numam-dpdk/drivers/net/sfc/sfc_ef10_tx.c
Andrew Rybchenko 98d26ef7b8 net/sfc: update copyright year
Bump copyright year to 2021.

Signed-off-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2021-03-12 15:57:16 +01:00

1173 lines
31 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2016-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <stdbool.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef10.h"
#include "sfc_debug.h"
#include "sfc_dp_tx.h"
#include "sfc_tweak.h"
#include "sfc_kvargs.h"
#include "sfc_ef10.h"
#include "sfc_tso.h"
#define sfc_ef10_tx_err(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
#define sfc_ef10_tx_info(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, INFO, dpq, __VA_ARGS__)
/** Maximum length of the DMA descriptor data */
#define SFC_EF10_TX_DMA_DESC_LEN_MAX \
((1u << ESF_DZ_TX_KER_BYTE_CNT_WIDTH) - 1)
/**
* Maximum number of descriptors/buffers in the Tx ring.
* It should guarantee that corresponding event queue never overfill.
* EF10 native datapath uses event queue of the same size as Tx queue.
* Maximum number of events on datapath can be estimated as number of
* Tx queue entries (one event per Tx buffer in the worst case) plus
* Tx error and flush events.
*/
#define SFC_EF10_TXQ_LIMIT(_ndesc) \
((_ndesc) - 1 /* head must not step on tail */ - \
(SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
1 /* Rx error */ - 1 /* flush */)
struct sfc_ef10_tx_sw_desc {
struct rte_mbuf *mbuf;
};
struct sfc_ef10_txq {
unsigned int flags;
#define SFC_EF10_TXQ_STARTED 0x1
#define SFC_EF10_TXQ_NOT_RUNNING 0x2
#define SFC_EF10_TXQ_EXCEPTION 0x4
unsigned int ptr_mask;
unsigned int added;
unsigned int completed;
unsigned int max_fill_level;
unsigned int free_thresh;
unsigned int evq_read_ptr;
struct sfc_ef10_tx_sw_desc *sw_ring;
efx_qword_t *txq_hw_ring;
volatile void *doorbell;
efx_qword_t *evq_hw_ring;
uint8_t *tsoh;
rte_iova_t tsoh_iova;
uint16_t tso_tcp_header_offset_limit;
/* Datapath transmit queue anchor */
struct sfc_dp_txq dp;
};
static inline struct sfc_ef10_txq *
sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
{
return container_of(dp_txq, struct sfc_ef10_txq, dp);
}
static bool
sfc_ef10_tx_get_event(struct sfc_ef10_txq *txq, efx_qword_t *tx_ev)
{
volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;
/*
* Exception flag is set when reap is done.
* It is never done twice per packet burst get and absence of
* the flag is checked on burst get entry.
*/
SFC_ASSERT((txq->flags & SFC_EF10_TXQ_EXCEPTION) == 0);
*tx_ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];
if (!sfc_ef10_ev_present(*tx_ev))
return false;
if (unlikely(EFX_QWORD_FIELD(*tx_ev, FSF_AZ_EV_CODE) !=
FSE_AZ_EV_CODE_TX_EV)) {
/*
* Do not move read_ptr to keep the event for exception
* handling by the control path.
*/
txq->flags |= SFC_EF10_TXQ_EXCEPTION;
sfc_ef10_tx_err(&txq->dp.dpq,
"TxQ exception at EvQ read ptr %#x",
txq->evq_read_ptr);
return false;
}
txq->evq_read_ptr++;
return true;
}
static unsigned int
sfc_ef10_tx_process_events(struct sfc_ef10_txq *txq)
{
const unsigned int curr_done = txq->completed - 1;
unsigned int anew_done = curr_done;
efx_qword_t tx_ev;
while (sfc_ef10_tx_get_event(txq, &tx_ev)) {
/*
* DROP_EVENT is an internal to the NIC, software should
* never see it and, therefore, may ignore it.
