numam-dpdk/lib/kni/rte_kni.c
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

834 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef RTE_EXEC_ENV_LINUX
#error "KNI is not supported"
#endif
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/version.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include <rte_kni.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_rwlock.h>
#include <rte_eal_memconfig.h>
#include <rte_kni_common.h>
#include "rte_kni_fifo.h"
#define MAX_MBUF_BURST_NUM 32
/* Maximum number of ring entries */
#define KNI_FIFO_COUNT_MAX 1024
#define KNI_FIFO_SIZE (KNI_FIFO_COUNT_MAX * sizeof(void *) + \
sizeof(struct rte_kni_fifo))
#define KNI_REQUEST_MBUF_NUM_MAX 32
#define KNI_MEM_CHECK(cond, fail) do { if (cond) goto fail; } while (0)
#define KNI_MZ_NAME_FMT "kni_info_%s"
#define KNI_TX_Q_MZ_NAME_FMT "kni_tx_%s"
#define KNI_RX_Q_MZ_NAME_FMT "kni_rx_%s"
#define KNI_ALLOC_Q_MZ_NAME_FMT "kni_alloc_%s"
#define KNI_FREE_Q_MZ_NAME_FMT "kni_free_%s"
#define KNI_REQ_Q_MZ_NAME_FMT "kni_req_%s"
#define KNI_RESP_Q_MZ_NAME_FMT "kni_resp_%s"
#define KNI_SYNC_ADDR_MZ_NAME_FMT "kni_sync_%s"
TAILQ_HEAD(rte_kni_list, rte_tailq_entry);
static struct rte_tailq_elem rte_kni_tailq = {
.name = "RTE_KNI",
};
EAL_REGISTER_TAILQ(rte_kni_tailq)
/**
* KNI context
*/
struct rte_kni {
char name[RTE_KNI_NAMESIZE]; /**< KNI interface name */
uint16_t group_id; /**< Group ID of KNI devices */
uint32_t slot_id; /**< KNI pool slot ID */
struct rte_mempool *pktmbuf_pool; /**< pkt mbuf mempool */
unsigned int mbuf_size; /**< mbuf size */
const struct rte_memzone *m_tx_q; /**< TX queue memzone */
const struct rte_memzone *m_rx_q; /**< RX queue memzone */
const struct rte_memzone *m_alloc_q;/**< Alloc queue memzone */
const struct rte_memzone *m_free_q; /**< Free queue memzone */
struct rte_kni_fifo *tx_q; /**< TX queue */
struct rte_kni_fifo *rx_q; /**< RX queue */
struct rte_kni_fifo *alloc_q; /**< Allocated mbufs queue */
struct rte_kni_fifo *free_q; /**< To be freed mbufs queue */
const struct rte_memzone *m_req_q; /**< Request queue memzone */
const struct rte_memzone *m_resp_q; /**< Response queue memzone */
const struct rte_memzone *m_sync_addr;/**< Sync addr memzone */
/* For request & response */
struct rte_kni_fifo *req_q; /**< Request queue */
struct rte_kni_fifo *resp_q; /**< Response queue */
void *sync_addr; /**< Req/Resp Mem address */
struct rte_kni_ops ops; /**< operations for request */
};
enum kni_ops_status {
KNI_REQ_NO_REGISTER = 0,
KNI_REQ_REGISTERED,
};
static void kni_free_mbufs(struct rte_kni *kni);
static void kni_allocate_mbufs(struct rte_kni *kni);
static volatile int kni_fd = -1;
/* Shall be called before any allocation happens */
int
rte_kni_init(unsigned int max_kni_ifaces __rte_unused)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
if (rte_eal_iova_mode() != RTE_IOVA_PA) {
RTE_LOG(ERR, KNI, "KNI requires IOVA as PA\n");
return -1;
}
#endif
/* Check FD and open */
if (kni_fd < 0) {
kni_fd = open("/dev/" KNI_DEVICE, O_RDWR);
if (kni_fd < 0) {
RTE_LOG(ERR, KNI,
"Can not open /dev/%s\n", KNI_DEVICE);
return -1;
}
}
return 0;
}
static struct rte_kni *
