27c2e74719
Add support for IMIX performance tests, where a distribution of various packet sizes can be submitted to a crypto device, testing a closer to a real world scenario. A sequence of packet sizes, selected randomly from a list of packet sizes (with "buffer-sz" parameter) with a list of the weights per packet size (using "imix" parameter), is generated (the length of this sequence is the same length as the pool, set with "pool-sz" parameter). This sequence is used repeteadly for all the crypto operations submitted to the crypto device (with "--total-ops" parameter). Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com> Acked-by: Fan Zhang <roy.fan.zhang@intel.com>
331 lines
8.4 KiB
C
331 lines
8.4 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2016-2017 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
|
|
#include "cperf_test_throughput.h"
|
|
#include "cperf_ops.h"
|
|
#include "cperf_test_common.h"
|
|
|
|
struct cperf_throughput_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pool;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
|
|
uint32_t src_buf_offset;
|
|
uint32_t dst_buf_offset;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
};
|
|
|
|
static void
|
|
cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
|
|
{
|
|
if (ctx) {
|
|
if (ctx->sess) {
|
|
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
|
|
rte_cryptodev_sym_session_free(ctx->sess);
|
|
}
|
|
|
|
if (ctx->pool)
|
|
rte_mempool_free(ctx->pool);
|
|
|
|
rte_free(ctx);
|
|
}
|
|
}
|
|
|
|
void *
|
|
cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
|
|
uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = NULL;
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
/* IV goes at the end of the crypto operation */
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op);
|
|
|
|
ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
|
|
iv_offset);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
|
|
&ctx->src_buf_offset, &ctx->dst_buf_offset,
|
|
&ctx->pool) < 0)
|
|
goto err;
|
|
|
|
return ctx;
|
|
err:
|
|
cperf_throughput_test_free(ctx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
cperf_throughput_test_runner(void *test_ctx)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = test_ctx;
|
|
uint16_t test_burst_size;
|
|
uint8_t burst_size_idx = 0;
|
|
uint32_t imix_idx = 0;
|
|
|
|
static int only_once;
|
|
|
|
struct rte_crypto_op *ops[ctx->options->max_burst_size];
|
|
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
|
|
uint64_t i;
|
|
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
int linearize = 0;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
|
|
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
|
|
linearize = 1;
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
ctx->lcore_id = lcore;
|
|
|
|
/* Warm up the host CPU before starting the test */
|
|
for (i = 0; i < ctx->options->total_ops; i++)
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* Get first size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size = ctx->options->min_burst_size;
|
|
else
|
|
test_burst_size = ctx->options->burst_size_list[0];
|
|
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op);
|
|
|
|
while (test_burst_size <= ctx->options->max_burst_size) {
|
|
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
|
|
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
|
|
|
|
uint64_t tsc_start, tsc_end, tsc_duration;
|
|
|
|
uint16_t ops_unused = 0;
|
|
|
|
tsc_start = rte_rdtsc_precise();
|
|
|
|
while (ops_enqd_total < ctx->options->total_ops) {
|
|
|
|
uint16_t burst_size = ((ops_enqd_total + test_burst_size)
|
|
<= ctx->options->total_ops) ?
|
|
test_burst_size :
|
|
ctx->options->total_ops -
|
|
ops_enqd_total;
|
|
|
|
uint16_t ops_needed = burst_size - ops_unused;
|
|
|
|
/* Allocate objects containing crypto operations and mbufs */
|
|
if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
|
|
ops_needed) != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Failed to allocate more crypto operations "
|
|
"from the crypto operation pool.\n"
|
|
"Consider increasing the pool size "
|
|
"with --pool-sz\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(ctx->populate_ops)(ops, ctx->src_buf_offset,
|
|
ctx->dst_buf_offset,
|
|
ops_needed, ctx->sess,
|
|
ctx->options, ctx->test_vector,
|
|
iv_offset, &imix_idx);
|
|
|
|
/**
|
|
* When ops_needed is smaller than ops_enqd, the
|
|
* unused ops need to be moved to the front for
|
|
* next round use.
|
|
*/
|
|
if (unlikely(ops_enqd > ops_needed)) {
|
|
size_t nb_b_to_mov = ops_unused * sizeof(
|
|
struct rte_crypto_op *);
|
|
|
|
memmove(&ops[ops_needed], &ops[ops_enqd],
|
|
nb_b_to_mov);
|
|
}
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
if (linearize) {
|
|
/* PMD doesn't support scatter-gather and source buffer
|
|
* is segmented.
