numam-dpdk/lib/librte_hash/rte_cuckoo_hash.c
Kevin Traynor 572f2a9089 hash: fix gcc 10 maybe-uninitialized warning
gcc 10.1.1 reports a warning for the ext_bkt_id variable:

../lib/librte_hash/rte_cuckoo_hash.c:
In function ‘__rte_hash_add_key_with_hash’:
../lib/librte_hash/rte_cuckoo_hash.c:1104:29:
warning: ‘ext_bkt_id’ may be used uninitialized in this function
[-Wmaybe-uninitialized]
 1104 |  (h->buckets_ext[ext_bkt_id - 1]).sig_current[0] = short_sig;
      |                  ~~~~~~~~~~~^~~

The return value of rte_ring_sc_dequeue_elem() is already checked,
but also initialize ext_bkt_id to zero (invalid value) and check
that it also overwritten.

Fixes: fbfe568103 ("hash: use 32-bit elements rings to save memory")
Cc: stable@dpdk.org

Signed-off-by: Kevin Traynor <ktraynor@redhat.com>
Acked-by: Yipeng Wang <yipeng1.wang@intel.com>
2020-05-18 13:54:36 +02:00

2360 lines
63 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
* Copyright(c) 2018 Arm Limited
*/
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_memory.h> /* for definition of RTE_CACHE_LINE_SIZE */
#include <rte_log.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_cpuflags.h>
#include <rte_rwlock.h>
#include <rte_spinlock.h>
#include <rte_ring_elem.h>
#include <rte_compat.h>
#include <rte_vect.h>
#include <rte_tailq.h>
#include "rte_hash.h"
#include "rte_cuckoo_hash.h"
#define FOR_EACH_BUCKET(CURRENT_BKT, START_BUCKET) \
for (CURRENT_BKT = START_BUCKET; \
CURRENT_BKT != NULL; \
CURRENT_BKT = CURRENT_BKT->next)
TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
static struct rte_tailq_elem rte_hash_tailq = {
.name = "RTE_HASH",
};
EAL_REGISTER_TAILQ(rte_hash_tailq)
struct rte_hash *
rte_hash_find_existing(const char *name)
{
struct rte_hash *h = NULL;
struct rte_tailq_entry *te;
struct rte_hash_list *hash_list;
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, hash_list, next) {
h = (struct rte_hash *) te->data;
if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return h;
}
static inline struct rte_hash_bucket *
rte_hash_get_last_bkt(struct rte_hash_bucket *lst_bkt)
{
while (lst_bkt->next != NULL)
lst_bkt = lst_bkt->next;
return lst_bkt;
}
void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
{
h->cmp_jump_table_idx = KEY_CUSTOM;
h->rte_hash_custom_cmp_eq = func;
}
static inline int
rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
{
if (h->cmp_jump_table_idx == KEY_CUSTOM)
return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
else
return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
}
/*
* We use higher 16 bits of hash as the signature value stored in table.
* We use the lower bits for the primary bucket
* location. Then we XOR primary bucket location and the signature
* to get the secondary bucket location. This is same as
* proposed in Bin Fan, et al's paper
* "MemC3: Compact and Concurrent MemCache with Dumber Caching and
* Smarter Hashing". The benefit to use
* XOR is that one could derive the alternative bucket location
* by only using the current bucket location and the signature.
