numam-dpdk/lib/eal/freebsd/eal_memory.c
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

475 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <sys/mman.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <inttypes.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <rte_eal.h>
#include <rte_errno.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_memcfg.h"
#include "eal_options.h"
#define EAL_PAGE_SIZE (sysconf(_SC_PAGESIZE))
uint64_t eal_get_baseaddr(void)
{
/*
* FreeBSD may allocate something in the space we will be mapping things
* before we get a chance to do that, so use a base address that's far
* away from where malloc() et al usually map things.
*/
return 0x1000000000ULL;
}
/*
* Get physical address of any mapped virtual address in the current process.
*/
phys_addr_t
rte_mem_virt2phy(const void *virtaddr)
{
/* XXX not implemented. This function is only used by
* rte_mempool_virt2iova() when hugepages are disabled. */
(void)virtaddr;
return RTE_BAD_IOVA;
}
rte_iova_t
rte_mem_virt2iova(const void *virtaddr)
{
return rte_mem_virt2phy(virtaddr);
}
int
rte_eal_hugepage_init(void)
{
struct rte_mem_config *mcfg;
uint64_t total_mem = 0;
void *addr;
unsigned int i, j, seg_idx = 0;
struct internal_config *internal_conf =
eal_get_internal_configuration();
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* for debug purposes, hugetlbfs can be disabled */
if (internal_conf->no_hugetlbfs) {
struct rte_memseg_list *msl;
uint64_t mem_sz, page_sz;
int n_segs;
/* create a memseg list */
msl = &mcfg->memsegs[0];
mem_sz = internal_conf->memory;
page_sz = RTE_PGSIZE_4K;
n_segs = mem_sz / page_sz;
if (eal_memseg_list_init_named(
msl, "nohugemem", page_sz, n_segs, 0, true)) {
return -1;
}
addr = mmap(NULL, mem_sz, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
strerror(errno));
return -1;
}
msl->base_va = addr;
msl->len = mem_sz;
eal_memseg_list_populate(msl, addr, n_segs);
return 0;
}
/* map all hugepages and sort them */
for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
struct hugepage_info *hpi;
rte_iova_t prev_end = 0;
int prev_ms_idx = -1;
uint64_t page_sz, mem_needed;
unsigned int n_pages, max_pages;
hpi = &internal_conf->hugepage_info[i];
page_sz = hpi->hugepage_sz;
max_pages = hpi->num_pages[0];
mem_needed = RTE_ALIGN_CEIL(internal_conf->memory - total_mem,
page_sz);
n_pages = RTE_MIN(mem_needed / page_sz, max_pages);
for (j = 0; j < n_pages; j++) {
struct rte_memseg_list *msl;
struct rte_fbarray *arr;
struct rte_memseg *seg;
int msl_idx, ms_idx;
rte_iova_t physaddr;
int error;
size_t sysctl_size = sizeof(physaddr);
char physaddr_str[64];
bool is_adjacent;
/* first, check if this segment is IOVA-adjacent to
* the previous one.
*/
snprintf(physaddr_str, sizeof(physaddr_str),
"hw.contigmem.physaddr.%d", j);
error = sysctlbyname(physaddr_str, &physaddr,
&sysctl_size, NULL, 0);
if (error < 0) {
RTE_LOG(ERR, EAL, "Failed to get physical addr for buffer %u "
"from %s\n", j, hpi->hugedir);
return -1;
}
is_adjacent = prev_end != 0 && physaddr == prev_end;
prev_end = physaddr + hpi->hugepage_sz;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
msl_idx++) {
bool empty, need_hole;
msl = &mcfg->memsegs[msl_idx];
arr = &msl->memseg_arr;
if (msl->page_sz != page_sz)
continue;
empty = arr->count == 0;
/* we need a hole if this isn't an empty memseg
* list, and if previous segment was not
* adjacent to current one.
