numam-dpdk/drivers/regex/octeontx2/otx2_regexdev.c
Guy Kaneti 4cd1c5fd9e regex/octeontx2: introduce REE driver
Add meson based build infrastructure along with the
OTX2 regexdev (REE) device functions.
Add Marvell OCTEON TX2 regex guide.

Signed-off-by: Guy Kaneti <guyk@marvell.com>
2020-10-14 10:41:21 +02:00

1003 lines
24 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (C) 2020 Marvell International Ltd.
*/
#include <stdio.h>
#include <unistd.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_regexdev.h>
#include <rte_regexdev_core.h>
#include <rte_regexdev_driver.h>
/* REE common headers */
#include "otx2_common.h"
#include "otx2_dev.h"
#include "otx2_regexdev.h"
#include "otx2_regexdev_compiler.h"
#include "otx2_regexdev_hw_access.h"
#include "otx2_regexdev_mbox.h"
/* HW matches are at offset 0x80 from RES_PTR_ADDR
* In op structure matches starts at W5 (0x28)
* There is a need to copy to 0x28 to 0x80 The matches that are at the tail
* Which are 88 B. Each match holds 8 B, so up to 11 matches can be copied
*/
#define REE_NUM_MATCHES_ALIGN 11
/* The REE co-processor will write up to 254 job match structures
* (REE_MATCH_S) starting at address [RES_PTR_ADDR] + 0x80.
*/
#define REE_MATCH_OFFSET 0x80
#define REE_MAX_RULES_PER_GROUP 0xFFFF
#define REE_MAX_GROUPS 0xFFFF
/* This is temporarily here */
#define REE0_PF 19
#define REE1_PF 20
#define REE_RULE_DB_VERSION 2
#define REE_RULE_DB_REVISION 0
struct ree_rule_db_entry {
uint8_t type;
uint32_t addr;
uint64_t value;
};
struct ree_rule_db {
uint32_t version;
uint32_t revision;
uint32_t number_of_entries;
struct ree_rule_db_entry entries[];
} __rte_packed;
static void
qp_memzone_name_get(char *name, int size, int dev_id, int qp_id)
{
snprintf(name, size, "otx2_ree_lf_mem_%u:%u", dev_id, qp_id);
}
static struct otx2_ree_qp *
ree_qp_create(const struct rte_regexdev *dev, uint16_t qp_id)
{
struct otx2_ree_data *data = dev->data->dev_private;
uint64_t pg_sz = sysconf(_SC_PAGESIZE);
struct otx2_ree_vf *vf = &data->vf;
const struct rte_memzone *lf_mem;
uint32_t len, iq_len, size_div2;
char name[RTE_MEMZONE_NAMESIZE];
uint64_t used_len, iova;
struct otx2_ree_qp *qp;
uint8_t *va;
int ret;
/* Allocate queue pair */
qp = rte_zmalloc("OCTEON TX2 Regex PMD Queue Pair", sizeof(*qp),
OTX2_ALIGN);
if (qp == NULL) {
otx2_err("Could not allocate queue pair");
return NULL;
}
iq_len = OTX2_REE_IQ_LEN;
/*
* Queue size must be in units of 128B 2 * REE_INST_S (which is 64B),
* and a power of 2.