*/
static inline uint16_t
get_short_sig(const hash_sig_t hash)
{
return hash >> 16;
}
static inline uint32_t
get_prim_bucket_index(const struct rte_hash *h, const hash_sig_t hash)
{
return hash & h->bucket_bitmask;
}
static inline uint32_t
get_alt_bucket_index(const struct rte_hash *h,
uint32_t cur_bkt_idx, uint16_t sig)
{
return (cur_bkt_idx ^ sig) & h->bucket_bitmask;
}
struct rte_hash *
rte_hash_create(const struct rte_hash_parameters *params)
{
struct rte_hash *h = NULL;
struct rte_tailq_entry *te = NULL;
struct rte_hash_list *hash_list;
struct rte_ring *r = NULL;
struct rte_ring *r_ext = NULL;
char hash_name[RTE_HASH_NAMESIZE];
void *k = NULL;
void *buckets = NULL;
void *buckets_ext = NULL;
char ring_name[RTE_RING_NAMESIZE];
char ext_ring_name[RTE_RING_NAMESIZE];
unsigned num_key_slots;
unsigned int hw_trans_mem_support = 0, use_local_cache = 0;
unsigned int ext_table_support = 0;
unsigned int readwrite_concur_support = 0;
unsigned int writer_takes_lock = 0;
unsigned int no_free_on_del = 0;
uint32_t *ext_bkt_to_free = NULL;
uint32_t *tbl_chng_cnt = NULL;
unsigned int readwrite_concur_lf_support = 0;
uint32_t i;
rte_hash_function default_hash_func = (rte_hash_function)rte_jhash;
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
if (params == NULL) {
RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
return NULL;
}
/* Check for valid parameters */
if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
(params->entries < RTE_HASH_BUCKET_ENTRIES) ||
(params->key_len == 0)) {
rte_errno = EINVAL;
RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
return NULL;
}
/* Validate correct usage of extra options */
if ((params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) &&
(params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)) {
rte_errno = EINVAL;
RTE_LOG(ERR, HASH, "rte_hash_create: choose rw concurrency or "
"rw concurrency lock free\n");
return NULL;
}
/* Check extra flags field to check extra options. */
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
hw_trans_mem_support = 1;
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
use_local_cache = 1;
writer_takes_lock = 1;
}
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) {
readwrite_concur_support = 1;
writer_takes_lock = 1;
}
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_EXT_TABLE)
ext_table_support = 1;
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL)
no_free_on_del = 1;
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) {
readwrite_concur_lf_support = 1;
/* Enable not freeing internal memory/index on delete */
no_free_on_del = 1;
}
/* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
if (use_local_cache)
/*
* Increase number of slots by total number of indices
* that can be stored in the lcore caches
* except for the first cache
*/
num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
(LCORE_CACHE_SIZE - 1) + 1;
else
num_key_slots = params->entries + 1;
snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
/* Create ring (Dummy slot index is not enqueued) */
r = rte_ring_create_elem(ring_name, sizeof(uint32_t),
rte_align32pow2(num_key_slots), params->socket_id, 0);
if (r == NULL) {
RTE_LOG(ERR, HASH, "memory allocation failed\n");
goto err;
}
const uint32_t num_buckets = rte_align32pow2(params->entries) /
RTE_HASH_BUCKET_ENTRIES;
/* Create ring for extendable buckets. */
if (ext_table_support) {
snprintf(ext_ring_name, sizeof(ext_ring_name), "HT_EXT_%s",
params->name);
r_ext = rte_ring_create_elem(ext_ring_name, sizeof(uint32_t),
rte_align32pow2(num_buckets + 1),
params->socket_id, 0);
if (r_ext == NULL) {
RTE_LOG(ERR, HASH, "ext buckets memory allocation "
"failed\n");
goto err;
}
}
snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
rte_mcfg_tailq_write_lock();
/* guarantee there's no existing: this is normally already checked
