))
|
|
continue;
|
|
|
|
/* Test this bit can be set in isolation */
|
|
reg = original;
|
|
EFX_AND_OWORD(reg, rsp->mask);
|
|
EFX_SET_OWORD_BIT(reg, bit);
|
|
|
|
EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, ®,
|
|
B_TRUE);
|
|
EFSYS_BAR_READO(enp->en_esbp, rsp->address, &buf,
|
|
B_TRUE);
|
|
|
|
EFX_AND_OWORD(buf, rsp->mask);
|
|
if (memcmp(®, &buf, sizeof (reg))) {
|
|
rc = EIO;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Test this bit can be cleared in isolation */
|
|
EFX_OR_OWORD(reg, rsp->mask);
|
|
EFX_CLEAR_OWORD_BIT(reg, bit);
|
|
|
|
EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, ®,
|
|
B_TRUE);
|
|
EFSYS_BAR_READO(enp->en_esbp, rsp->address, &buf,
|
|
B_TRUE);
|
|
|
|
EFX_AND_OWORD(buf, rsp->mask);
|
|
if (memcmp(®, &buf, sizeof (reg))) {
|
|
rc = EIO;
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Restore the old value */
|
|
EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &original,
|
|
B_TRUE);
|
|
|
|
--count;
|
|
++rsp;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
/* Restore the old value */
|
|
EFSYS_BAR_WRITEO(enp->en_esbp, rsp->address, &original, B_TRUE);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_test_tables(
|
|
__in efx_nic_t *enp,
|
|
__in efx_register_set_t *rsp,
|
|
__in efx_pattern_type_t pattern,
|
|
__in size_t count)
|
|
{
|
|
efx_sram_pattern_fn_t func;
|
|
unsigned int index;
|
|
unsigned int address;
|
|
efx_oword_t reg;
|
|
efx_oword_t buf;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(pattern < EFX_PATTERN_NTYPES);
|
|
func = __efx_sram_pattern_fns[pattern];
|
|
|
|
while (count > 0) {
|
|
/* Write */
|
|
address = rsp->address;
|
|
for (index = 0; index < rsp->rows; ++index) {
|
|
func(2 * index + 0, B_FALSE, ®.eo_qword[0]);
|
|
func(2 * index + 1, B_FALSE, ®.eo_qword[1]);
|
|
EFX_AND_OWORD(reg, rsp->mask);
|
|
EFSYS_BAR_WRITEO(enp->en_esbp, address, ®, B_TRUE);
|
|
|
|
address += rsp->step;
|
|
}
|
|
|
|
/* Read */
|
|
address = rsp->address;
|
|
for (index = 0; index < rsp->rows; ++index) {
|
|
func(2 * index + 0, B_FALSE, ®.eo_qword[0]);
|
|
func(2 * index + 1, B_FALSE, ®.eo_qword[1]);
|
|
EFX_AND_OWORD(reg, rsp->mask);
|
|
EFSYS_BAR_READO(enp->en_esbp, address, &buf, B_TRUE);
|
|
if (memcmp(®, &buf, sizeof (reg))) {
|
|
rc = EIO;
|
|
goto fail1;
|
|
}
|
|
|
|
address += rsp->step;
|
|
}
|
|
|
|
++rsp;
|
|
--count;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
|
|
#if EFSYS_OPT_LOOPBACK
|
|
|
|
extern void
|
|
efx_loopback_mask(
|
|
__in efx_loopback_kind_t loopback_kind,
|
|
__out efx_qword_t *maskp)
|
|
{
|
|
efx_qword_t mask;
|
|
|
|
EFSYS_ASSERT3U(loopback_kind, <, EFX_LOOPBACK_NKINDS);
|
|
EFSYS_ASSERT(maskp != NULL);
|
|
|
|
/* Assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespace agree */
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_NONE == EFX_LOOPBACK_OFF);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_DATA == EFX_LOOPBACK_DATA);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMAC == EFX_LOOPBACK_GMAC);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGMII == EFX_LOOPBACK_XGMII);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGXS == EFX_LOOPBACK_XGXS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI == EFX_LOOPBACK_XAUI);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII == EFX_LOOPBACK_GMII);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SGMII == EFX_LOOPBACK_SGMII);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGBR == EFX_LOOPBACK_XGBR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI == EFX_LOOPBACK_XFI);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_FAR == EFX_LOOPBACK_XAUI_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII_FAR == EFX_LOOPBACK_GMII_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SGMII_FAR == EFX_LOOPBACK_SGMII_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_FAR == EFX_LOOPBACK_XFI_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GPHY == EFX_LOOPBACK_GPHY);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PHYXS == EFX_LOOPBACK_PHY_XS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PCS == EFX_LOOPBACK_PCS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMAPMD == EFX_LOOPBACK_PMA_PMD);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XPORT == EFX_LOOPBACK_XPORT);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XGMII_WS == EFX_LOOPBACK_XGMII_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS == EFX_LOOPBACK_XAUI_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS_FAR ==