*/
/* Update the latest done descriptor */
anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
}
return (anew_done - curr_done) & txq->ptr_mask;
}
static void
sfc_ef10_tx_reap(struct sfc_ef10_txq *txq)
{
const unsigned int old_read_ptr = txq->evq_read_ptr;
const unsigned int ptr_mask = txq->ptr_mask;
unsigned int completed = txq->completed;
unsigned int pending = completed;
pending += sfc_ef10_tx_process_events(txq);
if (pending != completed) {
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
unsigned int nb = 0;
do {
struct sfc_ef10_tx_sw_desc *txd;
struct rte_mbuf *m;
txd = &txq->sw_ring[completed & ptr_mask];
if (txd->mbuf == NULL)
continue;
m = rte_pktmbuf_prefree_seg(txd->mbuf);
txd->mbuf = NULL;
if (m == NULL)
continue;
if ((nb == RTE_DIM(bulk)) ||
((nb != 0) && (m->pool != bulk[0]->pool))) {
rte_mempool_put_bulk(bulk[0]->pool,
(void *)bulk, nb);
nb = 0;
}
bulk[nb++] = m;
} while (++completed != pending);
if (nb != 0)
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
txq->completed = completed;
}
sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
txq->evq_read_ptr);
}
static void
sfc_ef10_tx_qdesc_dma_create(rte_iova_t addr, uint16_t size, bool eop,
efx_qword_t *edp)
{
EFX_POPULATE_QWORD_4(*edp,
ESF_DZ_TX_KER_TYPE, 0,
ESF_DZ_TX_KER_CONT, !eop,
ESF_DZ_TX_KER_BYTE_CNT, size,
ESF_DZ_TX_KER_BUF_ADDR, addr);
}
static void
sfc_ef10_tx_qdesc_tso2_create(struct sfc_ef10_txq * const txq,
unsigned int added, uint16_t ipv4_id,
uint16_t outer_ipv4_id, uint32_t tcp_seq,
uint16_t tcp_mss)
{
EFX_POPULATE_QWORD_5(txq->txq_hw_ring[added & txq->ptr_mask],
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_OPTION_TYPE,
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
EFX_POPULATE_QWORD_5(txq->txq_hw_ring[(added + 1) & txq->ptr_mask],
ESF_DZ_TX_DESC_IS_OPT, 1,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_TSO,
ESF_DZ_TX_TSO_OPTION_TYPE,
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
}
static inline void
sfc_ef10_tx_qpush(struct sfc_ef10_txq *txq, unsigned int added,
unsigned int pushed)
{
efx_qword_t desc;
efx_oword_t oword;
/*
* This improves performance by pushing a TX descriptor at the same
* time as the doorbell. The descriptor must be added to the TXQ,
* so that can be used if the hardware decides not to use the pushed
* descriptor.
*/
desc.eq_u64[0] = txq->txq_hw_ring[pushed & txq->ptr_mask].eq_u64[0];
EFX_POPULATE_OWORD_3(oword,
ERF_DZ_TX_DESC_WPTR, added & txq->ptr_mask,
ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
/* DMA sync to device is not required */
/*
* rte_io_wmb() which guarantees that the STORE operations
* (i.e. Tx and event descriptor updates) that precede
* the rte_io_wmb() call are visible to NIC before the STORE
* operations that follow it (i.e. doorbell write).
*/
rte_io_wmb();
*(volatile efsys_uint128_t *)txq->doorbell = oword.eo_u128[0];
}
static unsigned int
sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf *m)
{
unsigned int extra_descs_per_seg;
unsigned int extra_descs_per_pkt;
/*
* VLAN offload is not supported yet, so no extra descriptors
* are required for VLAN option descriptor.
*/
/** Maximum length of the mbuf segment data */
#define SFC_MBUF_SEG_LEN_MAX UINT16_MAX
RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);
/*
* Each segment is already counted once below. So, calculate
* how many extra DMA descriptors may be required per segment in
* the worst case because of maximum DMA descriptor length limit.
* If maximum segment length is less or equal to maximum DMA
* descriptor length, no extra DMA descriptors are required.
*/
extra_descs_per_seg =
(SFC_MBUF_SEG_LEN_MAX - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX;
/** Maximum length of the packet */
#define SFC_MBUF_PKT_LEN_MAX UINT32_MAX
RTE_BUILD_BUG_ON(sizeof(m->pkt_len) != 4);
/*
* One more limitation on maximum number of extra DMA descriptors
* comes from slicing entire packet because of DMA descriptor length
* limit taking into account that there is at least one segment
* which is already counted below (so division of the maximum
* packet length minus one with round down).