__rte_kni_get(const char *name)
{
struct rte_kni *kni;
struct rte_tailq_entry *te;
struct rte_kni_list *kni_list;
kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list);
TAILQ_FOREACH(te, kni_list, next) {
kni = te->data;
if (strncmp(name, kni->name, RTE_KNI_NAMESIZE) == 0)
break;
}
if (te == NULL)
kni = NULL;
return kni;
}
static int
kni_reserve_mz(struct rte_kni *kni)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_TX_Q_MZ_NAME_FMT, kni->name);
kni->m_tx_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_tx_q == NULL, tx_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_RX_Q_MZ_NAME_FMT, kni->name);
kni->m_rx_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_rx_q == NULL, rx_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_ALLOC_Q_MZ_NAME_FMT, kni->name);
kni->m_alloc_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_alloc_q == NULL, alloc_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_FREE_Q_MZ_NAME_FMT, kni->name);
kni->m_free_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_free_q == NULL, free_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_REQ_Q_MZ_NAME_FMT, kni->name);
kni->m_req_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_req_q == NULL, req_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_RESP_Q_MZ_NAME_FMT, kni->name);
kni->m_resp_q = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_resp_q == NULL, resp_q_fail);
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, KNI_SYNC_ADDR_MZ_NAME_FMT, kni->name);
kni->m_sync_addr = rte_memzone_reserve(mz_name, KNI_FIFO_SIZE, SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG);
KNI_MEM_CHECK(kni->m_sync_addr == NULL, sync_addr_fail);
return 0;
sync_addr_fail:
rte_memzone_free(kni->m_resp_q);
resp_q_fail:
rte_memzone_free(kni->m_req_q);
req_q_fail:
rte_memzone_free(kni->m_free_q);
free_q_fail:
rte_memzone_free(kni->m_alloc_q);
alloc_q_fail:
rte_memzone_free(kni->m_rx_q);
rx_q_fail:
rte_memzone_free(kni->m_tx_q);
tx_q_fail:
return -1;
}
static void
kni_release_mz(struct rte_kni *kni)
{
rte_memzone_free(kni->m_tx_q);
rte_memzone_free(kni->m_rx_q);
rte_memzone_free(kni->m_alloc_q);
rte_memzone_free(kni->m_free_q);
rte_memzone_free(kni->m_req_q);
rte_memzone_free(kni->m_resp_q);
rte_memzone_free(kni->m_sync_addr);
}
struct rte_kni *
rte_kni_alloc(struct rte_mempool *pktmbuf_pool,
const struct rte_kni_conf *conf,
struct rte_kni_ops *ops)
{
int ret;
struct rte_kni_device_info dev_info;
struct rte_kni *kni;
struct rte_tailq_entry *te;
struct rte_kni_list *kni_list;
if (!pktmbuf_pool || !conf || !conf->name[0])
return NULL;
/* Check if KNI subsystem has been initialized */
if (kni_fd < 0) {
RTE_LOG(ERR, KNI, "KNI subsystem has not been initialized. Invoke rte_kni_init() first\n");
return NULL;
}
rte_mcfg_tailq_write_lock();
kni = __rte_kni_get(conf->name);
if (kni != NULL) {
RTE_LOG(ERR, KNI, "KNI already exists\n");
goto unlock;
}
te = rte_zmalloc("KNI_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, KNI, "Failed to allocate tailq entry\n");
goto unlock;
}
kni = rte_zmalloc("KNI", sizeof(struct rte_kni), RTE_CACHE_LINE_SIZE);
if (kni == NULL) {