*/
need_hole = !empty && !is_adjacent;
/* we need 1, plus hole if not adjacent */
ms_idx = rte_fbarray_find_next_n_free(arr,
0, 1 + (need_hole ? 1 : 0));
/* memseg list is full? */
if (ms_idx < 0)
continue;
if (need_hole && prev_ms_idx == ms_idx - 1)
ms_idx++;
prev_ms_idx = ms_idx;
break;
}
if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
RTE_STR(RTE_MAX_MEMSEG_PER_TYPE),
RTE_STR(RTE_MAX_MEM_MB_PER_TYPE));
return -1;
}
arr = &msl->memseg_arr;
seg = rte_fbarray_get(arr, ms_idx);
addr = RTE_PTR_ADD(msl->base_va,
(size_t)msl->page_sz * ms_idx);
/* address is already mapped in memseg list, so using
* MAP_FIXED here is safe.
*/
addr = mmap(addr, page_sz, PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_FIXED,
hpi->lock_descriptor,
j * EAL_PAGE_SIZE);
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Failed to mmap buffer %u from %s\n",
j, hpi->hugedir);
return -1;
}
seg->addr = addr;
seg->iova = physaddr;
seg->hugepage_sz = page_sz;
seg->len = page_sz;
seg->nchannel = mcfg->nchannel;
seg->nrank = mcfg->nrank;
seg->socket_id = 0;
rte_fbarray_set_used(arr, ms_idx);
RTE_LOG(INFO, EAL, "Mapped memory segment %u @ %p: physaddr:0x%"
PRIx64", len %zu\n",
seg_idx++, addr, physaddr, page_sz);
total_mem += seg->len;
}
if (total_mem >= internal_conf->memory)
break;
}
if (total_mem < internal_conf->memory) {
RTE_LOG(ERR, EAL, "Couldn't reserve requested memory, "
"requested: %" PRIu64 "M "
"available: %" PRIu64 "M\n",
internal_conf->memory >> 20, total_mem >> 20);
return -1;
}
return 0;
}
struct attach_walk_args {
int fd_hugepage;
int seg_idx;
};
static int
attach_segment(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
struct attach_walk_args *wa = arg;
void *addr;
if (msl->external)
return 0;
addr = mmap(ms->addr, ms->len, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, wa->fd_hugepage,
wa->seg_idx * EAL_PAGE_SIZE);
if (addr == MAP_FAILED || addr != ms->addr)
return -1;
wa->seg_idx++;
return 0;
}
int
rte_eal_hugepage_attach(void)
{
struct hugepage_info *hpi;
int fd_hugepage = -1;
unsigned int i;
struct internal_config *internal_conf =
eal_get_internal_configuration();
hpi = &internal_conf->hugepage_info[0];
for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
const struct hugepage_info *cur_hpi = &hpi[i];
struct attach_walk_args wa;
memset(&wa, 0, sizeof(wa));
/* Obtain a file descriptor for contiguous memory */
fd_hugepage = open(cur_hpi->hugedir, O_RDWR);
if (fd_hugepage < 0) {
RTE_LOG(ERR, EAL, "Could not open %s\n",
cur_hpi->hugedir);
goto error;
}
wa.fd_hugepage = fd_hugepage;
wa.seg_idx = 0;
/* Map the contiguous memory into each memory segment */
if (rte_memseg_walk(attach_segment, &wa) < 0) {
RTE_LOG(ERR, EAL, "Failed to mmap buffer %u from %s\n",
wa.seg_idx, cur_hpi->hugedir);
goto error;
}
close(fd_hugepage);
fd_hugepage = -1;
}
/* hugepage_info is no longer required */
return 0;
error:
if (fd_hugepage >= 0)
close(fd_hugepage);
return -1;
}
int
rte_eal_using_phys_addrs(void)
{
return 0;
}
static uint64_t
get_mem_amount(uint64_t page_sz, uint64_t max_mem)
{
uint64_t area_sz, max_pages;
/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
max_pages = RTE_MAX_MEMSEG_PER_LIST;
max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
area_sz = RTE_MIN(page_sz * max_pages, max_mem);
/* make sure the list isn't smaller than the page size */
area_sz = RTE_MAX(area_sz, page_sz);
return RTE_ALIGN(area_sz, page_sz);
}
static int
memseg_list_alloc(struct rte_memseg_list *msl)
{
int flags = 0;
#ifdef RTE_ARCH_PPC_64
flags |= EAL_RESERVE_HUGEPAGES;
#endif
return eal_memseg_list_alloc(msl, flags);
}
static int
memseg_primary_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int hpi_idx, msl_idx = 0;
struct rte_memseg_list *msl;
uint64_t max_mem, total_mem;
struct internal_config *internal_conf =
eal_get_internal_configuration();
/* no-huge does not need this at all */
if (internal_conf->no_hugetlbfs)
return 0;
/* FreeBSD has an issue where core dump will dump the entire memory
* contents, including anonymous zero-page memory. Therefore, while we
* will be limiting total amount of memory to RTE_MAX_MEM_MB, we will
* also be further limiting total memory amount to whatever memory is
* available to us through contigmem driver (plus spacing blocks).