* effective queue size to software is (size - 1) * 128
*/
size_div2 = iq_len >> 1;
/* For pending queue */
len = iq_len * RTE_ALIGN(sizeof(struct otx2_ree_rid), 8);
/* So that instruction queues start as pg size aligned */
len = RTE_ALIGN(len, pg_sz);
/* For instruction queues */
len += OTX2_REE_IQ_LEN * sizeof(union otx2_ree_inst);
/* Waste after instruction queues */
len = RTE_ALIGN(len, pg_sz);
qp_memzone_name_get(name, RTE_MEMZONE_NAMESIZE, dev->data->dev_id,
qp_id);
lf_mem = rte_memzone_reserve_aligned(name, len, vf->otx2_dev.node,
RTE_MEMZONE_SIZE_HINT_ONLY | RTE_MEMZONE_256MB,
RTE_CACHE_LINE_SIZE);
if (lf_mem == NULL) {
otx2_err("Could not allocate reserved memzone");
goto qp_free;
}
va = lf_mem->addr;
iova = lf_mem->iova;
memset(va, 0, len);
/* Initialize pending queue */
qp->pend_q.rid_queue = (struct otx2_ree_rid *)va;
qp->pend_q.enq_tail = 0;
qp->pend_q.deq_head = 0;
qp->pend_q.pending_count = 0;
used_len = iq_len * RTE_ALIGN(sizeof(struct otx2_ree_rid), 8);
used_len = RTE_ALIGN(used_len, pg_sz);
iova += used_len;
qp->iq_dma_addr = iova;
qp->id = qp_id;
qp->base = OTX2_REE_LF_BAR2(vf, qp_id);
qp->otx2_regexdev_jobid = 0;
qp->write_offset = 0;
ret = otx2_ree_iq_enable(dev, qp, OTX2_REE_QUEUE_HI_PRIO, size_div2);
if (ret) {
otx2_err("Could not enable instruction queue");
goto qp_free;
}
return qp;
qp_free:
rte_free(qp);
return NULL;
}
static int
ree_qp_destroy(const struct rte_regexdev *dev, struct otx2_ree_qp *qp)
{
const struct rte_memzone *lf_mem;
char name[RTE_MEMZONE_NAMESIZE];
int ret;
otx2_ree_iq_disable(qp);
qp_memzone_name_get(name, RTE_MEMZONE_NAMESIZE, dev->data->dev_id,
qp->id);
lf_mem = rte_memzone_lookup(name);
ret = rte_memzone_free(lf_mem);
if (ret)
return ret;
rte_free(qp);
return 0;
}
static int
ree_queue_pair_release(struct rte_regexdev *dev, uint16_t qp_id)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct otx2_ree_qp *qp = data->queue_pairs[qp_id];
int ret;
ree_func_trace("Queue=%d", qp_id);
if (qp == NULL)
return -EINVAL;
ret = ree_qp_destroy(dev, qp);
if (ret) {
otx2_err("Could not destroy queue pair %d", qp_id);
return ret;
}
data->queue_pairs[qp_id] = NULL;
return 0;
}
static struct rte_regexdev *
ree_dev_register(const char *name)
{
struct rte_regexdev *dev;
otx2_ree_dbg("Creating regexdev %s\n", name);
/* allocate device structure */
dev = rte_regexdev_register(name);
if (dev == NULL) {
otx2_err("Failed to allocate regex device for %s", name);
return NULL;
}
/* allocate private device structure */
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
dev->data->dev_private =
rte_zmalloc_socket("regexdev device private",
sizeof(struct otx2_ree_data),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (dev->data->dev_private == NULL) {
otx2_err("Cannot allocate memory for dev %s private data",
name);
