numam-dpdk/drivers/net/bnxt/bnxt_flow.c
Gaurav Singh d4cb1e71ed net/bnxt: remove redundant null check
In bnxt_validate_and_parse_flow_type
vxlan_spec cannot be NULL since its already being accessed
before. Remove the redundant NULL check.

Signed-off-by: Gaurav Singh <gaurav1086@gmail.com>
Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2020-09-18 18:55:07 +02:00

2062 lines
53 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Broadcom
* All rights reserved.
*/
#include <sys/queue.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include <rte_tailq.h>
#include <rte_alarm.h>
#include <rte_cycles.h>
#include "bnxt.h"
#include "bnxt_filter.h"
#include "bnxt_hwrm.h"
#include "bnxt_ring.h"
#include "bnxt_rxq.h"
#include "bnxt_rxr.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
static int
bnxt_flow_args_validate(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
if (!pattern) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL,
"NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL,
"NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL,
"NULL attribute.");
return -rte_errno;
}
return 0;
}
static const struct rte_flow_item *
bnxt_flow_non_void_item(const struct rte_flow_item *cur)
{
while (1) {
if (cur->type != RTE_FLOW_ITEM_TYPE_VOID)
return cur;
cur++;
}
}
static const struct rte_flow_action *
bnxt_flow_non_void_action(const struct rte_flow_action *cur)
{
while (1) {
if (cur->type != RTE_FLOW_ACTION_TYPE_VOID)
return cur;
cur++;
}
}
static int
bnxt_filter_type_check(const struct rte_flow_item pattern[],
struct rte_flow_error *error)
{
const struct rte_flow_item *item =
bnxt_flow_non_void_item(pattern);
int use_ntuple = 1;
bool has_vlan = 0;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ANY:
case RTE_FLOW_ITEM_TYPE_ETH:
use_ntuple = 0;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
use_ntuple = 0;
has_vlan = 1;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
case RTE_FLOW_ITEM_TYPE_IPV6:
case RTE_FLOW_ITEM_TYPE_TCP:
case RTE_FLOW_ITEM_TYPE_UDP:
/* FALLTHROUGH */
/* need ntuple match, reset exact match */
use_ntuple |= 1;
break;
default:
PMD_DRV_LOG(DEBUG, "Unknown Flow type\n");
use_ntuple |= 0;
}
item++;
}
if (has_vlan && use_ntuple) {
PMD_DRV_LOG(ERR,
"VLAN flow cannot use NTUPLE filter\n");
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Cannot use VLAN with NTUPLE");
return -rte_errno;
}
return use_ntuple;
}
static int
bnxt_validate_and_parse_flow_type(struct bnxt *bp,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
struct rte_flow_error *error,
struct bnxt_filter_info *filter)
{
const struct rte_flow_item *item = bnxt_flow_non_void_item(pattern);
const struct rte_flow_item_vlan *vlan_spec, *vlan_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_ether_addr *dst, *src;
const struct rte_flow_item_nvgre *nvgre_spec;
const struct rte_flow_item_nvgre *nvgre_mask;
const struct rte_flow_item_gre *gre_spec;
const struct rte_flow_item_gre *gre_mask;
const struct rte_flow_item_vxlan *vxlan_spec;
const struct rte_flow_item_vxlan *vxlan_mask;
uint8_t vni_mask[] = {0xFF, 0xFF, 0xFF};
uint8_t tni_mask[] = {0xFF, 0xFF, 0xFF};
const struct rte_flow_item_vf *vf_spec;
uint32_t tenant_id_be = 0, valid_flags = 0;
bool vni_masked = 0;
bool tni_masked = 0;
uint32_t en_ethertype;
uint8_t inner = 0;
uint32_t vf = 0;
uint32_t en = 0;
int use_ntuple;
int dflt_vnic;
use_ntuple = bnxt_filter_type_check(pattern, error);
if (use_ntuple < 0)
return use_ntuple;
PMD_DRV_LOG(DEBUG, "Use NTUPLE %d\n", use_ntuple);
filter->filter_type = use_ntuple ?
HWRM_CFA_NTUPLE_FILTER : HWRM_CFA_L2_FILTER;
en_ethertype = use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE :
EM_FLOW_ALLOC_INPUT_EN_ETHERTYPE;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (item->last) {
/* last or range is NOT supported as match criteria */
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"No support for range");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ANY:
inner =
((const struct rte_flow_item_any *)item->spec)->num > 3;
if (inner)
PMD_DRV_LOG(DEBUG, "Parse inner header\n");
break;
case RTE_FLOW_ITEM_TYPE_ETH:
if (!item->spec || !item->mask)
break;
eth_spec = item->spec;
eth_mask = item->mask;
/* Source MAC address mask cannot be partially set.
* Should be All 0's or all 1's.
* Destination MAC address mask must not be partially
* set. Should be all 1's or all 0's.
*/
if ((!rte_is_zero_ether_addr(&eth_mask->src) &&
!rte_is_broadcast_ether_addr(&eth_mask->src)) ||
(!rte_is_zero_ether_addr(&eth_mask->dst) &&
!rte_is_broadcast_ether_addr(&eth_mask->dst))) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"MAC_addr mask not valid");
return -rte_errno;
}
/* Mask is not allowed. Only exact matches are */
if (eth_mask->type &&
eth_mask->type != RTE_BE16(0xffff)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"ethertype mask not valid");
return -rte_errno;
}
if (rte_is_broadcast_ether_addr(&eth_mask->dst)) {
dst = &eth_spec->dst;
if (!rte_is_valid_assigned_ether_addr(dst)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"DMAC is invalid");
PMD_DRV_LOG(ERR,
"DMAC is invalid!\n");
return -rte_errno;
}
rte_memcpy(filter->dst_macaddr,
&eth_spec->dst, RTE_ETHER_ADDR_LEN);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR :
EM_FLOW_ALLOC_INPUT_EN_DST_MACADDR;
valid_flags |= inner ?
BNXT_FLOW_L2_INNER_DST_VALID_FLAG :
BNXT_FLOW_L2_DST_VALID_FLAG;
filter->priority = attr->priority;
PMD_DRV_LOG(DEBUG,
"Creating a priority flow\n");
}
if (rte_is_broadcast_ether_addr(&eth_mask->src)) {
src = &eth_spec->src;
if (!rte_is_valid_assigned_ether_addr(src)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"SMAC is invalid");
PMD_DRV_LOG(ERR,
"SMAC is invalid!\n");
return -rte_errno;
}
rte_memcpy(filter->src_macaddr,
&eth_spec->src, RTE_ETHER_ADDR_LEN);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_MACADDR :
EM_FLOW_ALLOC_INPUT_EN_SRC_MACADDR;
valid_flags |= inner ?