|
|
EFX_LOOPBACK_XAUI_WS_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XAUI_WS_NEAR ==
|
|
EFX_LOOPBACK_XAUI_WS_NEAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_GMII_WS == EFX_LOOPBACK_GMII_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_WS == EFX_LOOPBACK_XFI_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_XFI_WS_FAR ==
|
|
EFX_LOOPBACK_XFI_WS_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PHYXS_WS == EFX_LOOPBACK_PHYXS_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMA_INT == EFX_LOOPBACK_PMA_INT);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_NEAR == EFX_LOOPBACK_SD_NEAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FAR == EFX_LOOPBACK_SD_FAR);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_PMA_INT_WS ==
|
|
EFX_LOOPBACK_PMA_INT_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP2_WS ==
|
|
EFX_LOOPBACK_SD_FEP2_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP1_5_WS ==
|
|
EFX_LOOPBACK_SD_FEP1_5_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FEP_WS == EFX_LOOPBACK_SD_FEP_WS);
|
|
EFX_STATIC_ASSERT(MC_CMD_LOOPBACK_SD_FES_WS == EFX_LOOPBACK_SD_FES_WS);
|
|
|
|
/* Build bitmask of possible loopback types */
|
|
EFX_ZERO_QWORD(mask);
|
|
|
|
if ((loopback_kind == EFX_LOOPBACK_KIND_OFF) ||
|
|
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_OFF);
|
|
}
|
|
|
|
if ((loopback_kind == EFX_LOOPBACK_KIND_MAC) ||
|
|
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
|
|
/*
|
|
* The "MAC" grouping has historically been used by drivers to
|
|
* mean loopbacks supported by on-chip hardware. Keep that
|
|
* meaning here, and include on-chip PHY layer loopbacks.
|
|
*/
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_DATA);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMAC);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGMII);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGXS);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XGBR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XAUI_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GMII_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SGMII_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_XFI_FAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_INT);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_NEAR);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_SD_FAR);
|
|
}
|
|
|
|
if ((loopback_kind == EFX_LOOPBACK_KIND_PHY) ||
|
|
(loopback_kind == EFX_LOOPBACK_KIND_ALL)) {
|
|
/*
|
|
* The "PHY" grouping has historically been used by drivers to
|
|
* mean loopbacks supported by off-chip hardware. Keep that
|
|
* meaning here.
|
|
*/
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_GPHY);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PHY_XS);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PCS);
|
|
EFX_SET_QWORD_BIT(mask, EFX_LOOPBACK_PMA_PMD);
|
|
}
|
|
|
|
*maskp = mask;
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_loopback_modes(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_LOOPBACK_MODES_IN_LEN,
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_LEN)];
|
|
efx_qword_t mask;
|
|
efx_qword_t modes;
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_LOOPBACK_MODES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_LOOPBACK_MODES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_LOOPBACK_MODES_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used <
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_SUGGESTED_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
/*
|
|
* We assert the MC_CMD_LOOPBACK and EFX_LOOPBACK namespaces agree
|
|
* in efx_loopback_mask() and in siena_phy.c:siena_phy_get_link().