rte_regexdev_unregister(dev);
return NULL;
}
}
return dev;
}
static int
ree_dev_unregister(struct rte_regexdev *dev)
{
otx2_ree_dbg("Closing regex device %s", dev->device->name);
/* free regex device */
rte_regexdev_unregister(dev);
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
rte_free(dev->data->dev_private);
return 0;
}
static int
ree_dev_fini(struct rte_regexdev *dev)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct rte_pci_device *pci_dev;
int i, ret;
ree_func_trace();
for (i = 0; i < data->nb_queue_pairs; i++) {
ret = ree_queue_pair_release(dev, i);
if (ret)
return ret;
}
ret = otx2_ree_queues_detach(dev);
if (ret)
otx2_err("Could not detach queues");
/* TEMP : should be in lib */
if (data->queue_pairs)
rte_free(data->queue_pairs);
if (data->rules)
rte_free(data->rules);
pci_dev = container_of(dev->device, struct rte_pci_device, device);
otx2_dev_fini(pci_dev, &(data->vf.otx2_dev));
ret = ree_dev_unregister(dev);
if (ret)
otx2_err("Could not destroy PMD");
return ret;
}
static inline int
ree_enqueue(struct otx2_ree_qp *qp, struct rte_regex_ops *op,
struct otx2_ree_pending_queue *pend_q)
{
union otx2_ree_inst inst;
union otx2_ree_res *res;
uint32_t offset;
if (unlikely(pend_q->pending_count >= OTX2_REE_DEFAULT_CMD_QLEN)) {
otx2_err("Pending count %" PRIu64 " is greater than Q size %d",
pend_q->pending_count, OTX2_REE_DEFAULT_CMD_QLEN);
return -EAGAIN;
}
if (unlikely(op->mbuf->data_len > OTX2_REE_MAX_PAYLOAD_SIZE ||
op->mbuf->data_len == 0)) {
otx2_err("Packet length %d is greater than MAX payload %d",
op->mbuf->data_len, OTX2_REE_MAX_PAYLOAD_SIZE);
return -EAGAIN;
}
/* W 0 */
inst.cn98xx.ooj = 1;
inst.cn98xx.dg = 0;
inst.cn98xx.doneint = 0;
/* W 1 */
inst.cn98xx.inp_ptr_addr = rte_pktmbuf_mtod(op->mbuf, uint64_t);
/* W 2 */
inst.cn98xx.inp_ptr_ctl = op->mbuf->data_len & 0x7FFF;
inst.cn98xx.inp_ptr_ctl = inst.cn98xx.inp_ptr_ctl << 32;
/* W 3 */
inst.cn98xx.res_ptr_addr = (uint64_t)op;
/* W 4 */
inst.cn98xx.wq_ptr = 0;
/* W 5 */
inst.cn98xx.ggrp = 0;
inst.cn98xx.tt = 0;
inst.cn98xx.tag = 0;
/* W 6 */
inst.cn98xx.ree_job_length = op->mbuf->data_len & 0x7FFF;
if (op->req_flags & RTE_REGEX_OPS_REQ_STOP_ON_MATCH_F)
inst.cn98xx.ree_job_ctrl = (0x2 << 8);
else if (op->req_flags & RTE_REGEX_OPS_REQ_MATCH_HIGH_PRIORITY_F)
inst.cn98xx.ree_job_ctrl = (0x1 << 8);
else
inst.cn98xx.ree_job_ctrl = 0;
inst.cn98xx.ree_job_id = qp->otx2_regexdev_jobid;
/* W 7 */
inst.cn98xx.ree_job_subset_id_0 = op->group_id0;
if (op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID1_VALID_F)
inst.cn98xx.ree_job_subset_id_1 = op->group_id1;
else
inst.cn98xx.ree_job_subset_id_1 = op->group_id0;
if (op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID2_VALID_F)
inst.cn98xx.ree_job_subset_id_2 = op->group_id2;
else
inst.cn98xx.ree_job_subset_id_2 = op->group_id0;