BNXT_FLOW_L2_INNER_SRC_VALID_FLAG :
BNXT_FLOW_L2_SRC_VALID_FLAG;
} /*
* else {
* PMD_DRV_LOG(ERR, "Handle this condition\n");
* }
*/
if (eth_mask->type) {
filter->ethertype =
rte_be_to_cpu_16(eth_spec->type);
en |= en_ethertype;
}
if (inner)
valid_flags |= BNXT_FLOW_PARSE_INNER_FLAG;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
vlan_spec = item->spec;
vlan_mask = item->mask;
if (en & en_ethertype) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VLAN TPID matching is not"
" supported");
return -rte_errno;
}
if (vlan_mask->tci &&
vlan_mask->tci == RTE_BE16(0x0fff)) {
/* Only the VLAN ID can be matched. */
filter->l2_ovlan =
rte_be_to_cpu_16(vlan_spec->tci &
RTE_BE16(0x0fff));
en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
} else {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VLAN mask is invalid");
return -rte_errno;
}
if (vlan_mask->inner_type &&
vlan_mask->inner_type != RTE_BE16(0xffff)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"inner ethertype mask not"
" valid");
return -rte_errno;
}
if (vlan_mask->inner_type) {
filter->ethertype =
rte_be_to_cpu_16(vlan_spec->inner_type);
en |= en_ethertype;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
/* If mask is not involved, we could use EM filters. */
ipv4_spec = item->spec;
ipv4_mask = item->mask;
if (!item->spec || !item->mask)
break;
/* Only IP DST and SRC fields are maskable. */
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.next_proto_id ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv4 mask.");
return -rte_errno;
}
filter->dst_ipaddr[0] = ipv4_spec->hdr.dst_addr;
filter->src_ipaddr[0] = ipv4_spec->hdr.src_addr;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR |
EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR;
if (ipv4_mask->hdr.src_addr) {
filter->src_ipaddr_mask[0] =
ipv4_mask->hdr.src_addr;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
}
if (ipv4_mask->hdr.dst_addr) {
filter->dst_ipaddr_mask[0] =
ipv4_mask->hdr.dst_addr;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
}
filter->ip_addr_type = use_ntuple ?
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_IP_ADDR_TYPE_IPV4 :
HWRM_CFA_EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
if (ipv4_spec->hdr.next_proto_id) {
filter->ip_protocol =
ipv4_spec->hdr.next_proto_id;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
else
en |= EM_FLOW_ALLOC_INPUT_EN_IP_PROTO;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6_spec = item->spec;
ipv6_mask = item->mask;
if (!item->spec || !item->mask)
break;
/* Only IP DST and SRC fields are maskable. */
if (ipv6_mask->hdr.vtc_flow ||
ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.proto ||
ipv6_mask->hdr.hop_limits) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv6 mask.");
return -rte_errno;
}
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR |
EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR;
rte_memcpy(filter->src_ipaddr,
ipv6_spec->hdr.src_addr, 16);
rte_memcpy(filter->dst_ipaddr,
ipv6_spec->hdr.dst_addr, 16);
if (!bnxt_check_zero_bytes(ipv6_mask->hdr.src_addr,
16)) {
rte_memcpy(filter->src_ipaddr_mask,
ipv6_mask->hdr.src_addr, 16);
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
}
if (!bnxt_check_zero_bytes(ipv6_mask->hdr.dst_addr,
16)) {
rte_memcpy(filter->dst_ipaddr_mask,
ipv6_mask->hdr.dst_addr, 16);
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
}
filter->ip_addr_type = use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 :
EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = item->spec;
tcp_mask = item->mask;
if (!item->spec || !item->mask)
break;
/* Check TCP mask. Only DST & SRC ports are maskable */
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TCP mask");
return -rte_errno;
}
filter->src_port = tcp_spec->hdr.src_port;
filter->dst_port = tcp_spec->hdr.dst_port;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT |
EM_FLOW_ALLOC_INPUT_EN_DST_PORT;
if (tcp_mask->hdr.dst_port) {
filter->dst_port_mask = tcp_mask->hdr.dst_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
}
if (tcp_mask->hdr.src_port) {
filter->src_port_mask = tcp_mask->hdr.src_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = item->spec;
udp_mask = item->mask;
if (!item->spec || !item->mask)
break;
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid UDP mask");
return -rte_errno;
}
filter->src_port = udp_spec->hdr.src_port;
filter->dst_port = udp_spec->hdr.dst_port;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT |
EM_FLOW_ALLOC_INPUT_EN_DST_PORT;
if (udp_mask->hdr.dst_port) {
filter->dst_port_mask = udp_mask->hdr.dst_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
}
if (udp_mask->hdr.src_port) {
filter->src_port_mask = udp_mask->hdr.src_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
}
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan_spec = item->spec;
vxlan_mask = item->mask;
/* Check if VXLAN item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!vxlan_spec && vxlan_mask) ||
(vxlan_spec && !vxlan_mask)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return -rte_errno;
}
if (!vxlan_spec && !vxlan_mask) {
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
break;
}
if (vxlan_spec->rsvd1 || vxlan_spec->rsvd0[0] ||
vxlan_spec->rsvd0[1] || vxlan_spec->rsvd0[2] ||
vxlan_spec->flags != 0x8) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return -rte_errno;
}
/* Check if VNI is masked. */
if (vxlan_mask != NULL) {
vni_masked =
!!memcmp(vxlan_mask->vni, vni_mask,
RTE_DIM(vni_mask));
if (vni_masked) {
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VNI mask");
return -rte_errno;
}
rte_memcpy(((uint8_t *)&tenant_id_be + 1),
vxlan_spec->vni, 3);
filter->vni =
rte_be_to_cpu_32(tenant_id_be);
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
}
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre_spec = item->spec;
nvgre_mask = item->mask;
/* Check if NVGRE item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!nvgre_spec && nvgre_mask) ||
(nvgre_spec && !nvgre_mask)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return -rte_errno;
}
if (!nvgre_spec && !nvgre_mask) {
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
break;
}
if (nvgre_spec->c_k_s_rsvd0_ver != 0x2000 ||
nvgre_spec->protocol != 0x6558) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return -rte_errno;
}
if (nvgre_spec && nvgre_mask) {
tni_masked =
!!memcmp(nvgre_mask->tni, tni_mask,
RTE_DIM(tni_mask));
if (tni_masked) {
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TNI mask");
return -rte_errno;
}
rte_memcpy(((uint8_t *)&tenant_id_be + 1),
nvgre_spec->tni, 3);
filter->vni =
rte_be_to_cpu_32(tenant_id_be);
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
}
break;
case RTE_FLOW_ITEM_TYPE_GRE:
gre_spec = (const struct rte_flow_item_gre *)item->spec;
gre_mask = (const struct rte_flow_item_gre *)item->mask;
/*
*Check if GRE item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if (!!gre_spec ^ !!gre_mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid GRE item");
return -rte_errno;
}
if (!gre_spec && !gre_mask) {
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_IPGRE;
break;
}
break;
case RTE_FLOW_ITEM_TYPE_VF:
vf_spec = item->spec;
vf = vf_spec->id;
if (!BNXT_PF(bp)) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Configuring on a VF!");
return -rte_errno;
}
if (vf >= bp->pdev->max_vfs) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Incorrect VF id!");
return -rte_errno;
}
if (!attr->transfer) {
rte_flow_error_set(error,
ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Matching VF traffic without"
" affecting it (transfer attribute)"
" is unsupported");
return -rte_errno;
}
filter->mirror_vnic_id =
dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf);
if (dflt_vnic < 0) {
/* This simply indicates there's no driver
* loaded. This is not an error.