* by ring creation above */
TAILQ_FOREACH(te, hash_list, next) {
h = (struct rte_hash *) te->data;
if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
break;
}
h = NULL;
if (te != NULL) {
rte_errno = EEXIST;
te = NULL;
goto err_unlock;
}
te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
goto err_unlock;
}
h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
RTE_CACHE_LINE_SIZE, params->socket_id);
if (h == NULL) {
RTE_LOG(ERR, HASH, "memory allocation failed\n");
goto err_unlock;
}
buckets = rte_zmalloc_socket(NULL,
num_buckets * sizeof(struct rte_hash_bucket),
RTE_CACHE_LINE_SIZE, params->socket_id);
if (buckets == NULL) {
RTE_LOG(ERR, HASH, "buckets memory allocation failed\n");
goto err_unlock;
}
/* Allocate same number of extendable buckets */
if (ext_table_support) {
buckets_ext = rte_zmalloc_socket(NULL,
num_buckets * sizeof(struct rte_hash_bucket),
RTE_CACHE_LINE_SIZE, params->socket_id);
if (buckets_ext == NULL) {
RTE_LOG(ERR, HASH, "ext buckets memory allocation "
"failed\n");
goto err_unlock;
}
/* Populate ext bkt ring. We reserve 0 similar to the
* key-data slot, just in case in future we want to
* use bucket index for the linked list and 0 means NULL
* for next bucket
*/
for (i = 1; i <= num_buckets; i++)
rte_ring_sp_enqueue_elem(r_ext, &i, sizeof(uint32_t));
if (readwrite_concur_lf_support) {
ext_bkt_to_free = rte_zmalloc(NULL, sizeof(uint32_t) *
num_key_slots, 0);
if (ext_bkt_to_free == NULL) {
RTE_LOG(ERR, HASH, "ext bkt to free memory allocation "
"failed\n");
goto err_unlock;
}
}
}
const uint32_t key_entry_size =
RTE_ALIGN(sizeof(struct rte_hash_key) + params->key_len,
KEY_ALIGNMENT);
const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
k = rte_zmalloc_socket(NULL, key_tbl_size,
RTE_CACHE_LINE_SIZE, params->socket_id);
if (k == NULL) {
RTE_LOG(ERR, HASH, "memory allocation failed\n");
goto err_unlock;
}
tbl_chng_cnt = rte_zmalloc_socket(NULL, sizeof(uint32_t),
RTE_CACHE_LINE_SIZE, params->socket_id);
if (tbl_chng_cnt == NULL) {
RTE_LOG(ERR, HASH, "memory allocation failed\n");
goto err_unlock;
}
/*
* If x86 architecture is used, select appropriate compare function,
* which may use x86 intrinsics, otherwise use memcmp
*/
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
/* Select function to compare keys */
switch (params->key_len) {
case 16:
h->cmp_jump_table_idx = KEY_16_BYTES;
break;
case 32:
h->cmp_jump_table_idx = KEY_32_BYTES;
break;
case 48:
h->cmp_jump_table_idx = KEY_48_BYTES;
break;
case 64:
h->cmp_jump_table_idx = KEY_64_BYTES;
break;
case 80:
h->cmp_jump_table_idx = KEY_80_BYTES;
break;
case 96:
h->cmp_jump_table_idx = KEY_96_BYTES;
break;
case 112:
h->cmp_jump_table_idx = KEY_112_BYTES;
break;
case 128:
h->cmp_jump_table_idx = KEY_128_BYTES;
break;
default:
/* If key is not multiple of 16, use generic memcmp */
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
}
#else
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
#endif
if (use_local_cache) {
h->local_free_slots = rte_zmalloc_socket(NULL,
sizeof(struct lcore_cache) * RTE_MAX_LCORE,
RTE_CACHE_LINE_SIZE, params->socket_id);
}
/* Default hash function */
#if defined(RTE_ARCH_X86)
default_hash_func = (rte_hash_function)rte_hash_crc;
#elif defined(RTE_ARCH_ARM64)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_CRC32))
default_hash_func = (rte_hash_function)rte_hash_crc;
#endif
/* Setup hash context */
strlcpy(h->name, params->name, sizeof(h->name));
h->entries = params->entries;
h->key_len = params->key_len;
h->key_entry_size = key_entry_size;
h->hash_func_init_val = params->hash_func_init_val;
h->num_buckets = num_buckets;
h->bucket_bitmask = h->num_buckets - 1;
h->buckets = buckets;
h->buckets_ext = buckets_ext;
h->free_ext_bkts = r_ext;
h->hash_func = (params->hash_func == NULL) ?