if (op->req_flags & RTE_REGEX_OPS_REQ_GROUP_ID3_VALID_F)
inst.cn98xx.ree_job_subset_id_3 = op->group_id3;
else
inst.cn98xx.ree_job_subset_id_3 = op->group_id0;
/* Copy REE command to Q */
offset = qp->write_offset * sizeof(inst);
memcpy((void *)(qp->iq_dma_addr + offset), &inst, sizeof(inst));
pend_q->rid_queue[pend_q->enq_tail].rid = (uintptr_t)op;
pend_q->rid_queue[pend_q->enq_tail].user_id = op->user_id;
/* Mark result as not done */
res = (union otx2_ree_res *)(op);
res->s.done = 0;
res->s.ree_err = 0;
/* We will use soft queue length here to limit requests */
REE_MOD_INC(pend_q->enq_tail, OTX2_REE_DEFAULT_CMD_QLEN);
pend_q->pending_count += 1;
REE_MOD_INC(qp->otx2_regexdev_jobid, 0xFFFFFF);
REE_MOD_INC(qp->write_offset, OTX2_REE_IQ_LEN);
return 0;
}
static uint16_t
otx2_ree_enqueue_burst(struct rte_regexdev *dev, uint16_t qp_id,
struct rte_regex_ops **ops, uint16_t nb_ops)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct otx2_ree_qp *qp = data->queue_pairs[qp_id];
struct otx2_ree_pending_queue *pend_q;
uint16_t nb_allowed, count = 0;
struct rte_regex_ops *op;
int ret;
pend_q = &qp->pend_q;
nb_allowed = OTX2_REE_DEFAULT_CMD_QLEN - pend_q->pending_count;
if (nb_ops > nb_allowed)
nb_ops = nb_allowed;
for (count = 0; count < nb_ops; count++) {
op = ops[count];
ret = ree_enqueue(qp, op, pend_q);
if (unlikely(ret))
break;
}
/*
* Make sure all instructions are written before DOORBELL is activated
*/
rte_io_wmb();
/* Update Doorbell */
otx2_write64(count, qp->base + OTX2_REE_LF_DOORBELL);
return count;
}
static inline void
ree_dequeue_post_process(struct rte_regex_ops *ops)
{
uint8_t ree_res_mcnt, ree_res_dmcnt;
int off = REE_MATCH_OFFSET;
struct ree_res_s_98 *res;
uint16_t ree_res_status;
uint64_t match;
res = (struct ree_res_s_98 *)ops;
/* store res values on stack since ops and res
* are using the same memory
*/
ree_res_status = res->ree_res_status;
ree_res_mcnt = res->ree_res_mcnt;
ree_res_dmcnt = res->ree_res_dmcnt;
ops->rsp_flags = 0;
ops->nb_actual_matches = ree_res_dmcnt;
ops->nb_matches = ree_res_mcnt;
if (unlikely(res->ree_err)) {
ops->nb_actual_matches = 0;
ops->nb_matches = 0;
}
if (unlikely(ree_res_status != REE_TYPE_RESULT_DESC)) {
if (ree_res_status & OTX2_REE_STATUS_PMI_SOJ_BIT)
ops->rsp_flags |= RTE_REGEX_OPS_RSP_PMI_SOJ_F;
if (ree_res_status & OTX2_REE_STATUS_PMI_EOJ_BIT)
ops->rsp_flags |= RTE_REGEX_OPS_RSP_PMI_EOJ_F;
if (ree_res_status & OTX2_REE_STATUS_ML_CNT_DET_BIT)
ops->rsp_flags |= RTE_REGEX_OPS_RSP_MAX_SCAN_TIMEOUT_F;
if (ree_res_status & OTX2_REE_STATUS_MM_CNT_DET_BIT)
ops->rsp_flags |= RTE_REGEX_OPS_RSP_MAX_MATCH_F;
if (ree_res_status & OTX2_REE_STATUS_MP_CNT_DET_BIT)
ops->rsp_flags |= RTE_REGEX_OPS_RSP_MAX_PREFIX_F;
}
if (ops->nb_matches > 0) {
/* Move the matches to the correct offset */
off = ((ops->nb_matches < REE_NUM_MATCHES_ALIGN) ?