*/
rte_flow_error_set
(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Unable to get default VNIC for VF");
return -rte_errno;
}
filter->mirror_vnic_id = dflt_vnic;
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID;
break;
default:
break;
}
item++;
}
filter->enables = en;
filter->valid_flags = valid_flags;
return 0;
}
/* Parse attributes */
static int
bnxt_flow_parse_attr(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr,
"Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr,
"No support for egress.");
return -rte_errno;
}
return 0;
}
static struct bnxt_filter_info *
bnxt_find_matching_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf)
{
struct bnxt_filter_info *mf, *f0;
struct bnxt_vnic_info *vnic0;
int i;
vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
f0 = STAILQ_FIRST(&vnic0->filter);
/* This flow has same DST MAC as the port/l2 filter. */
if (memcmp(f0->l2_addr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN) == 0)
return f0;
for (i = bp->max_vnics - 1; i >= 0; i--) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
if (vnic->fw_vnic_id == INVALID_VNIC_ID)
continue;
STAILQ_FOREACH(mf, &vnic->filter, next) {
if (mf->matching_l2_fltr_ptr)
continue;
if (mf->ethertype == nf->ethertype &&
mf->l2_ovlan == nf->l2_ovlan &&
mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
mf->l2_ivlan == nf->l2_ivlan &&
mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
!memcmp(mf->src_macaddr, nf->src_macaddr,
RTE_ETHER_ADDR_LEN) &&
!memcmp(mf->dst_macaddr, nf->dst_macaddr,
RTE_ETHER_ADDR_LEN))
return mf;
}
}
return NULL;
}
static struct bnxt_filter_info *
bnxt_create_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf,
struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter1;
int rc;
/* Alloc new L2 filter.
* This flow needs MAC filter which does not match any existing
* L2 filters.
*/
filter1 = bnxt_get_unused_filter(bp);
if (filter1 == NULL)
return NULL;
memcpy(filter1, nf, sizeof(*filter1));
filter1->flags = HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_XDP_DISABLE;
filter1->flags |= HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
if (nf->valid_flags & BNXT_FLOW_L2_SRC_VALID_FLAG ||
nf->valid_flags & BNXT_FLOW_L2_DST_VALID_FLAG) {
filter1->flags |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
PMD_DRV_LOG(DEBUG, "Create Outer filter\n");
}
if (nf->filter_type == HWRM_CFA_L2_FILTER &&
(nf->valid_flags & BNXT_FLOW_L2_SRC_VALID_FLAG ||
nf->valid_flags & BNXT_FLOW_L2_INNER_SRC_VALID_FLAG)) {
PMD_DRV_LOG(DEBUG, "Create L2 filter for SRC MAC\n");
filter1->flags |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_SOURCE_VALID;
memcpy(filter1->l2_addr, nf->src_macaddr, RTE_ETHER_ADDR_LEN);
} else {
PMD_DRV_LOG(DEBUG, "Create L2 filter for DST MAC\n");
memcpy(filter1->l2_addr, nf->dst_macaddr, RTE_ETHER_ADDR_LEN);
}
if (nf->priority &&
(nf->valid_flags & BNXT_FLOW_L2_DST_VALID_FLAG ||
nf->valid_flags & BNXT_FLOW_L2_INNER_DST_VALID_FLAG)) {
/* Tell the FW where to place the filter in the table. */
if (nf->priority > 65535) {
filter1->pri_hint =
HWRM_CFA_L2_FILTER_ALLOC_INPUT_PRI_HINT_BELOW_FILTER;
/* This will place the filter in TCAM */
filter1->l2_filter_id_hint = (uint64_t)-1;
}
}
if (nf->valid_flags & (BNXT_FLOW_L2_DST_VALID_FLAG |
BNXT_FLOW_L2_SRC_VALID_FLAG |
BNXT_FLOW_L2_INNER_SRC_VALID_FLAG |
BNXT_FLOW_L2_INNER_DST_VALID_FLAG)) {
filter1->enables =
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
L2_FILTER_ALLOC_INPUT_EN_L2_ADDR_MASK;
memset(filter1->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
}
if (nf->valid_flags & BNXT_FLOW_L2_DROP_FLAG) {
filter1->flags |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_DROP;
if (nf->ethertype == RTE_ETHER_TYPE_IPV4) {
/* Num VLANs for drop filter will/should be 0.
* If the req is memset to 0, then the count will
* be automatically set to 0.