*
* so, at each stage, we will be checking how much memory we are
* preallocating, and adjust all the values accordingly.
*/
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
total_mem = 0;
/* create memseg lists */
for (hpi_idx = 0; hpi_idx < (int) internal_conf->num_hugepage_sizes;
hpi_idx++) {
uint64_t max_type_mem, total_type_mem = 0;
uint64_t avail_mem;
int type_msl_idx, max_segs, avail_segs, total_segs = 0;
struct hugepage_info *hpi;
uint64_t hugepage_sz;
hpi = &internal_conf->hugepage_info[hpi_idx];
hugepage_sz = hpi->hugepage_sz;
/* no NUMA support on FreeBSD */
/* check if we've already exceeded total memory amount */
if (total_mem >= max_mem)
break;
/* first, calculate theoretical limits according to config */
max_type_mem = RTE_MIN(max_mem - total_mem,
(uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
/* now, limit all of that to whatever will actually be
* available to us, because without dynamic allocation support,
* all of that extra memory will be sitting there being useless
* and slowing down core dumps in case of a crash.
*
* we need (N*2)-1 segments because we cannot guarantee that
* each segment will be IOVA-contiguous with the previous one,
* so we will allocate more and put spaces between segments
* that are non-contiguous.
*/
avail_segs = (hpi->num_pages[0] * 2) - 1;
avail_mem = avail_segs * hugepage_sz;
max_type_mem = RTE_MIN(avail_mem, max_type_mem);
max_segs = RTE_MIN(avail_segs, max_segs);
type_msl_idx = 0;
while (total_type_mem < max_type_mem &&
total_segs < max_segs) {
uint64_t cur_max_mem, cur_mem;
unsigned int n_segs;
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
RTE_LOG(ERR, EAL,
"No more space in memseg lists, please increase %s\n",
RTE_STR(RTE_MAX_MEMSEG_LISTS));
return -1;
}
msl = &mcfg->memsegs[msl_idx++];
cur_max_mem = max_type_mem - total_type_mem;
cur_mem = get_mem_amount(hugepage_sz,
cur_max_mem);
n_segs = cur_mem / hugepage_sz;
if (eal_memseg_list_init(msl, hugepage_sz, n_segs,
0, type_msl_idx, false))
return -1;
total_segs += msl->memseg_arr.len;
total_type_mem = total_segs * hugepage_sz;
type_msl_idx++;
if (memseg_list_alloc(msl)) {
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
return -1;
}
}
total_mem += total_type_mem;
}
return 0;
}
static int
memseg_secondary_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int msl_idx = 0;
struct rte_memseg_list *msl;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
msl = &mcfg->memsegs[msl_idx];
/* skip empty memseg lists */
if (msl->memseg_arr.len == 0)
continue;
if (rte_fbarray_attach(&msl->memseg_arr)) {
RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
return -1;
}
/* preallocate VA space */
if (memseg_list_alloc(msl)) {
RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
return -1;
}
}
return 0;
}
int
rte_eal_memseg_init(void)
{
return rte_eal_process_type() == RTE_PROC_PRIMARY ?
memseg_primary_init() :
memseg_secondary_init();
}