default_hash_func : params->hash_func;
h->key_store = k;
h->free_slots = r;
h->ext_bkt_to_free = ext_bkt_to_free;
h->tbl_chng_cnt = tbl_chng_cnt;
*h->tbl_chng_cnt = 0;
h->hw_trans_mem_support = hw_trans_mem_support;
h->use_local_cache = use_local_cache;
h->readwrite_concur_support = readwrite_concur_support;
h->ext_table_support = ext_table_support;
h->writer_takes_lock = writer_takes_lock;
h->no_free_on_del = no_free_on_del;
h->readwrite_concur_lf_support = readwrite_concur_lf_support;
#if defined(RTE_ARCH_X86)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
else
#elif defined(RTE_ARCH_ARM64)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
h->sig_cmp_fn = RTE_HASH_COMPARE_NEON;
else
#endif
h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
/* Writer threads need to take the lock when:
* 1) RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY is enabled OR
* 2) RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD is enabled
*/
if (h->writer_takes_lock) {
h->readwrite_lock = rte_malloc(NULL, sizeof(rte_rwlock_t),
RTE_CACHE_LINE_SIZE);
if (h->readwrite_lock == NULL)
goto err_unlock;
rte_rwlock_init(h->readwrite_lock);
}
/* Populate free slots ring. Entry zero is reserved for key misses. */
for (i = 1; i < num_key_slots; i++)
rte_ring_sp_enqueue_elem(r, &i, sizeof(uint32_t));
te->data = (void *) h;
TAILQ_INSERT_TAIL(hash_list, te, next);
rte_mcfg_tailq_write_unlock();
return h;
err_unlock:
rte_mcfg_tailq_write_unlock();
err:
rte_ring_free(r);
rte_ring_free(r_ext);
rte_free(te);
rte_free(h);
rte_free(buckets);
rte_free(buckets_ext);
rte_free(k);
rte_free(tbl_chng_cnt);
rte_free(ext_bkt_to_free);
return NULL;
}
void
rte_hash_free(struct rte_hash *h)
{
struct rte_tailq_entry *te;
struct rte_hash_list *hash_list;
if (h == NULL)
return;
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
rte_mcfg_tailq_write_lock();
/* find out tailq entry */
TAILQ_FOREACH(te, hash_list, next) {
if (te->data == (void *) h)
break;
}
if (te == NULL) {
rte_mcfg_tailq_write_unlock();
return;
}
TAILQ_REMOVE(hash_list, te, next);
rte_mcfg_tailq_write_unlock();
if (h->use_local_cache)
rte_free(h->local_free_slots);
if (h->writer_takes_lock)
rte_free(h->readwrite_lock);
rte_ring_free(h->free_slots);
rte_ring_free(h->free_ext_bkts);
rte_free(h->key_store);
rte_free(h->buckets);
rte_free(h->buckets_ext);
rte_free(h->tbl_chng_cnt);
rte_free(h->ext_bkt_to_free);
rte_free(h);
rte_free(te);
}
hash_sig_t
rte_hash_hash(const struct rte_hash *h, const void *key)
{
/* calc hash result by key */
return h->hash_func(key, h->key_len, h->hash_func_init_val);
}
int32_t
rte_hash_max_key_id(const struct rte_hash *h)
{
RETURN_IF_TRUE((h == NULL), -EINVAL);
if (h->use_local_cache)
/*
* Increase number of slots by total number of indices
* that can be stored in the lcore caches
*/
return (h->entries + ((RTE_MAX_LCORE - 1) *
(LCORE_CACHE_SIZE - 1)));
else
return h->entries;
}
int32_t
rte_hash_count(const struct rte_hash *h)
{
uint32_t tot_ring_cnt, cached_cnt = 0;
uint32_t i, ret;
if (h == NULL)
return -EINVAL;
if (h->use_local_cache) {
tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
(LCORE_CACHE_SIZE - 1);
for (i = 0; i < RTE_MAX_LCORE; i++)
cached_cnt += h->local_free_slots[i].len;
ret = tot_ring_cnt - rte_ring_count(h->free_slots) -
cached_cnt;
} else {
tot_ring_cnt = h->entries;
ret = tot_ring_cnt - rte_ring_count(h->free_slots);