*/
if (nf->valid_flags & BNXT_FLOW_PARSE_INNER_FLAG) {
filter1->enables |=
L2_FILTER_ALLOC_INPUT_EN_T_NUM_VLANS;
} else {
filter1->enables |=
L2_FILTER_ALLOC_INPUT_EN_NUM_VLANS;
filter1->flags |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_OUTERMOST;
}
}
}
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id,
filter1);
if (rc) {
bnxt_free_filter(bp, filter1);
return NULL;
}
return filter1;
}
struct bnxt_filter_info *
bnxt_get_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf,
struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *l2_filter = NULL;
l2_filter = bnxt_find_matching_l2_filter(bp, nf);
if (l2_filter) {
l2_filter->l2_ref_cnt++;
} else {
l2_filter = bnxt_create_l2_filter(bp, nf, vnic);
if (l2_filter) {
STAILQ_INSERT_TAIL(&vnic->filter, l2_filter, next);
l2_filter->vnic = vnic;
}
}
nf->matching_l2_fltr_ptr = l2_filter;
return l2_filter;
}
static int bnxt_vnic_prep(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
uint64_t rx_offloads = dev_conf->rxmode.offloads;
int rc;
rc = bnxt_vnic_grp_alloc(bp, vnic);
if (rc)
goto ret;
rc = bnxt_hwrm_vnic_alloc(bp, vnic);
if (rc) {
PMD_DRV_LOG(ERR, "HWRM vnic alloc failure rc: %x\n", rc);
goto ret;
}
bp->nr_vnics++;
/* RSS context is required only when there is more than one RSS ring */
if (vnic->rx_queue_cnt > 1) {
rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0 /* ctx_idx 0 */);
if (rc) {
PMD_DRV_LOG(ERR,
"HWRM vnic ctx alloc failure: %x\n", rc);
goto ret;
}
} else {
PMD_DRV_LOG(DEBUG, "No RSS context required\n");
}
if (rx_offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
vnic->vlan_strip = true;
else
vnic->vlan_strip = false;
rc = bnxt_hwrm_vnic_cfg(bp, vnic);
if (rc)
goto ret;
bnxt_hwrm_vnic_plcmode_cfg(bp, vnic);
ret:
return rc;
}
static int match_vnic_rss_cfg(struct bnxt *bp,
struct bnxt_vnic_info *vnic,
const struct rte_flow_action_rss *rss)
{
unsigned int match = 0, i;
if (vnic->rx_queue_cnt != rss->queue_num)
return -EINVAL;
for (i = 0; i < rss->queue_num; i++) {
if (!bp->rx_queues[rss->queue[i]]->vnic->rx_queue_cnt &&
!bp->rx_queues[rss->queue[i]]->rx_started)
return -EINVAL;
}
for (i = 0; i < vnic->rx_queue_cnt; i++) {
int j;
for (j = 0; j < vnic->rx_queue_cnt; j++) {
if (bp->grp_info[rss->queue[i]].fw_grp_id ==
vnic->fw_grp_ids[j])
match++;
}
}
if (match != vnic->rx_queue_cnt) {
PMD_DRV_LOG(ERR,
"VNIC queue count %d vs queues matched %d\n",
match, vnic->rx_queue_cnt);
return -EINVAL;
}
return 0;
}
static void
bnxt_update_filter_flags_en(struct bnxt_filter_info *filter,
struct bnxt_filter_info *filter1,
int use_ntuple)
{
if (!use_ntuple &&
!(filter->valid_flags &
~(BNXT_FLOW_L2_DST_VALID_FLAG |
BNXT_FLOW_L2_SRC_VALID_FLAG |
BNXT_FLOW_L2_INNER_SRC_VALID_FLAG |
BNXT_FLOW_L2_INNER_DST_VALID_FLAG |
BNXT_FLOW_L2_DROP_FLAG |
BNXT_FLOW_PARSE_INNER_FLAG))) {
filter->flags = filter1->flags;
filter->enables = filter1->enables;
filter->filter_type = HWRM_CFA_L2_FILTER;
memcpy(filter->l2_addr, filter1->l2_addr, RTE_ETHER_ADDR_LEN);
memset(filter->l2_addr_mask, 0xff, RTE_ETHER_ADDR_LEN);
filter->pri_hint = filter1->pri_hint;
filter->l2_filter_id_hint = filter1->l2_filter_id_hint;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
filter->l2_ref_cnt = filter1->l2_ref_cnt;
filter->flow_id = filter1->flow_id;
PMD_DRV_LOG(DEBUG,
"l2_filter: %p fw_l2_filter_id %" PRIx64 " l2_ref_cnt %u\n",
filter1, filter->fw_l2_filter_id, filter->l2_ref_cnt);
}
static int
bnxt_validate_and_parse_flow(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
const struct rte_flow_attr *attr,
struct rte_flow_error *error,
struct bnxt_filter_info *filter)
{
const struct rte_flow_action *act =
bnxt_flow_non_void_action(actions);
struct bnxt *bp = dev->data->dev_private;
struct rte_eth_conf *dev_conf = &bp->eth_dev->data->dev_conf;
struct bnxt_vnic_info *vnic = NULL, *vnic0 = NULL;
const struct rte_flow_action_queue *act_q;
const struct rte_flow_action_vf *act_vf;
struct bnxt_filter_info *filter1 = NULL;
const struct rte_flow_action_rss *rss;
struct bnxt_rx_queue *rxq = NULL;
int dflt_vnic, vnic_id;
unsigned int rss_idx;
uint32_t vf = 0, i;
int rc, use_ntuple;
rc =
bnxt_validate_and_parse_flow_type(bp, attr, pattern, error, filter);
if (rc != 0)
goto ret;
rc = bnxt_flow_parse_attr(attr, error);
if (rc != 0)
goto ret;
/* Since we support ingress attribute only - right now. */
if (filter->filter_type == HWRM_CFA_EM_FILTER)
filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_PATH_RX;
use_ntuple = bnxt_filter_type_check(pattern, error);
start:
switch (act->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
/* Allow this flow. Redirect to a VNIC. */
act_q = (const struct rte_flow_action_queue *)act->conf;
if (!act_q->index || act_q->index >= bp->rx_nr_rings) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid queue ID.");
rc = -rte_errno;
goto ret;
}
PMD_DRV_LOG(DEBUG, "Queue index %d\n", act_q->index);
vnic_id = attr->group;
if (!vnic_id) {
PMD_DRV_LOG(DEBUG, "Group id is 0\n");
vnic_id = act_q->index;
}
BNXT_VALID_VNIC_OR_RET(bp, vnic_id);
vnic = &bp->vnic_info[vnic_id];
if (vnic->rx_queue_cnt) {
if (vnic->start_grp_id != act_q->index) {
PMD_DRV_LOG(ERR,
"VNIC already in use\n");
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"VNIC already in use");
rc = -rte_errno;
goto ret;
}
goto use_vnic;
}
rxq = bp->rx_queues[act_q->index];
if (!(dev_conf->rxmode.mq_mode & ETH_MQ_RX_RSS) && rxq &&
vnic->fw_vnic_id != INVALID_HW_RING_ID)
goto use_vnic;
if (!rxq) {
PMD_DRV_LOG(ERR,
"Queue invalid or used with other VNIC\n");
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Queue invalid queue or in use");
rc = -rte_errno;
goto ret;
}
rxq->vnic = vnic;
rxq->rx_started = 1;
vnic->rx_queue_cnt++;
vnic->start_grp_id = act_q->index;
vnic->end_grp_id = act_q->index;
vnic->func_default = 0; //This is not a default VNIC.