ops->nb_matches : REE_NUM_MATCHES_ALIGN);
match = (uint64_t)ops + REE_MATCH_OFFSET;
match += (ops->nb_matches - off) *
sizeof(union otx2_ree_match);
memcpy((void *)ops->matches, (void *)match,
off * sizeof(union otx2_ree_match));
}
}
static uint16_t
otx2_ree_dequeue_burst(struct rte_regexdev *dev, uint16_t qp_id,
struct rte_regex_ops **ops, uint16_t nb_ops)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct otx2_ree_qp *qp = data->queue_pairs[qp_id];
struct otx2_ree_pending_queue *pend_q;
int i, nb_pending, nb_completed = 0;
volatile struct ree_res_s_98 *res;
struct otx2_ree_rid *rid;
pend_q = &qp->pend_q;
nb_pending = pend_q->pending_count;
if (nb_ops > nb_pending)
nb_ops = nb_pending;
for (i = 0; i < nb_ops; i++) {
rid = &pend_q->rid_queue[pend_q->deq_head];
res = (volatile struct ree_res_s_98 *)(rid->rid);
/* Check response header done bit if completed */
if (unlikely(!res->done))
break;
ops[i] = (struct rte_regex_ops *)(rid->rid);
ops[i]->user_id = rid->user_id;
REE_MOD_INC(pend_q->deq_head, OTX2_REE_DEFAULT_CMD_QLEN);
pend_q->pending_count -= 1;
}
nb_completed = i;
for (i = 0; i < nb_completed; i++)
ree_dequeue_post_process(ops[i]);
return nb_completed;
}
static int
otx2_ree_dev_info_get(struct rte_regexdev *dev, struct rte_regexdev_info *info)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct otx2_ree_vf *vf = &data->vf;
ree_func_trace();
if (info == NULL)
return -EINVAL;
info->driver_name = dev->device->driver->name;
info->dev = dev->device;
info->max_queue_pairs = vf->max_queues;
info->max_matches = vf->max_matches;
info->max_payload_size = OTX2_REE_MAX_PAYLOAD_SIZE;
info->max_rules_per_group = data->max_rules_per_group;
info->max_groups = data->max_groups;
info->regexdev_capa = data->regexdev_capa;
info->rule_flags = data->rule_flags;
return 0;
}
static int
otx2_ree_dev_config(struct rte_regexdev *dev,
const struct rte_regexdev_config *cfg)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct otx2_ree_vf *vf = &data->vf;
const struct ree_rule_db *rule_db;
uint32_t rule_db_len;
int ret;
ree_func_trace();
if (cfg->nb_queue_pairs > vf->max_queues) {
otx2_err("Invalid number of queue pairs requested");
return -EINVAL;
}
if (cfg->nb_max_matches != vf->max_matches) {
otx2_err("Invalid number of max matches requested");
return -EINVAL;
}
if (cfg->dev_cfg_flags != 0) {
otx2_err("Invalid device configuration flags requested");
return -EINVAL;
}
/* Unregister error interrupts */
if (vf->err_intr_registered)
otx2_ree_err_intr_unregister(dev);
/* Detach queues */
if (vf->nb_queues) {
ret = otx2_ree_queues_detach(dev);
if (ret) {
otx2_err("Could not detach REE queues");
return ret;
}
}
/* TEMP : should be in lib */
if (data->queue_pairs == NULL) { /* first time configuration */
data->queue_pairs = rte_zmalloc("regexdev->queue_pairs",
sizeof(data->queue_pairs[0]) *
cfg->nb_queue_pairs, RTE_CACHE_LINE_SIZE);
if (data->queue_pairs == NULL) {
data->nb_queue_pairs = 0;
otx2_err("Failed to get memory for qp meta data, nb_queues %u",
cfg->nb_queue_pairs);
return -ENOMEM;
}
} else { /* re-configure */
uint16_t old_nb_queues = data->nb_queue_pairs;
void **qp;
unsigned int i;
qp = data->queue_pairs;
for (i = cfg->nb_queue_pairs; i < old_nb_queues; i++) {