}
return ret;
}
/* Read write locks implemented using rte_rwlock */
static inline void
__hash_rw_writer_lock(const struct rte_hash *h)
{
if (h->writer_takes_lock && h->hw_trans_mem_support)
rte_rwlock_write_lock_tm(h->readwrite_lock);
else if (h->writer_takes_lock)
rte_rwlock_write_lock(h->readwrite_lock);
}
static inline void
__hash_rw_reader_lock(const struct rte_hash *h)
{
if (h->readwrite_concur_support && h->hw_trans_mem_support)
rte_rwlock_read_lock_tm(h->readwrite_lock);
else if (h->readwrite_concur_support)
rte_rwlock_read_lock(h->readwrite_lock);
}
static inline void
__hash_rw_writer_unlock(const struct rte_hash *h)
{
if (h->writer_takes_lock && h->hw_trans_mem_support)
rte_rwlock_write_unlock_tm(h->readwrite_lock);
else if (h->writer_takes_lock)
rte_rwlock_write_unlock(h->readwrite_lock);
}
static inline void
__hash_rw_reader_unlock(const struct rte_hash *h)
{
if (h->readwrite_concur_support && h->hw_trans_mem_support)
rte_rwlock_read_unlock_tm(h->readwrite_lock);
else if (h->readwrite_concur_support)
rte_rwlock_read_unlock(h->readwrite_lock);
}
void
rte_hash_reset(struct rte_hash *h)
{
uint32_t tot_ring_cnt, i;
if (h == NULL)
return;
__hash_rw_writer_lock(h);
memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
*h->tbl_chng_cnt = 0;
/* reset the free ring */
rte_ring_reset(h->free_slots);
/* flush free extendable bucket ring and memory */
if (h->ext_table_support) {
memset(h->buckets_ext, 0, h->num_buckets *
sizeof(struct rte_hash_bucket));
rte_ring_reset(h->free_ext_bkts);
}
/* Repopulate the free slots ring. Entry zero is reserved for key misses */
if (h->use_local_cache)
tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
(LCORE_CACHE_SIZE - 1);
else
tot_ring_cnt = h->entries;
for (i = 1; i < tot_ring_cnt + 1; i++)
rte_ring_sp_enqueue_elem(h->free_slots, &i, sizeof(uint32_t));
/* Repopulate the free ext bkt ring. */
if (h->ext_table_support) {
for (i = 1; i <= h->num_buckets; i++)
rte_ring_sp_enqueue_elem(h->free_ext_bkts, &i,
sizeof(uint32_t));
}
if (h->use_local_cache) {
/* Reset local caches per lcore */
for (i = 0; i < RTE_MAX_LCORE; i++)
h->local_free_slots[i].len = 0;
}
__hash_rw_writer_unlock(h);
}
/*
* Function called to enqueue back an index in the cache/ring,
* as slot has not being used and it can be used in the
* next addition attempt.
*/
static inline void
enqueue_slot_back(const struct rte_hash *h,
struct lcore_cache *cached_free_slots,
uint32_t slot_id)
{
if (h->use_local_cache) {
cached_free_slots->objs[cached_free_slots->len] = slot_id;
cached_free_slots->len++;
} else
rte_ring_sp_enqueue_elem(h->free_slots, &slot_id,
sizeof(uint32_t));
}
/* Search a key from bucket and update its data.
* Writer holds the lock before calling this.
*/
static inline int32_t
search_and_update(const struct rte_hash *h, void *data, const void *key,
struct rte_hash_bucket *bkt, uint16_t sig)
{
int i;
struct rte_hash_key *k, *keys = h->key_store;
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
if (bkt->sig_current[i] == sig) {
k = (struct rte_hash_key *) ((char *)keys +
bkt->key_idx[i] * h->key_entry_size);
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
/* The store to application data at *data
* should not leak after the store to pdata
* in the key store. i.e. pdata is the guard
* variable. Release the application data
* to the readers.