PMD_DRV_LOG(DEBUG, "VNIC found\n");
rc = bnxt_vnic_prep(bp, vnic);
if (rc) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"VNIC prep fail");
rc = -rte_errno;
goto ret;
}
PMD_DRV_LOG(DEBUG,
"vnic[%d] = %p vnic->fw_grp_ids = %p\n",
act_q->index, vnic, vnic->fw_grp_ids);
use_vnic:
vnic->ff_pool_idx = vnic_id;
PMD_DRV_LOG(DEBUG,
"Setting vnic ff_idx %d\n", vnic->ff_pool_idx);
filter->dst_id = vnic->fw_vnic_id;
/* For ntuple filter, create the L2 filter with default VNIC.
* The user specified redirect queue will be set while creating
* the ntuple filter in hardware.
*/
vnic0 = BNXT_GET_DEFAULT_VNIC(bp);
if (use_ntuple)
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
else
filter1 = bnxt_get_l2_filter(bp, filter, vnic);
if (filter1 == NULL) {
rte_flow_error_set(error,
ENOSPC,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Filter not available");
rc = -rte_errno;
goto ret;
}
PMD_DRV_LOG(DEBUG, "new fltr: %p l2fltr: %p l2_ref_cnt: %d\n",
filter, filter1, filter1->l2_ref_cnt);
bnxt_update_filter_flags_en(filter, filter1, use_ntuple);
break;
case RTE_FLOW_ACTION_TYPE_DROP:
vnic0 = &bp->vnic_info[0];
filter->dst_id = vnic0->fw_vnic_id;
filter->valid_flags |= BNXT_FLOW_L2_DROP_FLAG;
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
if (filter1 == NULL) {
rte_flow_error_set(error,
ENOSPC,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Filter not available");
rc = -rte_errno;
goto ret;
}
if (filter->filter_type == HWRM_CFA_EM_FILTER)
filter->flags =
HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_DROP;
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
filter->flags =
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
bnxt_update_filter_flags_en(filter, filter1, use_ntuple);
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
vnic0 = &bp->vnic_info[0];
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
if (filter1 == NULL) {
rte_flow_error_set(error,
ENOSPC,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"New filter not available");
rc = -rte_errno;
goto ret;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
filter->flow_id = filter1->flow_id;
filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_METER;
break;
case RTE_FLOW_ACTION_TYPE_VF:
act_vf = (const struct rte_flow_action_vf *)act->conf;
vf = act_vf->id;
if (filter->tunnel_type ==
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN ||
filter->tunnel_type ==
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_IPGRE) {
/* If issued on a VF, ensure id is 0 and is trusted */
if (BNXT_VF(bp)) {
if (!BNXT_VF_IS_TRUSTED(bp) || vf) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Incorrect VF");
rc = -rte_errno;
goto ret;
}
}
filter->enables |= filter->tunnel_type;
filter->filter_type = HWRM_CFA_TUNNEL_REDIRECT_FILTER;
goto done;
}
if (vf >= bp->pdev->max_vfs) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Incorrect VF id!");
rc = -rte_errno;
goto ret;
}
filter->mirror_vnic_id =
dflt_vnic = bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(bp, vf);
if (dflt_vnic < 0) {
/* This simply indicates there's no driver loaded.
* This is not an error.
*/
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Unable to get default VNIC for VF");
rc = -rte_errno;
goto ret;
}
filter->mirror_vnic_id = dflt_vnic;
filter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_MIRROR_VNIC_ID;
vnic0 = &bp->vnic_info[0];
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
if (filter1 == NULL) {
rte_flow_error_set(error,
ENOSPC,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"New filter not available");
rc = -rte_errno;
goto ret;
}
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
filter->flow_id = filter1->flow_id;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
rss = (const struct rte_flow_action_rss *)act->conf;
vnic_id = attr->group;
BNXT_VALID_VNIC_OR_RET(bp, vnic_id);
vnic = &bp->vnic_info[vnic_id];
/* Check if requested RSS config matches RSS config of VNIC
* only if it is not a fresh VNIC configuration.
* Otherwise the existing VNIC configuration can be used.
*/
if (vnic->rx_queue_cnt) {
rc = match_vnic_rss_cfg(bp, vnic, rss);
if (rc) {
PMD_DRV_LOG(ERR,
"VNIC and RSS config mismatch\n");
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"VNIC and RSS cfg mismatch");
rc = -rte_errno;
goto ret;
}
goto vnic_found;
}
for (i = 0; i < rss->queue_num; i++) {
PMD_DRV_LOG(DEBUG, "RSS action Queue %d\n",
rss->queue[i]);
if (!rss->queue[i] ||
rss->queue[i] >= bp->rx_nr_rings ||
!bp->rx_queues[rss->queue[i]]) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid queue ID for RSS");
rc = -rte_errno;
goto ret;
}
rxq = bp->rx_queues[rss->queue[i]];
if (bp->vnic_info[0].fw_grp_ids[rss->queue[i]] !=
INVALID_HW_RING_ID) {
PMD_DRV_LOG(ERR,
"queue active with other VNIC\n");
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid queue ID for RSS");
rc = -rte_errno;
goto ret;
}
rxq->vnic = vnic;
rxq->rx_started = 1;
vnic->rx_queue_cnt++;
}
vnic->start_grp_id = rss->queue[0];
vnic->end_grp_id = rss->queue[rss->queue_num - 1];
vnic->func_default = 0; //This is not a default VNIC.
rc = bnxt_vnic_prep(bp, vnic);
if (rc) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"VNIC prep fail");
rc = -rte_errno;
goto ret;
}
PMD_DRV_LOG(DEBUG,
"vnic[%d] = %p vnic->fw_grp_ids = %p\n",
vnic_id, vnic, vnic->fw_grp_ids);
vnic->ff_pool_idx = vnic_id;
PMD_DRV_LOG(DEBUG,
"Setting vnic ff_pool_idx %d\n", vnic->ff_pool_idx);
/* This can be done only after vnic_grp_alloc is done. */
for (i = 0; i < vnic->rx_queue_cnt; i++) {
vnic->fw_grp_ids[i] =
bp->grp_info[rss->queue[i]].fw_grp_id;
/* Make sure vnic0 does not use these rings. */
bp->vnic_info[0].fw_grp_ids[rss->queue[i]] =
INVALID_HW_RING_ID;
}
for (rss_idx = 0; rss_idx < HW_HASH_INDEX_SIZE; ) {
for (i = 0; i < vnic->rx_queue_cnt; i++)
vnic->rss_table[rss_idx++] =
vnic->fw_grp_ids[i];
}
/* Configure RSS only if the queue count is > 1 */
if (vnic->rx_queue_cnt > 1) {
vnic->hash_type =
bnxt_rte_to_hwrm_hash_types(rss->types);
if (!rss->key_len) {
/* If hash key has not been specified,
* use random hash key.