RTE_LOG(ERR, KNI, "KNI memory allocation failed\n");
goto kni_fail;
}
strlcpy(kni->name, conf->name, RTE_KNI_NAMESIZE);
if (ops)
memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops));
else
kni->ops.port_id = UINT16_MAX;
memset(&dev_info, 0, sizeof(dev_info));
dev_info.core_id = conf->core_id;
dev_info.force_bind = conf->force_bind;
dev_info.group_id = conf->group_id;
dev_info.mbuf_size = conf->mbuf_size;
dev_info.mtu = conf->mtu;
dev_info.min_mtu = conf->min_mtu;
dev_info.max_mtu = conf->max_mtu;
memcpy(dev_info.mac_addr, conf->mac_addr, RTE_ETHER_ADDR_LEN);
strlcpy(dev_info.name, conf->name, RTE_KNI_NAMESIZE);
ret = kni_reserve_mz(kni);
if (ret < 0)
goto mz_fail;
/* TX RING */
kni->tx_q = kni->m_tx_q->addr;
kni_fifo_init(kni->tx_q, KNI_FIFO_COUNT_MAX);
dev_info.tx_phys = kni->m_tx_q->iova;
/* RX RING */
kni->rx_q = kni->m_rx_q->addr;
kni_fifo_init(kni->rx_q, KNI_FIFO_COUNT_MAX);
dev_info.rx_phys = kni->m_rx_q->iova;
/* ALLOC RING */
kni->alloc_q = kni->m_alloc_q->addr;
kni_fifo_init(kni->alloc_q, KNI_FIFO_COUNT_MAX);
dev_info.alloc_phys = kni->m_alloc_q->iova;
/* FREE RING */
kni->free_q = kni->m_free_q->addr;
kni_fifo_init(kni->free_q, KNI_FIFO_COUNT_MAX);
dev_info.free_phys = kni->m_free_q->iova;
/* Request RING */
kni->req_q = kni->m_req_q->addr;
kni_fifo_init(kni->req_q, KNI_FIFO_COUNT_MAX);
dev_info.req_phys = kni->m_req_q->iova;
/* Response RING */
kni->resp_q = kni->m_resp_q->addr;
kni_fifo_init(kni->resp_q, KNI_FIFO_COUNT_MAX);
dev_info.resp_phys = kni->m_resp_q->iova;
/* Req/Resp sync mem area */
kni->sync_addr = kni->m_sync_addr->addr;
dev_info.sync_va = kni->m_sync_addr->addr;
dev_info.sync_phys = kni->m_sync_addr->iova;
kni->pktmbuf_pool = pktmbuf_pool;
kni->group_id = conf->group_id;
kni->mbuf_size = conf->mbuf_size;
dev_info.iova_mode = (rte_eal_iova_mode() == RTE_IOVA_VA) ? 1 : 0;
ret = ioctl(kni_fd, RTE_KNI_IOCTL_CREATE, &dev_info);
if (ret < 0)
goto ioctl_fail;
te->data = kni;
kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list);
TAILQ_INSERT_TAIL(kni_list, te, next);
rte_mcfg_tailq_write_unlock();
/* Allocate mbufs and then put them into alloc_q */
kni_allocate_mbufs(kni);
return kni;
ioctl_fail:
kni_release_mz(kni);
mz_fail:
rte_free(kni);
kni_fail:
rte_free(te);
unlock:
rte_mcfg_tailq_write_unlock();
return NULL;
}
static void
kni_free_fifo(struct rte_kni_fifo *fifo)
{
int ret;
struct rte_mbuf *pkt;
do {
ret = kni_fifo_get(fifo, (void **)&pkt, 1);
if (ret)
rte_pktmbuf_free(pkt);
} while (ret);
}
static void *
va2pa(struct rte_mbuf *m)
{
return (void *)((unsigned long)m -
((unsigned long)m->buf_addr -
(unsigned long)m->buf_iova));
}
static void *
va2pa_all(struct rte_mbuf *mbuf)
{
void *phy_mbuf = va2pa(mbuf);
struct rte_mbuf *next = mbuf->next;
while (next) {
mbuf->next = va2pa(next);
mbuf = next;
next = mbuf->next;
}
return phy_mbuf;
}
static void
obj_free(struct rte_mempool *mp __rte_unused, void *opaque, void *obj,
unsigned obj_idx __rte_unused)
{
struct rte_mbuf *m = obj;
void *mbuf_phys = opaque;
if (va2pa(m) == mbuf_phys)
rte_pktmbuf_free(m);
}
static void
kni_free_fifo_phy(struct rte_mempool *mp, struct rte_kni_fifo *fifo)
{