ret = ree_queue_pair_release(dev, i);
if (ret < 0)
return ret;
}
qp = rte_realloc(qp, sizeof(qp[0]) * cfg->nb_queue_pairs,
RTE_CACHE_LINE_SIZE);
if (qp == NULL) {
otx2_err("Failed to realloc qp meta data, nb_queues %u",
cfg->nb_queue_pairs);
return -ENOMEM;
}
if (cfg->nb_queue_pairs > old_nb_queues) {
uint16_t new_qs = cfg->nb_queue_pairs - old_nb_queues;
memset(qp + old_nb_queues, 0, sizeof(qp[0]) * new_qs);
}
data->queue_pairs = qp;
}
data->nb_queue_pairs = cfg->nb_queue_pairs;
/* Attach queues */
otx2_ree_dbg("Attach %d queues", cfg->nb_queue_pairs);
ret = otx2_ree_queues_attach(dev, cfg->nb_queue_pairs);
if (ret) {
otx2_err("Could not attach queues");
return -ENODEV;
}
ret = otx2_ree_msix_offsets_get(dev);
if (ret) {
otx2_err("Could not get MSI-X offsets");
goto queues_detach;
}
if (cfg->rule_db && cfg->rule_db_len) {
otx2_ree_dbg("rule_db length %d", cfg->rule_db_len);
rule_db = (const struct ree_rule_db *)cfg->rule_db;
rule_db_len = rule_db->number_of_entries *
sizeof(struct ree_rule_db_entry);
otx2_ree_dbg("rule_db number of entries %d",
rule_db->number_of_entries);
if (rule_db_len > cfg->rule_db_len) {
otx2_err("Could not program rule db");
ret = -EINVAL;
goto queues_detach;
}
ret = otx2_ree_rule_db_prog(dev, (const char *)rule_db->entries,
rule_db_len, NULL, OTX2_REE_NON_INC_PROG);
if (ret) {
otx2_err("Could not program rule db");
goto queues_detach;
}
}
dev->enqueue = otx2_ree_enqueue_burst;
dev->dequeue = otx2_ree_dequeue_burst;
rte_mb();
return 0;
queues_detach:
otx2_ree_queues_detach(dev);
return ret;
}
static int
otx2_ree_stop(struct rte_regexdev *dev)
{
RTE_SET_USED(dev);
ree_func_trace();
return 0;
}
static int
otx2_ree_start(struct rte_regexdev *dev)
{
uint32_t rule_db_len = 0;
int ret;
ree_func_trace();
ret = otx2_ree_rule_db_len_get(dev, &rule_db_len, NULL);
if (ret)
return ret;
if (rule_db_len == 0) {
otx2_err("Rule db not programmed");
return -EFAULT;
}
return 0;
}
static int
otx2_ree_close(struct rte_regexdev *dev)
{
return ree_dev_fini(dev);
}
static int
otx2_ree_queue_pair_setup(struct rte_regexdev *dev, uint16_t qp_id,
const struct rte_regexdev_qp_conf *qp_conf)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct otx2_ree_qp *qp;
ree_func_trace("Queue=%d", qp_id);
if (data->queue_pairs[qp_id] != NULL)
ree_queue_pair_release(dev, qp_id);
if (qp_conf->nb_desc > OTX2_REE_DEFAULT_CMD_QLEN) {
otx2_err("Could not setup queue pair for %u descriptors",
qp_conf->nb_desc);
return -EINVAL;
}
if (qp_conf->qp_conf_flags != 0) {
otx2_err("Could not setup queue pair with configuration flags 0x%x",
qp_conf->qp_conf_flags);
return -EINVAL;
}
qp = ree_qp_create(dev, qp_id);
if (qp == NULL) {
otx2_err("Could not create queue pair %d", qp_id);
return -ENOMEM;
}
qp->cb = qp_conf->cb;
data->queue_pairs[qp_id] = qp;
return 0;
}
static int
otx2_ree_rule_db_compile_activate(struct rte_regexdev *dev)
{
return otx2_ree_rule_db_compile_prog(dev);
}
static int
otx2_ree_rule_db_update(struct rte_regexdev *dev,
const struct rte_regexdev_rule *rules, uint16_t nb_rules)
{
struct otx2_ree_data *data = dev->data->dev_private;
struct rte_regexdev_rule *old_ptr;
uint32_t i, sum_nb_rules;
ree_func_trace("nb_rules=%d", nb_rules);
for (i = 0; i < nb_rules; i++) {