*/
__atomic_store_n(&k->pdata,
data,
__ATOMIC_RELEASE);
/*
* Return index where key is stored,
* subtracting the first dummy index
*/
return bkt->key_idx[i] - 1;
}
}
}
return -1;
}
/* Only tries to insert at one bucket (@prim_bkt) without trying to push
* buckets around.
* return 1 if matching existing key, return 0 if succeeds, return -1 for no
* empty entry.
*/
static inline int32_t
rte_hash_cuckoo_insert_mw(const struct rte_hash *h,
struct rte_hash_bucket *prim_bkt,
struct rte_hash_bucket *sec_bkt,
const struct rte_hash_key *key, void *data,
uint16_t sig, uint32_t new_idx,
int32_t *ret_val)
{
unsigned int i;
struct rte_hash_bucket *cur_bkt;
int32_t ret;
__hash_rw_writer_lock(h);
/* Check if key was inserted after last check but before this
* protected region in case of inserting duplicated keys.
*/
ret = search_and_update(h, data, key, prim_bkt, sig);
if (ret != -1) {
__hash_rw_writer_unlock(h);
*ret_val = ret;
return 1;
}
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
ret = search_and_update(h, data, key, cur_bkt, sig);
if (ret != -1) {
__hash_rw_writer_unlock(h);
*ret_val = ret;
return 1;
}
}
/* Insert new entry if there is room in the primary
* bucket.
*/
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
/* Check if slot is available */
if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
prim_bkt->sig_current[i] = sig;
/* Store to signature and key should not
* leak after the store to key_idx. i.e.
* key_idx is the guard variable for signature
* and key.
*/
__atomic_store_n(&prim_bkt->key_idx[i],
new_idx,
__ATOMIC_RELEASE);
break;
}
}
__hash_rw_writer_unlock(h);
if (i != RTE_HASH_BUCKET_ENTRIES)
return 0;
/* no empty entry */
return -1;
}
/* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill
* the path head with new entry (sig, alt_hash, new_idx)
* return 1 if matched key found, return -1 if cuckoo path invalided and fail,
* return 0 if succeeds.
*/
static inline int
rte_hash_cuckoo_move_insert_mw(const struct rte_hash *h,
struct rte_hash_bucket *bkt,
struct rte_hash_bucket *alt_bkt,
const struct rte_hash_key *key, void *data,
struct queue_node *leaf, uint32_t leaf_slot,
uint16_t sig, uint32_t new_idx,
int32_t *ret_val)
{
uint32_t prev_alt_bkt_idx;
struct rte_hash_bucket *cur_bkt;
struct queue_node *prev_node, *curr_node = leaf;
struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt;
uint32_t prev_slot, curr_slot = leaf_slot;
int32_t ret;
__hash_rw_writer_lock(h);
/* In case empty slot was gone before entering protected region */
if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT) {
__hash_rw_writer_unlock(h);
return -1;
}
/* Check if key was inserted after last check but before this
* protected region.
*/
ret = search_and_update(h, data, key, bkt, sig);
if (ret != -1) {
__hash_rw_writer_unlock(h);
*ret_val = ret;
return 1;
}
FOR_EACH_BUCKET(cur_bkt, alt_bkt) {
ret = search_and_update(h, data, key, cur_bkt, sig);
if (ret != -1) {
__hash_rw_writer_unlock(h);
*ret_val = ret;
return 1;
}
}
while (likely(curr_node->prev != NULL)) {
prev_node = curr_node->prev;
prev_bkt = prev_node->bkt;
prev_slot = curr_node->prev_slot;
prev_alt_bkt_idx = get_alt_bucket_index(h,
prev_node->cur_bkt_idx,
prev_bkt->sig_current[prev_slot]);
if (unlikely(&h->buckets[prev_alt_bkt_idx]
!= curr_bkt)) {
/* revert it to empty, otherwise duplicated keys */
__atomic_store_n(&curr_bkt->key_idx[curr_slot],
EMPTY_SLOT,
__ATOMIC_RELEASE);
__hash_rw_writer_unlock(h);
return -1;
}
if (h->readwrite_concur_lf_support) {
/* Inform the previous move. The current move need
* not be informed now as the current bucket entry
* is present in both primary and secondary.