*/
prandom_bytes(vnic->rss_hash_key,
HW_HASH_KEY_SIZE);
} else {
if (rss->key_len > HW_HASH_KEY_SIZE)
memcpy(vnic->rss_hash_key,
rss->key,
HW_HASH_KEY_SIZE);
else
memcpy(vnic->rss_hash_key,
rss->key,
rss->key_len);
}
bnxt_hwrm_vnic_rss_cfg(bp, vnic);
} else {
PMD_DRV_LOG(DEBUG, "No RSS config required\n");
}
vnic_found:
filter->dst_id = vnic->fw_vnic_id;
filter1 = bnxt_get_l2_filter(bp, filter, vnic);
if (filter1 == NULL) {
rte_flow_error_set(error,
ENOSPC,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"New filter not available");
rc = -rte_errno;
goto ret;
}
PMD_DRV_LOG(DEBUG, "L2 filter created\n");
bnxt_update_filter_flags_en(filter, filter1, use_ntuple);
break;
case RTE_FLOW_ACTION_TYPE_MARK:
if (bp->mark_table == NULL) {
rte_flow_error_set(error,
ENOMEM,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Mark table not allocated.");
rc = -rte_errno;
goto ret;
}
if (bp->flags & BNXT_FLAG_RX_VECTOR_PKT_MODE) {
PMD_DRV_LOG(DEBUG,
"Disabling vector processing for mark\n");
bp->eth_dev->rx_pkt_burst = bnxt_recv_pkts;
bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
}
filter->valid_flags |= BNXT_FLOW_MARK_FLAG;
filter->mark = ((const struct rte_flow_action_mark *)
act->conf)->id;
PMD_DRV_LOG(DEBUG, "Mark the flow %d\n", filter->mark);
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"Invalid action.");
rc = -rte_errno;
goto ret;
}
done:
act = bnxt_flow_non_void_action(++act);
while (act->type != RTE_FLOW_ACTION_TYPE_END)
goto start;
return rc;
ret:
if (filter1) {
bnxt_hwrm_clear_l2_filter(bp, filter1);
bnxt_free_filter(bp, filter1);
}
if (rte_errno) {
if (vnic && STAILQ_EMPTY(&vnic->filter))
vnic->rx_queue_cnt = 0;
if (rxq && !vnic->rx_queue_cnt)
rxq->vnic = &bp->vnic_info[0];
}
return -rte_errno;
}
static
struct bnxt_vnic_info *find_matching_vnic(struct bnxt *bp,
struct bnxt_filter_info *filter)
{
struct bnxt_vnic_info *vnic = NULL;
unsigned int i;
for (i = 0; i < bp->max_vnics; i++) {
vnic = &bp->vnic_info[i];
if (vnic->fw_vnic_id != INVALID_VNIC_ID &&
filter->dst_id == vnic->fw_vnic_id) {
PMD_DRV_LOG(DEBUG, "Found matching VNIC Id %d\n",
vnic->ff_pool_idx);
return vnic;
}
}
return NULL;
}
static int
bnxt_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_vnic_info *vnic = NULL;
struct bnxt_filter_info *filter;
int ret = 0;
bnxt_acquire_flow_lock(bp);
ret = bnxt_flow_args_validate(attr, pattern, actions, error);
if (ret != 0) {
bnxt_release_flow_lock(bp);
return ret;
}
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "Not enough resources for a new flow.\n");
bnxt_release_flow_lock(bp);
return -ENOMEM;
}
ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr,
error, filter);
if (ret)
goto exit;
vnic = find_matching_vnic(bp, filter);
if (vnic) {
if (STAILQ_EMPTY(&vnic->filter)) {
rte_free(vnic->fw_grp_ids);
bnxt_hwrm_vnic_ctx_free(bp, vnic);
bnxt_hwrm_vnic_free(bp, vnic);
vnic->rx_queue_cnt = 0;
PMD_DRV_LOG(DEBUG, "Free VNIC\n");
}
}
if (filter->filter_type == HWRM_CFA_EM_FILTER)
bnxt_hwrm_clear_em_filter(bp, filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
bnxt_hwrm_clear_ntuple_filter(bp, filter);
else
bnxt_hwrm_clear_l2_filter(bp, filter);
exit:
/* No need to hold on to this filter if we are just validating flow */
bnxt_free_filter(bp, filter);
bnxt_release_flow_lock(bp);
return ret;
}
static void
bnxt_update_filter(struct bnxt *bp, struct bnxt_filter_info *old_filter,
struct bnxt_filter_info *new_filter)
{
/* Clear the new L2 filter that was created in the previous step in
* bnxt_validate_and_parse_flow. For L2 filters, we will use the new
* filter which points to the new destination queue and so we clear
* the previous L2 filter. For ntuple filters, we are going to reuse
* the old L2 filter and create new NTUPLE filter with this new
* destination queue subsequently during bnxt_flow_create. So we
* decrement the ref cnt of the L2 filter that would've been bumped
* up previously in bnxt_validate_and_parse_flow as the old n-tuple
* filter that was referencing it will be deleted now.