|
|
*/
|
|
efx_loopback_mask(EFX_LOOPBACK_KIND_ALL, &mask);
|
|
|
|
EFX_AND_QWORD(mask,
|
|
*MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_SUGGESTED));
|
|
|
|
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_100M);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_100FDX] = modes;
|
|
|
|
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_1G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_1000FDX] = modes;
|
|
|
|
modes = *MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_10G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_10000FDX] = modes;
|
|
|
|
if (req.emr_out_length_used >=
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_40G_OFST +
|
|
MC_CMD_GET_LOOPBACK_MODES_OUT_40G_LEN) {
|
|
/* Response includes 40G loopback modes */
|
|
modes =
|
|
*MCDI_OUT2(req, efx_qword_t, GET_LOOPBACK_MODES_OUT_40G);
|
|
EFX_AND_QWORD(modes, mask);
|
|
encp->enc_loopback_types[EFX_LINK_40000FDX] = modes;
|
|
}
|
|
|
|
EFX_ZERO_QWORD(modes);
|
|
EFX_SET_QWORD_BIT(modes, EFX_LOOPBACK_OFF);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_100FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_1000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_10000FDX]);
|
|
EFX_OR_QWORD(modes, encp->enc_loopback_types[EFX_LINK_40000FDX]);
|
|
encp->enc_loopback_types[EFX_LINK_UNKNOWN] = modes;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_LOOPBACK */
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_calculate_pcie_link_bandwidth(
|
|
__in uint32_t pcie_link_width,
|
|
__in uint32_t pcie_link_gen,
|
|
__out uint32_t *bandwidth_mbpsp)
|
|
{
|
|
uint32_t lane_bandwidth;
|
|
uint32_t total_bandwidth;
|
|
efx_rc_t rc;
|
|
|
|
if ((pcie_link_width == 0) || (pcie_link_width > 16) ||
|
|
!ISP2(pcie_link_width)) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
switch (pcie_link_gen) {
|
|
case EFX_PCIE_LINK_SPEED_GEN1:
|
|
/* 2.5 Gb/s raw bandwidth with 8b/10b encoding */
|
|
lane_bandwidth = 2000;
|
|
break;
|
|
case EFX_PCIE_LINK_SPEED_GEN2:
|
|
/* 5.0 Gb/s raw bandwidth with 8b/10b encoding */
|
|
lane_bandwidth = 4000;
|
|
break;
|
|
case EFX_PCIE_LINK_SPEED_GEN3:
|
|
/* 8.0 Gb/s raw bandwidth with 128b/130b encoding */
|
|
lane_bandwidth = 7877;
|
|
break;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail2;
|
|
}
|
|
|
|
total_bandwidth = lane_bandwidth * pcie_link_width;
|
|
*bandwidth_mbpsp = total_bandwidth;
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_nic_check_pcie_link_speed(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t pcie_link_width,
|
|
__in uint32_t pcie_link_gen,
|
|
__out efx_pcie_link_performance_t *resultp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t bandwidth;
|
|
efx_pcie_link_performance_t result;
|
|
efx_rc_t rc;
|
|
|
|
if ((encp->enc_required_pcie_bandwidth_mbps == 0) ||
|
|
(pcie_link_width == 0) || (pcie_link_width == 32) ||
|
|
(pcie_link_gen == 0)) {
|
|
/*
|
|
* No usable info on what is required and/or in use. In virtual
|
|
* machines, sometimes the PCIe link width is reported as 0 or
|
|
* 32, or the speed as 0.
|
|
*/
|
|
result = EFX_PCIE_LINK_PERFORMANCE_UNKNOWN_BANDWIDTH;
|
|
goto out;
|
|
}
|
|
|
|
/* Calculate the available bandwidth in megabits per second */
|
|
rc = efx_nic_calculate_pcie_link_bandwidth(pcie_link_width,
|
|
pcie_link_gen, &bandwidth);
|
|
if (rc != 0)
|
|
goto fail1;
|
|
|
|
if (bandwidth < encp->enc_required_pcie_bandwidth_mbps) {
|
|
result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_BANDWIDTH;
|
|
} else if (pcie_link_gen < encp->enc_max_pcie_link_gen) {
|
|
/* The link provides enough bandwidth but not optimal latency */
|
|
result = EFX_PCIE_LINK_PERFORMANCE_SUBOPTIMAL_LATENCY;
|
|
} else {
|
|
result = EFX_PCIE_LINK_PERFORMANCE_OPTIMAL;
|
|
}
|
|
|
|
out:
|
|
*resultp = result;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|