* TSO is not supported yet, so packet length is limited by
* maximum PDU size.
*/
extra_descs_per_pkt =
(RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
SFC_MBUF_PKT_LEN_MAX) - 1) /
SFC_EF10_TX_DMA_DESC_LEN_MAX;
return m->nb_segs + RTE_MIN(m->nb_segs * extra_descs_per_seg,
extra_descs_per_pkt);
}
static bool
sfc_ef10_try_reap(struct sfc_ef10_txq * const txq, unsigned int added,
unsigned int needed_desc, unsigned int *dma_desc_space,
bool *reap_done)
{
if (*reap_done)
return false;
if (added != txq->added) {
sfc_ef10_tx_qpush(txq, added, txq->added);
txq->added = added;
}
sfc_ef10_tx_reap(txq);
*reap_done = true;
/*
* Recalculate DMA descriptor space since Tx reap may change
* the number of completed descriptors
*/
*dma_desc_space = txq->max_fill_level -
(added - txq->completed);
return (needed_desc <= *dma_desc_space);
}
static uint16_t
sfc_ef10_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
uint16_t i;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *m = tx_pkts[i];
int ret;
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
/*
* In non-TSO case, check that a packet segments do not exceed
* the size limit. Perform the check in debug mode since MTU
* more than 9k is not supported, but the limit here is 16k-1.
*/
if (!(m->ol_flags & PKT_TX_TCP_SEG)) {
struct rte_mbuf *m_seg;
for (m_seg = m; m_seg != NULL; m_seg = m_seg->next) {
if (m_seg->data_len >
SFC_EF10_TX_DMA_DESC_LEN_MAX) {
rte_errno = EINVAL;
break;
}
}
}
#endif
ret = sfc_dp_tx_prepare_pkt(m, 0, SFC_TSOH_STD_LEN,
txq->tso_tcp_header_offset_limit,
txq->max_fill_level,
SFC_EF10_TSO_OPT_DESCS_NUM, 0);
if (unlikely(ret != 0)) {
rte_errno = ret;
break;
}
}
return i;
}
static int
sfc_ef10_xmit_tso_pkt(struct sfc_ef10_txq * const txq, struct rte_mbuf *m_seg,
unsigned int *added, unsigned int *dma_desc_space,
bool *reap_done)
{
size_t iph_off = ((m_seg->ol_flags & PKT_TX_TUNNEL_MASK) ?
m_seg->outer_l2_len + m_seg->outer_l3_len : 0) +
m_seg->l2_len;
size_t tcph_off = iph_off + m_seg->l3_len;
size_t header_len = tcph_off + m_seg->l4_len;
/* Offset of the payload in the last segment that contains the header */
size_t in_off = 0;
const struct rte_tcp_hdr *th;
uint16_t packet_id = 0;
uint16_t outer_packet_id = 0;
uint32_t sent_seq;
uint8_t *hdr_addr;
rte_iova_t hdr_iova;
struct rte_mbuf *first_m_seg = m_seg;
unsigned int pkt_start = *added;
unsigned int needed_desc;
struct rte_mbuf *m_seg_to_free_up_to = first_m_seg;
bool eop;
/*
* Preliminary estimation of required DMA descriptors, including extra
* descriptor for TSO header that is needed when the header is
* separated from payload in one segment. It does not include
* extra descriptors that may appear when a big segment is split across
* several descriptors.
*/
needed_desc = m_seg->nb_segs +
(unsigned int)SFC_EF10_TSO_OPT_DESCS_NUM +
(unsigned int)SFC_EF10_TSO_HDR_DESCS_NUM;
if (needed_desc > *dma_desc_space &&
!sfc_ef10_try_reap(txq, pkt_start, needed_desc,
dma_desc_space, reap_done)) {
/*
* If a future Tx reap may increase available DMA descriptor
* space, do not try to send the packet.
*/
if (txq->completed != pkt_start)
return ENOSPC;
/*
* Do not allow to send packet if the maximum DMA
* descriptor space is not sufficient to hold TSO
* descriptors, header descriptor and at least 1
* segment descriptor.