* Since there is one writer, load acquires on
* tbl_chng_cnt are not required.
*/
__atomic_store_n(h->tbl_chng_cnt,
*h->tbl_chng_cnt + 1,
__ATOMIC_RELEASE);
/* The store to sig_current should not
* move above the store to tbl_chng_cnt.
*/
__atomic_thread_fence(__ATOMIC_RELEASE);
}
/* Need to swap current/alt sig to allow later
* Cuckoo insert to move elements back to its
* primary bucket if available
*/
curr_bkt->sig_current[curr_slot] =
prev_bkt->sig_current[prev_slot];
/* Release the updated bucket entry */
__atomic_store_n(&curr_bkt->key_idx[curr_slot],
prev_bkt->key_idx[prev_slot],
__ATOMIC_RELEASE);
curr_slot = prev_slot;
curr_node = prev_node;
curr_bkt = curr_node->bkt;
}
if (h->readwrite_concur_lf_support) {
/* Inform the previous move. The current move need
* not be informed now as the current bucket entry
* is present in both primary and secondary.
* Since there is one writer, load acquires on
* tbl_chng_cnt are not required.
*/
__atomic_store_n(h->tbl_chng_cnt,
*h->tbl_chng_cnt + 1,
__ATOMIC_RELEASE);
/* The store to sig_current should not
* move above the store to tbl_chng_cnt.
*/
__atomic_thread_fence(__ATOMIC_RELEASE);
}
curr_bkt->sig_current[curr_slot] = sig;
/* Release the new bucket entry */
__atomic_store_n(&curr_bkt->key_idx[curr_slot],
new_idx,
__ATOMIC_RELEASE);
__hash_rw_writer_unlock(h);
return 0;
}
/*
* Make space for new key, using bfs Cuckoo Search and Multi-Writer safe
* Cuckoo
*/
static inline int
rte_hash_cuckoo_make_space_mw(const struct rte_hash *h,
struct rte_hash_bucket *bkt,
struct rte_hash_bucket *sec_bkt,
const struct rte_hash_key *key, void *data,
uint16_t sig, uint32_t bucket_idx,
uint32_t new_idx, int32_t *ret_val)
{
unsigned int i;
struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN];
struct queue_node *tail, *head;
struct rte_hash_bucket *curr_bkt, *alt_bkt;
uint32_t cur_idx, alt_idx;
tail = queue;
head = queue + 1;
tail->bkt = bkt;
tail->prev = NULL;
tail->prev_slot = -1;
tail->cur_bkt_idx = bucket_idx;
/* Cuckoo bfs Search */
while (likely(tail != head && head <
queue + RTE_HASH_BFS_QUEUE_MAX_LEN -
RTE_HASH_BUCKET_ENTRIES)) {
curr_bkt = tail->bkt;
cur_idx = tail->cur_bkt_idx;
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
if (curr_bkt->key_idx[i] == EMPTY_SLOT) {
int32_t ret = rte_hash_cuckoo_move_insert_mw(h,
bkt, sec_bkt, key, data,
tail, i, sig,
new_idx, ret_val);
if (likely(ret != -1))
return ret;
}
/* Enqueue new node and keep prev node info */
alt_idx = get_alt_bucket_index(h, cur_idx,
curr_bkt->sig_current[i]);
alt_bkt = &(h->buckets[alt_idx]);
head->bkt = alt_bkt;
head->cur_bkt_idx = alt_idx;
head->prev = tail;
head->prev_slot = i;
head++;
}
tail++;
}
return -ENOSPC;
}
static inline int32_t
__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
hash_sig_t sig, void *data)
{
uint16_t short_sig;
uint32_t prim_bucket_idx, sec_bucket_idx;
struct rte_hash_bucket *prim_bkt, *sec_bkt, *cur_bkt;
struct rte_hash_key *new_k, *keys = h->key_store;
uint32_t ext_bkt_id = 0;
uint32_t slot_id;
int ret;
unsigned n_slots;
unsigned lcore_id;
unsigned int i;
struct lcore_cache *cached_free_slots = NULL;
int32_t ret_val;