|
|
* We need to linearize it before enqueuing.
|
|
*/
|
|
for (i = 0; i < burst_size; i++)
|
|
rte_pktmbuf_linearize(ops[i]->sym->m_src);
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
/* Enqueue burst of ops on crypto device */
|
|
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops, burst_size);
|
|
if (ops_enqd < burst_size)
|
|
ops_enqd_failed++;
|
|
|
|
/**
|
|
* Calculate number of ops not enqueued (mainly for hw
|
|
* accelerators whose ingress queue can fill up).
|
|
*/
|
|
ops_unused = burst_size - ops_enqd;
|
|
ops_enqd_total += ops_enqd;
|
|
|
|
|
|
/* Dequeue processed burst of ops from crypto device */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
|
|
if (likely(ops_deqd)) {
|
|
/* Free crypto ops so they can be reused. */
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
|
|
ops_deqd_total += ops_deqd;
|
|
} else {
|
|
/**
|
|
* Count dequeue polls which didn't return any
|
|
* processed operations. This statistic is mainly
|
|
* relevant to hw accelerators.
|
|
*/
|
|
ops_deqd_failed++;
|
|
}
|
|
|
|
}
|
|
|
|
/* Dequeue any operations still in the crypto device */
|
|
|
|
while (ops_deqd_total < ctx->options->total_ops) {
|
|
/* Sending 0 length burst to flush sw crypto device */
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* dequeue burst */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, test_burst_size);
|
|
if (ops_deqd == 0)
|
|
ops_deqd_failed++;
|
|
else {
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
ops_deqd_total += ops_deqd;
|
|
}
|
|
}
|
|
|
|
tsc_end = rte_rdtsc_precise();
|
|
tsc_duration = (tsc_end - tsc_start);
|
|
|
|
/* Calculate average operations processed per second */
|
|
double ops_per_second = ((double)ctx->options->total_ops /
|
|
tsc_duration) * rte_get_tsc_hz();
|
|
|
|
/* Calculate average throughput (Gbps) in bits per second */
|
|
double throughput_gbps = ((ops_per_second *
|
|
ctx->options->test_buffer_size * 8) / 1000000000);
|
|
|
|
/* Calculate average cycles per packet */
|
|
double cycles_per_packet = ((double)tsc_duration /
|
|
ctx->options->total_ops);
|
|
|
|
if (!ctx->options->csv) {
|
|
if (!only_once)
|
|
printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
|
|
"lcore id", "Buf Size", "Burst Size",
|
|
"Enqueued", "Dequeued", "Failed Enq",
|
|
"Failed Deq", "MOps", "Gbps",
|
|
"Cycles/Buf");
|
|
only_once = 1;
|
|
|
|
printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
|
|
"%12"PRIu64"%12.4f%12.4f%12.2f\n",
|
|
ctx->lcore_id,
|
|
ctx->options->test_buffer_size,
|
|
test_burst_size,
|
|
ops_enqd_total,
|
|
ops_deqd_total,
|
|
ops_enqd_failed,
|
|
ops_deqd_failed,
|
|
ops_per_second/1000000,
|
|
throughput_gbps,
|
|
cycles_per_packet);
|
|
} else {
|
|
if (!only_once)
|
|
printf("#lcore id,Buffer Size(B),"
|
|
"Burst Size,Enqueued,Dequeued,Failed Enq,"
|
|
"Failed Deq,Ops(Millions),Throughput(Gbps),"
|
|
"Cycles/Buf\n\n");
|
|
only_once = 1;
|
|
|
|
printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
|
|
"%.3f;%.3f;%.3f\n",
|
|
ctx->lcore_id,
|
|
ctx->options->test_buffer_size,
|
|
test_burst_size,
|
|
ops_enqd_total,
|
|
ops_deqd_total,
|
|
ops_enqd_failed,
|
|
ops_deqd_failed,
|
|
ops_per_second/1000000,
|
|
throughput_gbps,
|
|
cycles_per_packet);
|
|
}
|
|
|
|
/* Get next size from range or list */
|
|
if (ctx->options->inc_burst_size != 0)
|
|
test_burst_size += ctx->options->inc_burst_size;
|
|
else {
|
|
if (++burst_size_idx == ctx->options->burst_size_count)
|
|
break;
|
|
test_burst_size = ctx->options->burst_size_list[burst_size_idx];
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
cperf_throughput_test_destructor(void *arg)
|
|
{
|
|
struct cperf_throughput_ctx *ctx = arg;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
cperf_throughput_test_free(ctx);
|
|
}
|