*/
if (*dma_desc_space < SFC_EF10_TSO_OPT_DESCS_NUM +
SFC_EF10_TSO_HDR_DESCS_NUM + 1)
return EMSGSIZE;
}
/* Check if the header is not fragmented */
if (rte_pktmbuf_data_len(m_seg) >= header_len) {
hdr_addr = rte_pktmbuf_mtod(m_seg, uint8_t *);
hdr_iova = rte_mbuf_data_iova(m_seg);
if (rte_pktmbuf_data_len(m_seg) == header_len) {
/* Cannot send a packet that consists only of header */
if (unlikely(m_seg->next == NULL))
return EMSGSIZE;
/*
* Associate header mbuf with header descriptor
* which is located after TSO descriptors.
*/
txq->sw_ring[(pkt_start + SFC_EF10_TSO_OPT_DESCS_NUM) &
txq->ptr_mask].mbuf = m_seg;
m_seg = m_seg->next;
in_off = 0;
/*
* If there is no payload offset (payload starts at the
* beginning of a segment) then an extra descriptor for
* separated header is not needed.
*/
needed_desc--;
} else {
in_off = header_len;
}
} else {
unsigned int copied_segs;
unsigned int hdr_addr_off = (*added & txq->ptr_mask) *
SFC_TSOH_STD_LEN;
/*
* Discard a packet if header linearization is needed but
* the header is too big.
* Duplicate Tx prepare check here to avoid spoil of
* memory if Tx prepare is skipped.
*/
if (unlikely(header_len > SFC_TSOH_STD_LEN))
return EMSGSIZE;
hdr_addr = txq->tsoh + hdr_addr_off;
hdr_iova = txq->tsoh_iova + hdr_addr_off;
copied_segs = sfc_tso_prepare_header(hdr_addr, header_len,
&m_seg, &in_off);
/* Cannot send a packet that consists only of header */
if (unlikely(m_seg == NULL))
return EMSGSIZE;
m_seg_to_free_up_to = m_seg;
/*
* Reduce the number of needed descriptors by the number of
* segments that entirely consist of header data.
*/
needed_desc -= copied_segs;
/* Extra descriptor for separated header is not needed */
if (in_off == 0)
needed_desc--;
}
/*
* 8000-series EF10 hardware requires that innermost IP length
* be greater than or equal to the value which each segment is
* supposed to have; otherwise, TCP checksum will be incorrect.
*
* The same concern applies to outer UDP datagram length field.
*/
switch (m_seg->ol_flags & PKT_TX_TUNNEL_MASK) {
case PKT_TX_TUNNEL_VXLAN:
/* FALLTHROUGH */
case PKT_TX_TUNNEL_GENEVE:
sfc_tso_outer_udp_fix_len(first_m_seg, hdr_addr);
break;
default:
break;
}
sfc_tso_innermost_ip_fix_len(first_m_seg, hdr_addr, iph_off);
/*
* Tx prepare has debug-only checks that offload flags are correctly
* filled in in TSO mbuf. Use zero IPID if there is no IPv4 flag.
* If the packet is still IPv4, HW will simply start from zero IPID.
*/
if (first_m_seg->ol_flags & PKT_TX_IPV4)
packet_id = sfc_tso_ip4_get_ipid(hdr_addr, iph_off);
if (first_m_seg->ol_flags & PKT_TX_OUTER_IPV4)
outer_packet_id = sfc_tso_ip4_get_ipid(hdr_addr,
first_m_seg->outer_l2_len);
th = (const struct rte_tcp_hdr *)(hdr_addr + tcph_off);
rte_memcpy(&sent_seq, &th->sent_seq, sizeof(uint32_t));
sent_seq = rte_be_to_cpu_32(sent_seq);
sfc_ef10_tx_qdesc_tso2_create(txq, *added, packet_id, outer_packet_id,
sent_seq, first_m_seg->tso_segsz);
(*added) += SFC_EF10_TSO_OPT_DESCS_NUM;
sfc_ef10_tx_qdesc_dma_create(hdr_iova, header_len, false,
&txq->txq_hw_ring[(*added) & txq->ptr_mask]);
(*added)++;
do {
rte_iova_t next_frag = rte_mbuf_data_iova(m_seg);
unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
unsigned int id;
next_frag += in_off;
seg_len -= in_off;
in_off = 0;
do {
rte_iova_t frag_addr = next_frag;
size_t frag_len;
frag_len = RTE_MIN(seg_len,
SFC_EF10_TX_DMA_DESC_LEN_MAX);
next_frag += frag_len;
seg_len -= frag_len;
eop = (seg_len == 0 && m_seg->next == NULL);
id = (*added) & txq->ptr_mask;
(*added)++;
/*
* Initially we assume that one DMA descriptor is needed
* for every segment. When the segment is split across
* several DMA descriptors, increase the estimation.