if (rules[i].op == RTE_REGEX_RULE_OP_REMOVE)
break;
if (rules[i].group_id >= data->max_groups)
break;
if (rules[i].rule_id >= data->max_rules_per_group)
break;
/* logical implication
* p q p -> q
* 0 0 1
* 0 1 1
* 1 0 0
* 1 1 1
*/
if ((~(rules[i].rule_flags) | data->rule_flags) == 0)
break;
}
nb_rules = i;
if (data->nb_rules == 0) {
data->rules = rte_malloc("rte_regexdev_rules",
nb_rules*sizeof(struct rte_regexdev_rule), 0);
if (data->rules == NULL)
return -ENOMEM;
memcpy(data->rules, rules,
nb_rules*sizeof(struct rte_regexdev_rule));
data->nb_rules = nb_rules;
} else {
old_ptr = data->rules;
sum_nb_rules = data->nb_rules + nb_rules;
data->rules = rte_realloc(data->rules,
sum_nb_rules * sizeof(struct rte_regexdev_rule),
0);
if (data->rules == NULL) {
data->rules = old_ptr;
return -ENOMEM;
}
memcpy(&data->rules[data->nb_rules], rules,
nb_rules*sizeof(struct rte_regexdev_rule));
data->nb_rules = sum_nb_rules;
}
return nb_rules;
}
static int
otx2_ree_rule_db_import(struct rte_regexdev *dev, const char *rule_db,
uint32_t rule_db_len)
{
const struct ree_rule_db *ree_rule_db;
uint32_t ree_rule_db_len;
int ret;
ree_func_trace("rule_db_len=%d", rule_db_len);
ree_rule_db = (const struct ree_rule_db *)rule_db;
ree_rule_db_len = ree_rule_db->number_of_entries *
sizeof(struct ree_rule_db_entry);
if (ree_rule_db_len > rule_db_len) {
otx2_err("Could not program rule db");
return -EINVAL;
}
ret = otx2_ree_rule_db_prog(dev, (const char *)ree_rule_db->entries,
ree_rule_db_len, NULL, OTX2_REE_NON_INC_PROG);
if (ret) {
otx2_err("Could not program rule db");
return -ENOSPC;
}
return 0;
}
static int
otx2_ree_rule_db_export(struct rte_regexdev *dev, char *rule_db)
{
struct ree_rule_db *ree_rule_db;
uint32_t rule_dbi_len;
uint32_t rule_db_len;
int ret;
ree_func_trace();
ret = otx2_ree_rule_db_len_get(dev, &rule_db_len, &rule_dbi_len);
if (ret)
return ret;
if (rule_db == NULL) {
rule_db_len += sizeof(struct ree_rule_db);
return rule_db_len;
}
ree_rule_db = (struct ree_rule_db *)rule_db;
ret = otx2_ree_rule_db_get(dev, (char *)ree_rule_db->entries,
rule_db_len, NULL, 0);
if (ret) {
otx2_err("Could not export rule db");
return -EFAULT;
}
ree_rule_db->number_of_entries =
rule_db_len/sizeof(struct ree_rule_db_entry);
ree_rule_db->revision = REE_RULE_DB_REVISION;
ree_rule_db->version = REE_RULE_DB_VERSION;
return 0;
}
static int
ree_get_blkaddr(struct otx2_dev *dev)
{
int pf;
pf = otx2_get_pf(dev->pf_func);
if (pf == REE0_PF)
return RVU_BLOCK_ADDR_REE0;
else if (pf == REE1_PF)
return RVU_BLOCK_ADDR_REE1;
else
return 0;
}
static struct rte_regexdev_ops otx2_ree_ops = {
.dev_info_get = otx2_ree_dev_info_get,
.dev_configure = otx2_ree_dev_config,
.dev_qp_setup = otx2_ree_queue_pair_setup,
.dev_start = otx2_ree_start,
.dev_stop = otx2_ree_stop,
.dev_close = otx2_ree_close,
.dev_attr_get = NULL,
.dev_attr_set = NULL,
.dev_rule_db_update = otx2_ree_rule_db_update,
.dev_rule_db_compile_activate =
otx2_ree_rule_db_compile_activate,
.dev_db_import = otx2_ree_rule_db_import,
.dev_db_export = otx2_ree_rule_db_export,
.dev_xstats_names_get = NULL,
.dev_xstats_get = NULL,
.dev_xstats_by_name_get = NULL,
.dev_xstats_reset = NULL,
.dev_selftest = NULL,
.dev_dump = NULL,
};
static int