void *mbuf_phys;
int ret;
do {
ret = kni_fifo_get(fifo, &mbuf_phys, 1);
if (ret)
rte_mempool_obj_iter(mp, obj_free, mbuf_phys);
} while (ret);
}
int
rte_kni_release(struct rte_kni *kni)
{
struct rte_tailq_entry *te;
struct rte_kni_list *kni_list;
struct rte_kni_device_info dev_info;
uint32_t retry = 5;
if (!kni)
return -1;
kni_list = RTE_TAILQ_CAST(rte_kni_tailq.head, rte_kni_list);
rte_mcfg_tailq_write_lock();
TAILQ_FOREACH(te, kni_list, next) {
if (te->data == kni)
break;
}
if (te == NULL)
goto unlock;
strlcpy(dev_info.name, kni->name, sizeof(dev_info.name));
if (ioctl(kni_fd, RTE_KNI_IOCTL_RELEASE, &dev_info) < 0) {
RTE_LOG(ERR, KNI, "Fail to release kni device\n");
goto unlock;
}
TAILQ_REMOVE(kni_list, te, next);
rte_mcfg_tailq_write_unlock();
/* mbufs in all fifo should be released, except request/response */
/* wait until all rxq packets processed by kernel */
while (kni_fifo_count(kni->rx_q) && retry--)
usleep(1000);
if (kni_fifo_count(kni->rx_q))
RTE_LOG(ERR, KNI, "Fail to free all Rx-q items\n");
kni_free_fifo_phy(kni->pktmbuf_pool, kni->alloc_q);
kni_free_fifo(kni->tx_q);
kni_free_fifo(kni->free_q);
kni_release_mz(kni);
rte_free(kni);
rte_free(te);
return 0;
unlock:
rte_mcfg_tailq_write_unlock();
return -1;
}
/* default callback for request of configuring device mac address */
static int
kni_config_mac_address(uint16_t port_id, uint8_t mac_addr[])
{
int ret = 0;
if (!rte_eth_dev_is_valid_port(port_id)) {
RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id);
return -EINVAL;
}
RTE_LOG(INFO, KNI, "Configure mac address of %d", port_id);
ret = rte_eth_dev_default_mac_addr_set(port_id,
(struct rte_ether_addr *)mac_addr);
if (ret < 0)
RTE_LOG(ERR, KNI, "Failed to config mac_addr for port %d\n",
port_id);
return ret;
}
/* default callback for request of configuring promiscuous mode */
static int
kni_config_promiscusity(uint16_t port_id, uint8_t to_on)
{
int ret;
if (!rte_eth_dev_is_valid_port(port_id)) {
RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id);
return -EINVAL;
}
RTE_LOG(INFO, KNI, "Configure promiscuous mode of %d to %d\n",
port_id, to_on);
if (to_on)
ret = rte_eth_promiscuous_enable(port_id);
else
ret = rte_eth_promiscuous_disable(port_id);
if (ret != 0)
RTE_LOG(ERR, KNI,
"Failed to %s promiscuous mode for port %u: %s\n",
to_on ? "enable" : "disable", port_id,
rte_strerror(-ret));
return ret;
}
/* default callback for request of configuring allmulticast mode */
static int
kni_config_allmulticast(uint16_t port_id, uint8_t to_on)
{
if (!rte_eth_dev_is_valid_port(port_id)) {
RTE_LOG(ERR, KNI, "Invalid port id %d\n", port_id);
return -EINVAL;
}
RTE_LOG(INFO, KNI, "Configure allmulticast mode of %d to %d\n",
port_id, to_on);
if (to_on)
rte_eth_allmulticast_enable(port_id);
else
rte_eth_allmulticast_disable(port_id);
return 0;
}
int
rte_kni_handle_request(struct rte_kni *kni)
{
unsigned int ret;
struct rte_kni_request *req = NULL;
if (kni == NULL)
return -1;
/* Get request mbuf */
ret = kni_fifo_get(kni->req_q, (void **)&req, 1);
if (ret != 1)
return 0; /* It is OK of can not getting the request mbuf */
if (req != kni->sync_addr) {
RTE_LOG(ERR, KNI, "Wrong req pointer %p\n", req);