*/
needed_desc += (seg_len != 0);
/*
* When no more descriptors can be added, but not all
* segments are processed.
*/
if (*added - pkt_start == *dma_desc_space &&
!eop &&
!sfc_ef10_try_reap(txq, pkt_start, needed_desc,
dma_desc_space, reap_done)) {
struct rte_mbuf *m;
struct rte_mbuf *m_next;
if (txq->completed != pkt_start) {
unsigned int i;
/*
* Reset mbuf associations with added
* descriptors.
*/
for (i = pkt_start; i != *added; i++) {
id = i & txq->ptr_mask;
txq->sw_ring[id].mbuf = NULL;
}
return ENOSPC;
}
/* Free the segments that cannot be sent */
for (m = m_seg->next; m != NULL; m = m_next) {
m_next = m->next;
rte_pktmbuf_free_seg(m);
}
eop = true;
/* Ignore the rest of the segment */
seg_len = 0;
}
sfc_ef10_tx_qdesc_dma_create(frag_addr, frag_len,
eop, &txq->txq_hw_ring[id]);
} while (seg_len != 0);
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
} while (!eop);
/*
* Free segments which content was entirely copied to the TSO header
* memory space of Tx queue
*/
for (m_seg = first_m_seg; m_seg != m_seg_to_free_up_to;) {
struct rte_mbuf *seg_to_free = m_seg;
m_seg = m_seg->next;
rte_pktmbuf_free_seg(seg_to_free);
}
return 0;
}
static uint16_t
sfc_ef10_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
unsigned int added;
unsigned int dma_desc_space;
bool reap_done;
struct rte_mbuf **pktp;
struct rte_mbuf **pktp_end;
if (unlikely(txq->flags &
(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
return 0;
added = txq->added;
dma_desc_space = txq->max_fill_level - (added - txq->completed);
reap_done = (dma_desc_space < txq->free_thresh);
if (reap_done) {
sfc_ef10_tx_reap(txq);
dma_desc_space = txq->max_fill_level - (added - txq->completed);
}
for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
pktp != pktp_end;
++pktp) {
struct rte_mbuf *m_seg = *pktp;
unsigned int pkt_start = added;
uint32_t pkt_len;
if (likely(pktp + 1 != pktp_end))
rte_mbuf_prefetch_part1(pktp[1]);
if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
int rc;
rc = sfc_ef10_xmit_tso_pkt(txq, m_seg, &added,
&dma_desc_space, &reap_done);
if (rc != 0) {
added = pkt_start;
/* Packet can be sent in following xmit calls */
if (likely(rc == ENOSPC))
break;
/*
* Packet cannot be sent, tell RTE that
* it is sent, but actually drop it and
* continue with another packet
*/
rte_pktmbuf_free(*pktp);
continue;
}
goto dma_desc_space_update;
}
if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) {
if (reap_done)
break;
/* Push already prepared descriptors before polling */
if (added != txq->added) {
sfc_ef10_tx_qpush(txq, added, txq->added);
txq->added = added;
}
sfc_ef10_tx_reap(txq);
reap_done = true;
dma_desc_space = txq->max_fill_level -
(added - txq->completed);
if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space)
break;
}
pkt_len = m_seg->pkt_len;
do {
rte_iova_t seg_addr = rte_mbuf_data_iova(m_seg);
unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
unsigned int id = added & txq->ptr_mask;
SFC_ASSERT(seg_len <= SFC_EF10_TX_DMA_DESC_LEN_MAX);
pkt_len -= seg_len;
sfc_ef10_tx_qdesc_dma_create(seg_addr,
seg_len, (pkt_len == 0),
&txq->txq_hw_ring[id]);
/*
* rte_pktmbuf_free() is commonly used in DPDK for
* recycling packets - the function checks every
* segment's reference counter and returns the
* buffer to its pool whenever possible;
* nevertheless, freeing mbuf segments one by one
* may entail some performance decline;
* from this point, sfc_efx_tx_reap() does the same job
* on its own and frees buffers in bulks (all mbufs
* within a bulk belong to the same pool);
* from this perspective, individual segment pointers
* must be associated with the corresponding SW
* descriptors independently so that only one loop