otx2_ree_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
char name[RTE_REGEXDEV_NAME_MAX_LEN];
struct otx2_ree_data *data;
struct otx2_dev *otx2_dev;
struct rte_regexdev *dev;
uint8_t max_matches = 0;
struct otx2_ree_vf *vf;
uint16_t nb_queues = 0;
int ret;
rte_pci_device_name(&pci_dev->addr, name, sizeof(name));
dev = ree_dev_register(name);
if (dev == NULL) {
ret = -ENODEV;
goto exit;
}
dev->dev_ops = &otx2_ree_ops;
dev->device = &pci_dev->device;
/* Get private data space allocated */
data = dev->data->dev_private;
vf = &data->vf;
otx2_dev = &vf->otx2_dev;
/* Initialize the base otx2_dev object */
ret = otx2_dev_init(pci_dev, otx2_dev);
if (ret) {
otx2_err("Could not initialize otx2_dev");
goto dev_unregister;
}
/* Get REE block address */
vf->block_address = ree_get_blkaddr(otx2_dev);
if (!vf->block_address) {
otx2_err("Could not determine block PF number");
goto otx2_dev_fini;
}
/* Get number of queues available on the device */
ret = otx2_ree_available_queues_get(dev, &nb_queues);
if (ret) {
otx2_err("Could not determine the number of queues available");
goto otx2_dev_fini;
}
/* Don't exceed the limits set per VF */
nb_queues = RTE_MIN(nb_queues, OTX2_REE_MAX_QUEUES_PER_VF);
if (nb_queues == 0) {
otx2_err("No free queues available on the device");
goto otx2_dev_fini;
}
vf->max_queues = nb_queues;
otx2_ree_dbg("Max queues supported by device: %d", vf->max_queues);
/* Get number of maximum matches supported on the device */
ret = otx2_ree_max_matches_get(dev, &max_matches);
if (ret) {
otx2_err("Could not determine the maximum matches supported");
goto otx2_dev_fini;
}
/* Don't exceed the limits set per VF */
max_matches = RTE_MIN(max_matches, OTX2_REE_MAX_MATCHES_PER_VF);
if (max_matches == 0) {
otx2_err("Could not determine the maximum matches supported");
goto otx2_dev_fini;
}
vf->max_matches = max_matches;
otx2_ree_dbg("Max matches supported by device: %d", vf->max_matches);
data->rule_flags = RTE_REGEX_PCRE_RULE_ALLOW_EMPTY_F |
RTE_REGEX_PCRE_RULE_ANCHORED_F;
data->regexdev_capa = 0;
data->max_groups = REE_MAX_GROUPS;
data->max_rules_per_group = REE_MAX_RULES_PER_GROUP;
data->nb_rules = 0;
dev->state = RTE_REGEXDEV_READY;
return 0;
otx2_dev_fini:
otx2_dev_fini(pci_dev, otx2_dev);
dev_unregister:
ree_dev_unregister(dev);
exit:
otx2_err("Could not create device (vendor_id: 0x%x device_id: 0x%x)",
pci_dev->id.vendor_id, pci_dev->id.device_id);
return ret;
}
static int
otx2_ree_pci_remove(struct rte_pci_device *pci_dev)
{
char name[RTE_REGEXDEV_NAME_MAX_LEN];
struct rte_regexdev *dev = NULL;
if (pci_dev == NULL)
return -EINVAL;
rte_pci_device_name(&pci_dev->addr, name, sizeof(name));
dev = rte_regexdev_get_device_by_name(name);
if (dev == NULL)
return -ENODEV;
return ree_dev_fini(dev);
}
static struct rte_pci_id pci_id_ree_table[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM,
PCI_DEVID_OCTEONTX2_RVU_REE_PF)
},
};
static struct rte_pci_driver otx2_regexdev_pmd = {
.id_table = pci_id_ree_table,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = otx2_ree_pci_probe,
.remove = otx2_ree_pci_remove,
};
RTE_PMD_REGISTER_PCI(REGEXDEV_NAME_OCTEONTX2_PMD, otx2_regexdev_pmd);
RTE_PMD_REGISTER_PCI_TABLE(REGEXDEV_NAME_OCTEONTX2_PMD, pci_id_ree_table);