return -1;
}
/* Analyze the request and call the relevant actions for it */
switch (req->req_id) {
case RTE_KNI_REQ_CHANGE_MTU: /* Change MTU */
if (kni->ops.change_mtu)
req->result = kni->ops.change_mtu(kni->ops.port_id,
req->new_mtu);
break;
case RTE_KNI_REQ_CFG_NETWORK_IF: /* Set network interface up/down */
if (kni->ops.config_network_if)
req->result = kni->ops.config_network_if(kni->ops.port_id,
req->if_up);
break;
case RTE_KNI_REQ_CHANGE_MAC_ADDR: /* Change MAC Address */
if (kni->ops.config_mac_address)
req->result = kni->ops.config_mac_address(
kni->ops.port_id, req->mac_addr);
else if (kni->ops.port_id != UINT16_MAX)
req->result = kni_config_mac_address(
kni->ops.port_id, req->mac_addr);
break;
case RTE_KNI_REQ_CHANGE_PROMISC: /* Change PROMISCUOUS MODE */
if (kni->ops.config_promiscusity)
req->result = kni->ops.config_promiscusity(
kni->ops.port_id, req->promiscusity);
else if (kni->ops.port_id != UINT16_MAX)
req->result = kni_config_promiscusity(
kni->ops.port_id, req->promiscusity);
break;
case RTE_KNI_REQ_CHANGE_ALLMULTI: /* Change ALLMULTICAST MODE */
if (kni->ops.config_allmulticast)
req->result = kni->ops.config_allmulticast(
kni->ops.port_id, req->allmulti);
else if (kni->ops.port_id != UINT16_MAX)
req->result = kni_config_allmulticast(
kni->ops.port_id, req->allmulti);
break;
default:
RTE_LOG(ERR, KNI, "Unknown request id %u\n", req->req_id);
req->result = -EINVAL;
break;
}
/* if needed, construct response buffer and put it back to resp_q */
if (!req->async)
ret = kni_fifo_put(kni->resp_q, (void **)&req, 1);
else
ret = 1;
if (ret != 1) {
RTE_LOG(ERR, KNI, "Fail to put the muf back to resp_q\n");
return -1; /* It is an error of can't putting the mbuf back */
}
return 0;
}
unsigned
rte_kni_tx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned int num)
{
num = RTE_MIN(kni_fifo_free_count(kni->rx_q), num);
void *phy_mbufs[num];
unsigned int ret;
unsigned int i;
for (i = 0; i < num; i++)
phy_mbufs[i] = va2pa_all(mbufs[i]);
ret = kni_fifo_put(kni->rx_q, phy_mbufs, num);
/* Get mbufs from free_q and then free them */
kni_free_mbufs(kni);
return ret;
}
unsigned
rte_kni_rx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned int num)
{
unsigned int ret = kni_fifo_get(kni->tx_q, (void **)mbufs, num);
/* If buffers removed, allocate mbufs and then put them into alloc_q */
if (ret)
kni_allocate_mbufs(kni);
return ret;
}
static void
kni_free_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
ret = kni_fifo_get(kni->free_q, (void **)pkts, MAX_MBUF_BURST_NUM);
if (likely(ret > 0)) {
for (i = 0; i < ret; i++)
rte_pktmbuf_free(pkts[i]);
}
}
static void
kni_allocate_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
void *phys[MAX_MBUF_BURST_NUM];
int allocq_free;
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pool) !=
offsetof(struct rte_kni_mbuf, pool));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_addr) !=
offsetof(struct rte_kni_mbuf, buf_addr));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, next) !=
offsetof(struct rte_kni_mbuf, next));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) !=