* is sufficient on reap to inspect all the buffers
*/
txq->sw_ring[id].mbuf = m_seg;
++added;
} while ((m_seg = m_seg->next) != 0);
dma_desc_space_update:
dma_desc_space -= (added - pkt_start);
}
if (likely(added != txq->added)) {
sfc_ef10_tx_qpush(txq, added, txq->added);
txq->added = added;
}
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
if (!reap_done)
sfc_ef10_tx_reap(txq);
#endif
return pktp - &tx_pkts[0];
}
static void
sfc_ef10_simple_tx_reap(struct sfc_ef10_txq *txq)
{
const unsigned int old_read_ptr = txq->evq_read_ptr;
const unsigned int ptr_mask = txq->ptr_mask;
unsigned int completed = txq->completed;
unsigned int pending = completed;
pending += sfc_ef10_tx_process_events(txq);
if (pending != completed) {
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
unsigned int nb = 0;
do {
struct sfc_ef10_tx_sw_desc *txd;
txd = &txq->sw_ring[completed & ptr_mask];
if (nb == RTE_DIM(bulk)) {
rte_mempool_put_bulk(bulk[0]->pool,
(void *)bulk, nb);
nb = 0;
}
bulk[nb++] = txd->mbuf;
} while (++completed != pending);
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
txq->completed = completed;
}
sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
txq->evq_read_ptr);
}
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
static uint16_t
sfc_ef10_simple_prepare_pkts(__rte_unused void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t i;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *m = tx_pkts[i];
int ret;
ret = rte_validate_tx_offload(m);
if (unlikely(ret != 0)) {
/*
* Negative error code is returned by
* rte_validate_tx_offload(), but positive are used
* inside net/sfc PMD.
*/
SFC_ASSERT(ret < 0);
rte_errno = -ret;
break;
}
/* ef10_simple does not support TSO and VLAN insertion */
if (unlikely(m->ol_flags &
(PKT_TX_TCP_SEG | PKT_TX_VLAN_PKT))) {
rte_errno = ENOTSUP;
break;
}
/* ef10_simple does not support scattered packets */
if (unlikely(m->nb_segs != 1)) {
rte_errno = ENOTSUP;
break;
}
/*
* ef10_simple requires fast-free which ignores reference
* counters
*/
if (unlikely(rte_mbuf_refcnt_read(m) != 1)) {
rte_errno = ENOTSUP;
break;
}
/* ef10_simple requires single pool for all packets */
if (unlikely(m->pool != tx_pkts[0]->pool)) {
rte_errno = ENOTSUP;
break;
}
}
return i;
}
#endif
static uint16_t
sfc_ef10_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
unsigned int ptr_mask;
unsigned int added;
unsigned int dma_desc_space;
bool reap_done;
struct rte_mbuf **pktp;
struct rte_mbuf **pktp_end;
if (unlikely(txq->flags &
(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
return 0;
ptr_mask = txq->ptr_mask;
added = txq->added;
dma_desc_space = txq->max_fill_level - (added - txq->completed);
reap_done = (dma_desc_space < RTE_MAX(txq->free_thresh, nb_pkts));
if (reap_done) {
sfc_ef10_simple_tx_reap(txq);
dma_desc_space = txq->max_fill_level - (added - txq->completed);
}
pktp_end = &tx_pkts[MIN(nb_pkts, dma_desc_space)];
for (pktp = &tx_pkts[0]; pktp != pktp_end; ++pktp) {
struct rte_mbuf *pkt = *pktp;
unsigned int id = added & ptr_mask;
SFC_ASSERT(rte_pktmbuf_data_len(pkt) <=
SFC_EF10_TX_DMA_DESC_LEN_MAX);
sfc_ef10_tx_qdesc_dma_create(rte_mbuf_data_iova(pkt),
rte_pktmbuf_data_len(pkt),
true, &txq->txq_hw_ring[id]);
txq->sw_ring[id].mbuf = pkt;
++added;
}
if (likely(added != txq->added)) {
sfc_ef10_tx_qpush(txq, added, txq->added);
txq->added = added;
}
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
if (!reap_done)
sfc_ef10_simple_tx_reap(txq);
#endif
return pktp - &tx_pkts[0];
}
static sfc_dp_tx_get_dev_info_t sfc_ef10_get_dev_info;
static void
sfc_ef10_get_dev_info(struct rte_eth_dev_info *dev_info)
{
/*
* Number of descriptors just defines maximum number of pushed
* descriptors (fill level).