*/
bnxt_hwrm_clear_l2_filter(bp, old_filter);
if (new_filter->filter_type == HWRM_CFA_L2_FILTER) {
bnxt_hwrm_set_l2_filter(bp, new_filter->dst_id, new_filter);
} else {
if (new_filter->filter_type == HWRM_CFA_EM_FILTER)
bnxt_hwrm_clear_em_filter(bp, old_filter);
if (new_filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
bnxt_hwrm_clear_ntuple_filter(bp, old_filter);
}
}
static int
bnxt_match_filter(struct bnxt *bp, struct bnxt_filter_info *nf)
{
struct bnxt_filter_info *mf;
struct rte_flow *flow;
int i;
for (i = bp->max_vnics - 1; i >= 0; i--) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
if (vnic->fw_vnic_id == INVALID_VNIC_ID)
continue;
STAILQ_FOREACH(flow, &vnic->flow_list, next) {
mf = flow->filter;
if (mf->filter_type == nf->filter_type &&
mf->flags == nf->flags &&
mf->src_port == nf->src_port &&
mf->src_port_mask == nf->src_port_mask &&
mf->dst_port == nf->dst_port &&
mf->dst_port_mask == nf->dst_port_mask &&
mf->ip_protocol == nf->ip_protocol &&
mf->ip_addr_type == nf->ip_addr_type &&
mf->ethertype == nf->ethertype &&
mf->vni == nf->vni &&
mf->tunnel_type == nf->tunnel_type &&
mf->l2_ovlan == nf->l2_ovlan &&
mf->l2_ovlan_mask == nf->l2_ovlan_mask &&
mf->l2_ivlan == nf->l2_ivlan &&
mf->l2_ivlan_mask == nf->l2_ivlan_mask &&
!memcmp(mf->l2_addr, nf->l2_addr,
RTE_ETHER_ADDR_LEN) &&
!memcmp(mf->l2_addr_mask, nf->l2_addr_mask,
RTE_ETHER_ADDR_LEN) &&
!memcmp(mf->src_macaddr, nf->src_macaddr,
RTE_ETHER_ADDR_LEN) &&
!memcmp(mf->dst_macaddr, nf->dst_macaddr,
RTE_ETHER_ADDR_LEN) &&
!memcmp(mf->src_ipaddr, nf->src_ipaddr,
sizeof(nf->src_ipaddr)) &&
!memcmp(mf->src_ipaddr_mask, nf->src_ipaddr_mask,
sizeof(nf->src_ipaddr_mask)) &&
!memcmp(mf->dst_ipaddr, nf->dst_ipaddr,
sizeof(nf->dst_ipaddr)) &&
!memcmp(mf->dst_ipaddr_mask, nf->dst_ipaddr_mask,
sizeof(nf->dst_ipaddr_mask))) {
if (mf->dst_id == nf->dst_id)
return -EEXIST;
/* Free the old filter, update flow
* with new filter
*/
bnxt_update_filter(bp, mf, nf);
STAILQ_REMOVE(&vnic->filter, mf,
bnxt_filter_info, next);
STAILQ_INSERT_TAIL(&vnic->filter, nf, next);
bnxt_free_filter(bp, mf);
flow->filter = nf;
return -EXDEV;
}
}
}
return 0;
}
static void
bnxt_setup_flow_counter(struct bnxt *bp)
{
if (bp->fw_cap & BNXT_FW_CAP_ADV_FLOW_COUNTERS &&
!(bp->flags & BNXT_FLAG_FC_THREAD) && BNXT_FLOW_XSTATS_EN(bp)) {
rte_eal_alarm_set(US_PER_S * BNXT_FC_TIMER,
bnxt_flow_cnt_alarm_cb,
(void *)bp);
bp->flags |= BNXT_FLAG_FC_THREAD;
}
}
void bnxt_flow_cnt_alarm_cb(void *arg)
{
int rc = 0;
struct bnxt *bp = arg;
if (!bp->flow_stat->rx_fc_out_tbl.va) {
PMD_DRV_LOG(ERR, "bp->flow_stat->rx_fc_out_tbl.va is NULL?\n");
bnxt_cancel_fc_thread(bp);
return;
}
if (!bp->flow_stat->flow_count) {
bnxt_cancel_fc_thread(bp);
return;
}
if (!bp->eth_dev->data->dev_started) {
bnxt_cancel_fc_thread(bp);
return;
}
rc = bnxt_flow_stats_req(bp);
if (rc) {
PMD_DRV_LOG(ERR, "Flow stat alarm not rescheduled.\n");
return;
}
rte_eal_alarm_set(US_PER_S * BNXT_FC_TIMER,
bnxt_flow_cnt_alarm_cb,
(void *)bp);
}
static struct rte_flow *
bnxt_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_vnic_info *vnic = NULL;
struct bnxt_filter_info *filter;
bool update_flow = false;
struct rte_flow *flow;
int ret = 0;
uint32_t tun_type, flow_id;
if (BNXT_VF(bp) && !BNXT_VF_IS_TRUSTED(bp)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow, Not a Trusted VF!");
return NULL;
}
if (!dev->data->dev_started) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"Device must be started");
return NULL;
}
flow = rte_zmalloc("bnxt_flow", sizeof(struct rte_flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to allocate memory");
return flow;
}
bnxt_acquire_flow_lock(bp);
ret = bnxt_flow_args_validate(attr, pattern, actions, error);
if (ret != 0) {
PMD_DRV_LOG(ERR, "Not a validate flow.\n");
goto free_flow;
}
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
rte_flow_error_set(error, ENOSPC,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Not enough resources for a new flow");
goto free_flow;
}
ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr,
error, filter);
if (ret != 0)
goto free_filter;
ret = bnxt_match_filter(bp, filter);
if (ret == -EEXIST) {
PMD_DRV_LOG(DEBUG, "Flow already exists.\n");
/* Clear the filter that was created as part of
* validate_and_parse_flow() above
*/
bnxt_hwrm_clear_l2_filter(bp, filter);
goto free_filter;
} else if (ret == -EXDEV) {
PMD_DRV_LOG(DEBUG, "Flow with same pattern exists\n");
PMD_DRV_LOG(DEBUG, "Updating with different destination\n");
update_flow = true;
}
/* If tunnel redirection to a VF/PF is specified then only tunnel_type
* is set and enable is set to the tunnel type. Issue hwrm cmd directly
* in such a case.
*/
if (filter->filter_type == HWRM_CFA_TUNNEL_REDIRECT_FILTER &&
filter->enables == filter->tunnel_type) {
ret = bnxt_hwrm_tunnel_redirect_query(bp, &tun_type);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Unable to query tunnel to VF");
goto free_filter;
}
if (tun_type == (1U << filter->tunnel_type)) {
ret =
bnxt_hwrm_tunnel_redirect_free(bp,
filter->tunnel_type);
if (ret) {
PMD_DRV_LOG(ERR,
"Unable to free existing tunnel\n");
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Unable to free preexisting "
"tunnel on VF");
goto free_filter;
}
}
ret = bnxt_hwrm_tunnel_redirect(bp, filter->tunnel_type);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Unable to redirect tunnel to VF");
goto free_filter;
}
vnic = &bp->vnic_info[0];
goto done;
}
if (filter->filter_type == HWRM_CFA_EM_FILTER) {
filter->enables |=
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
ret = bnxt_hwrm_set_em_filter(bp, filter->dst_id, filter);
if (ret != 0) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create EM filter");
goto free_filter;
}
}
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) {
filter->enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter);
if (ret != 0) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create ntuple filter");
goto free_filter;
}
}
vnic = find_matching_vnic(bp, filter);
done:
if (!ret || update_flow) {
flow->filter = filter;
flow->vnic = vnic;
if (update_flow) {
ret = -EXDEV;
goto free_flow;
}
if (filter->valid_flags & BNXT_FLOW_MARK_FLAG) {
PMD_DRV_LOG(DEBUG,
"Mark action: mark id 0x%x, flow id 0x%x\n",
filter->mark, filter->flow_id);
/* TCAM and EM should be 16-bit only.