offsetof(struct rte_kni_mbuf, data_off));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_kni_mbuf, data_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_kni_mbuf, pkt_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_kni_mbuf, ol_flags));
/* Check if pktmbuf pool has been configured */
if (kni->pktmbuf_pool == NULL) {
RTE_LOG(ERR, KNI, "No valid mempool for allocating mbufs\n");
return;
}
allocq_free = (kni->alloc_q->read - kni->alloc_q->write - 1)
& (MAX_MBUF_BURST_NUM - 1);
for (i = 0; i < allocq_free; i++) {
pkts[i] = rte_pktmbuf_alloc(kni->pktmbuf_pool);
if (unlikely(pkts[i] == NULL)) {
/* Out of memory */
RTE_LOG(ERR, KNI, "Out of memory\n");
break;
}
phys[i] = va2pa(pkts[i]);
}
/* No pkt mbuf allocated */
if (i <= 0)
return;
ret = kni_fifo_put(kni->alloc_q, phys, i);
/* Check if any mbufs not put into alloc_q, and then free them */
if (ret >= 0 && ret < i && ret < MAX_MBUF_BURST_NUM) {
int j;
for (j = ret; j < i; j++)
rte_pktmbuf_free(pkts[j]);
}
}
struct rte_kni *
rte_kni_get(const char *name)
{
struct rte_kni *kni;
if (name == NULL || name[0] == '\0')
return NULL;
rte_mcfg_tailq_read_lock();
kni = __rte_kni_get(name);
rte_mcfg_tailq_read_unlock();
return kni;
}
const char *
rte_kni_get_name(const struct rte_kni *kni)
{
return kni->name;
}
static enum kni_ops_status
kni_check_request_register(struct rte_kni_ops *ops)
{
/* check if KNI request ops has been registered*/
if (ops == NULL)
return KNI_REQ_NO_REGISTER;
if (ops->change_mtu == NULL
&& ops->config_network_if == NULL
&& ops->config_mac_address == NULL
&& ops->config_promiscusity == NULL
&& ops->config_allmulticast == NULL)
return KNI_REQ_NO_REGISTER;
return KNI_REQ_REGISTERED;
}
int
rte_kni_register_handlers(struct rte_kni *kni, struct rte_kni_ops *ops)
{
enum kni_ops_status req_status;
if (ops == NULL) {
RTE_LOG(ERR, KNI, "Invalid KNI request operation.\n");
return -1;
}
if (kni == NULL) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
req_status = kni_check_request_register(&kni->ops);
if (req_status == KNI_REQ_REGISTERED) {
RTE_LOG(ERR, KNI, "The KNI request operation has already registered.\n");
return -1;
}
memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops));
return 0;
}
int
rte_kni_unregister_handlers(struct rte_kni *kni)
{
if (kni == NULL) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
memset(&kni->ops, 0, sizeof(struct rte_kni_ops));
return 0;
}
int
rte_kni_update_link(struct rte_kni *kni, unsigned int linkup)
{
char path[64];
char old_carrier[2];
const char *new_carrier;
int old_linkup;
int fd, ret;
if (kni == NULL)
return -1;
snprintf(path, sizeof(path), "/sys/devices/virtual/net/%s/carrier",
kni->name);
fd = open(path, O_RDWR);
if (fd == -1) {
RTE_LOG(ERR, KNI, "Failed to open file: %s.\n", path);
return -1;
}
ret = read(fd, old_carrier, 2);
if (ret < 1) {
close(fd);
return -1;
}
old_linkup = (old_carrier[0] == '1');
new_carrier = linkup ? "1" : "0";
ret = write(fd, new_carrier, 1);
if (ret < 1) {
RTE_LOG(ERR, KNI, "Failed to write file: %s.\n", path);
close(fd);
return -1;
}
close(fd);
return old_linkup;
}
void
rte_kni_close(void)
{
if (kni_fd < 0)
return;
close(kni_fd);
kni_fd = -1;
}