*/
dev_info->tx_desc_lim.nb_min = 1;
dev_info->tx_desc_lim.nb_align = 1;
}
static sfc_dp_tx_qsize_up_rings_t sfc_ef10_tx_qsize_up_rings;
static int
sfc_ef10_tx_qsize_up_rings(uint16_t nb_tx_desc,
struct sfc_dp_tx_hw_limits *limits,
unsigned int *txq_entries,
unsigned int *evq_entries,
unsigned int *txq_max_fill_level)
{
/*
* rte_ethdev API guarantees that the number meets min, max and
* alignment requirements.
*/
if (nb_tx_desc <= limits->txq_min_entries)
*txq_entries = limits->txq_min_entries;
else
*txq_entries = rte_align32pow2(nb_tx_desc);
*evq_entries = *txq_entries;
*txq_max_fill_level = RTE_MIN(nb_tx_desc,
SFC_EF10_TXQ_LIMIT(*evq_entries));
return 0;
}
static sfc_dp_tx_qcreate_t sfc_ef10_tx_qcreate;
static int
sfc_ef10_tx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_tx_qcreate_info *info,
struct sfc_dp_txq **dp_txqp)
{
struct sfc_ef10_txq *txq;
int rc;
rc = EINVAL;
if (info->txq_entries != info->evq_entries)
goto fail_bad_args;
rc = ENOMEM;
txq = rte_zmalloc_socket("sfc-ef10-txq", sizeof(*txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL)
goto fail_txq_alloc;
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
txq->sw_ring = rte_calloc_socket("sfc-ef10-txq-sw_ring",
info->txq_entries,
sizeof(*txq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL)
goto fail_sw_ring_alloc;
if (info->offloads & (DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO)) {
txq->tsoh = rte_calloc_socket("sfc-ef10-txq-tsoh",
info->txq_entries,
SFC_TSOH_STD_LEN,
RTE_CACHE_LINE_SIZE,
socket_id);
if (txq->tsoh == NULL)
goto fail_tsoh_alloc;
txq->tsoh_iova = rte_malloc_virt2iova(txq->tsoh);
}
txq->flags = SFC_EF10_TXQ_NOT_RUNNING;
txq->ptr_mask = info->txq_entries - 1;
txq->max_fill_level = info->max_fill_level;
txq->free_thresh = info->free_thresh;
txq->txq_hw_ring = info->txq_hw_ring;
txq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_DZ_TX_DESC_UPD_REG_OFST +
(info->hw_index << info->vi_window_shift);
txq->evq_hw_ring = info->evq_hw_ring;
txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
sfc_ef10_tx_info(&txq->dp.dpq, "TxQ doorbell is %p", txq->doorbell);
*dp_txqp = &txq->dp;
return 0;
fail_tsoh_alloc:
rte_free(txq->sw_ring);
fail_sw_ring_alloc:
rte_free(txq);
fail_txq_alloc:
fail_bad_args:
return rc;
}
static sfc_dp_tx_qdestroy_t sfc_ef10_tx_qdestroy;
static void
sfc_ef10_tx_qdestroy(struct sfc_dp_txq *dp_txq)
{
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
rte_free(txq->tsoh);
rte_free(txq->sw_ring);
rte_free(txq);
}
static sfc_dp_tx_qstart_t sfc_ef10_tx_qstart;
static int
sfc_ef10_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
unsigned int txq_desc_index)
{
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
txq->evq_read_ptr = evq_read_ptr;
txq->added = txq->completed = txq_desc_index;
txq->flags |= SFC_EF10_TXQ_STARTED;
txq->flags &= ~(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION);
return 0;
}
static sfc_dp_tx_qstop_t sfc_ef10_tx_qstop;
static void
sfc_ef10_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
{
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
txq->flags |= SFC_EF10_TXQ_NOT_RUNNING;
*evq_read_ptr = txq->evq_read_ptr;
}
static sfc_dp_tx_qtx_ev_t sfc_ef10_tx_qtx_ev;
static bool
sfc_ef10_tx_qtx_ev(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int id)
{
__rte_unused struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
SFC_ASSERT(txq->flags & SFC_EF10_TXQ_NOT_RUNNING);
/*
* It is safe to ignore Tx event since we reap all mbufs on
* queue purge anyway.