* Other modes not supported.
*/
flow_id = filter->flow_id & BNXT_FLOW_ID_MASK;
if (bp->mark_table[flow_id].valid) {
rte_flow_error_set(error, EEXIST,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Flow with mark id exists");
bnxt_clear_one_vnic_filter(bp, filter);
goto free_filter;
}
bp->mark_table[flow_id].valid = true;
bp->mark_table[flow_id].mark_id = filter->mark;
}
STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
STAILQ_INSERT_TAIL(&vnic->flow_list, flow, next);
if (BNXT_FLOW_XSTATS_EN(bp))
bp->flow_stat->flow_count++;
bnxt_release_flow_lock(bp);
bnxt_setup_flow_counter(bp);
PMD_DRV_LOG(DEBUG, "Successfully created flow.\n");
return flow;
}
free_filter:
bnxt_free_filter(bp, filter);
free_flow:
if (ret == -EEXIST)
rte_flow_error_set(error, ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Matching Flow exists.");
else if (ret == -EXDEV)
rte_flow_error_set(error, 0,
RTE_FLOW_ERROR_TYPE_NONE, NULL,
"Flow with pattern exists, updating destination queue");
else if (!rte_errno)
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
rte_free(flow);
flow = NULL;
bnxt_release_flow_lock(bp);
return flow;
}
static int bnxt_handle_tunnel_redirect_destroy(struct bnxt *bp,
struct bnxt_filter_info *filter,
struct rte_flow_error *error)
{
uint16_t tun_dst_fid;
uint32_t tun_type;
int ret = 0;
ret = bnxt_hwrm_tunnel_redirect_query(bp, &tun_type);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Unable to query tunnel to VF");
return ret;
}
if (tun_type == (1U << filter->tunnel_type)) {
ret = bnxt_hwrm_tunnel_redirect_info(bp, filter->tunnel_type,
&tun_dst_fid);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"tunnel_redirect info cmd fail");
return ret;
}
PMD_DRV_LOG(INFO, "Pre-existing tunnel fid = %x vf->fid = %x\n",
tun_dst_fid + bp->first_vf_id, bp->fw_fid);
/* Tunnel doesn't belong to this VF, so don't send HWRM
* cmd, just delete the flow from driver
*/
if (bp->fw_fid != (tun_dst_fid + bp->first_vf_id))
PMD_DRV_LOG(ERR,
"Tunnel does not belong to this VF, skip hwrm_tunnel_redirect_free\n");
else
ret = bnxt_hwrm_tunnel_redirect_free(bp,
filter->tunnel_type);
}
return ret;
}
static int
_bnxt_flow_destroy(struct bnxt *bp,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct bnxt_filter_info *filter;
struct bnxt_vnic_info *vnic;
int ret = 0;
uint32_t flow_id;
filter = flow->filter;
vnic = flow->vnic;
if (filter->filter_type == HWRM_CFA_TUNNEL_REDIRECT_FILTER &&
filter->enables == filter->tunnel_type) {
ret = bnxt_handle_tunnel_redirect_destroy(bp, filter, error);
if (!ret)
goto done;
else
return ret;
}
ret = bnxt_match_filter(bp, filter);
if (ret == 0)
PMD_DRV_LOG(ERR, "Could not find matching flow\n");
if (filter->valid_flags & BNXT_FLOW_MARK_FLAG) {
flow_id = filter->flow_id & BNXT_FLOW_ID_MASK;
memset(&bp->mark_table[flow_id], 0,
sizeof(bp->mark_table[flow_id]));
filter->flow_id = 0;
}
ret = bnxt_clear_one_vnic_filter(bp, filter);
done:
if (!ret) {
/* If it is a L2 drop filter, when the filter is created,
* the FW updates the BC/MC records.
* Once this filter is removed, issue the set_rx_mask command
* to reset the BC/MC records in the HW to the settings
* before the drop counter is created.
*/
if (filter->valid_flags & BNXT_FLOW_L2_DROP_FLAG)
bnxt_set_rx_mask_no_vlan(bp, &bp->vnic_info[0]);
STAILQ_REMOVE(&vnic->filter, filter, bnxt_filter_info, next);
bnxt_free_filter(bp, filter);
STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next);
rte_free(flow);
if (BNXT_FLOW_XSTATS_EN(bp))
bp->flow_stat->flow_count--;
/* If this was the last flow associated with this vnic,
* switch the queue back to RSS pool.
*/
if (vnic && !vnic->func_default &&
STAILQ_EMPTY(&vnic->flow_list)) {
rte_free(vnic->fw_grp_ids);
if (vnic->rx_queue_cnt > 1)
bnxt_hwrm_vnic_ctx_free(bp, vnic);
bnxt_hwrm_vnic_free(bp, vnic);
vnic->rx_queue_cnt = 0;
}
} else {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to destroy flow.");
}
return ret;
}
static int
bnxt_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct bnxt *bp = dev->data->dev_private;
int ret = 0;
bnxt_acquire_flow_lock(bp);
if (!flow) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Invalid flow: failed to destroy flow.");
bnxt_release_flow_lock(bp);
return -EINVAL;
}
if (!flow->filter) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Invalid flow: failed to destroy flow.");
bnxt_release_flow_lock(bp);
return -EINVAL;
}
ret = _bnxt_flow_destroy(bp, flow, error);
bnxt_release_flow_lock(bp);
return ret;
}
void bnxt_cancel_fc_thread(struct bnxt *bp)
{
bp->flags &= ~BNXT_FLAG_FC_THREAD;
rte_eal_alarm_cancel(bnxt_flow_cnt_alarm_cb, (void *)bp);
}
static int
bnxt_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct bnxt *bp = dev->data->dev_private;
struct bnxt_vnic_info *vnic;
struct rte_flow *flow;
unsigned int i;
int ret = 0;
bnxt_acquire_flow_lock(bp);
for (i = 0; i < bp->max_vnics; i++) {
vnic = &bp->vnic_info[i];
if (vnic && vnic->fw_vnic_id == INVALID_VNIC_ID)
continue;
while (!STAILQ_EMPTY(&vnic->flow_list)) {
flow = STAILQ_FIRST(&vnic->flow_list);
if (!flow->filter)
continue;
ret = _bnxt_flow_destroy(bp, flow, error);
if (ret)
break;
}
}
bnxt_cancel_fc_thread(bp);
bnxt_release_flow_lock(bp);
return ret;
}
const struct rte_flow_ops bnxt_flow_ops = {
.validate = bnxt_flow_validate,
.create = bnxt_flow_create,
.destroy = bnxt_flow_destroy,
.flush = bnxt_flow_flush,
};