*/
return false;
}
static sfc_dp_tx_qreap_t sfc_ef10_tx_qreap;
static void
sfc_ef10_tx_qreap(struct sfc_dp_txq *dp_txq)
{
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
unsigned int completed;
for (completed = txq->completed; completed != txq->added; ++completed) {
struct sfc_ef10_tx_sw_desc *txd;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf != NULL) {
rte_pktmbuf_free_seg(txd->mbuf);
txd->mbuf = NULL;
}
}
txq->flags &= ~SFC_EF10_TXQ_STARTED;
}
static unsigned int
sfc_ef10_tx_qdesc_npending(struct sfc_ef10_txq *txq)
{
const unsigned int curr_done = txq->completed - 1;
unsigned int anew_done = curr_done;
efx_qword_t tx_ev;
const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
if (unlikely(txq->flags &
(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
return 0;
while (sfc_ef10_tx_get_event(txq, &tx_ev))
anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
/*
* The function does not process events, so return event queue read
* pointer to the original position to allow the events that were
* read to be processed later
*/
txq->evq_read_ptr = evq_old_read_ptr;
return (anew_done - curr_done) & txq->ptr_mask;
}
static sfc_dp_tx_qdesc_status_t sfc_ef10_tx_qdesc_status;
static int
sfc_ef10_tx_qdesc_status(struct sfc_dp_txq *dp_txq,
uint16_t offset)
{
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
unsigned int npending = sfc_ef10_tx_qdesc_npending(txq);
if (unlikely(offset > txq->ptr_mask))
return -EINVAL;
if (unlikely(offset >= txq->max_fill_level))
return RTE_ETH_TX_DESC_UNAVAIL;
if (unlikely(offset < npending))
return RTE_ETH_TX_DESC_FULL;
return RTE_ETH_TX_DESC_DONE;
}
struct sfc_dp_tx sfc_ef10_tx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF10,
.type = SFC_DP_TX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF10,
},
.features = SFC_DP_TX_FEAT_MULTI_PROCESS,
.dev_offload_capa = DEV_TX_OFFLOAD_MULTI_SEGS,
.queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO,
.get_dev_info = sfc_ef10_get_dev_info,
.qsize_up_rings = sfc_ef10_tx_qsize_up_rings,
.qcreate = sfc_ef10_tx_qcreate,
.qdestroy = sfc_ef10_tx_qdestroy,
.qstart = sfc_ef10_tx_qstart,
.qtx_ev = sfc_ef10_tx_qtx_ev,
.qstop = sfc_ef10_tx_qstop,
.qreap = sfc_ef10_tx_qreap,
.qdesc_status = sfc_ef10_tx_qdesc_status,
.pkt_prepare = sfc_ef10_prepare_pkts,
.pkt_burst = sfc_ef10_xmit_pkts,
};
struct sfc_dp_tx sfc_ef10_simple_tx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF10_SIMPLE,
.type = SFC_DP_TX,
},
.features = SFC_DP_TX_FEAT_MULTI_PROCESS,
.dev_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE,
.queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM,
.get_dev_info = sfc_ef10_get_dev_info,
.qsize_up_rings = sfc_ef10_tx_qsize_up_rings,
.qcreate = sfc_ef10_tx_qcreate,
.qdestroy = sfc_ef10_tx_qdestroy,
.qstart = sfc_ef10_tx_qstart,
.qtx_ev = sfc_ef10_tx_qtx_ev,
.qstop = sfc_ef10_tx_qstop,
.qreap = sfc_ef10_tx_qreap,
.qdesc_status = sfc_ef10_tx_qdesc_status,
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
.pkt_prepare = sfc_ef10_simple_prepare_pkts,
#endif
.pkt_burst = sfc_ef10_simple_xmit_pkts,
};