struct rte_hash_bucket *last;
short_sig = get_short_sig(sig);
prim_bucket_idx = get_prim_bucket_index(h, sig);
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
prim_bkt = &h->buckets[prim_bucket_idx];
sec_bkt = &h->buckets[sec_bucket_idx];
rte_prefetch0(prim_bkt);
rte_prefetch0(sec_bkt);
/* Check if key is already inserted in primary location */
__hash_rw_writer_lock(h);
ret = search_and_update(h, data, key, prim_bkt, short_sig);
if (ret != -1) {
__hash_rw_writer_unlock(h);
return ret;
}
/* Check if key is already inserted in secondary location */
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
ret = search_and_update(h, data, key, cur_bkt, short_sig);
if (ret != -1) {
__hash_rw_writer_unlock(h);
return ret;
}
}
__hash_rw_writer_unlock(h);
/* Did not find a match, so get a new slot for storing the new key */
if (h->use_local_cache) {
lcore_id = rte_lcore_id();
cached_free_slots = &h->local_free_slots[lcore_id];
/* Try to get a free slot from the local cache */
if (cached_free_slots->len == 0) {
/* Need to get another burst of free slots from global ring */
n_slots = rte_ring_mc_dequeue_burst_elem(h->free_slots,
cached_free_slots->objs,
sizeof(uint32_t),
LCORE_CACHE_SIZE, NULL);
if (n_slots == 0) {
return -ENOSPC;
}
cached_free_slots->len += n_slots;
}
/* Get a free slot from the local cache */
cached_free_slots->len--;
slot_id = cached_free_slots->objs[cached_free_slots->len];
} else {
if (rte_ring_sc_dequeue_elem(h->free_slots, &slot_id,
sizeof(uint32_t)) != 0) {
return -ENOSPC;
}
}
new_k = RTE_PTR_ADD(keys, slot_id * h->key_entry_size);
/* The store to application data (by the application) at *data should
* not leak after the store of pdata in the key store. i.e. pdata is
* the guard variable. Release the application data to the readers.
*/
__atomic_store_n(&new_k->pdata,
data,
__ATOMIC_RELEASE);
/* Copy key */
memcpy(new_k->key, key, h->key_len);
/* Find an empty slot and insert */
ret = rte_hash_cuckoo_insert_mw(h, prim_bkt, sec_bkt, key, data,
short_sig, slot_id, &ret_val);
if (ret == 0)
return slot_id - 1;
else if (ret == 1) {
enqueue_slot_back(h, cached_free_slots, slot_id);
return ret_val;
}
/* Primary bucket full, need to make space for new entry */
ret = rte_hash_cuckoo_make_space_mw(h, prim_bkt, sec_bkt, key, data,
short_sig, prim_bucket_idx, slot_id, &ret_val);
if (ret == 0)
return slot_id - 1;
else if (ret == 1) {
enqueue_slot_back(h, cached_free_slots, slot_id);
return ret_val;
}
/* Also search secondary bucket to get better occupancy */
ret = rte_hash_cuckoo_make_space_mw(h, sec_bkt, prim_bkt, key, data,
short_sig, sec_bucket_idx, slot_id, &ret_val);
if (ret == 0)
return slot_id - 1;
else if (ret == 1) {
enqueue_slot_back(h, cached_free_slots, slot_id);
return ret_val;
}
/* if ext table not enabled, we failed the insertion */
if (!h->ext_table_support) {
enqueue_slot_back(h, cached_free_slots, slot_id);
return ret;
}
/* Now we need to go through the extendable bucket. Protection is needed
* to protect all extendable bucket processes.
*/
__hash_rw_writer_lock(h);
/* We check for duplicates again since could be inserted before the lock */
ret = search_and_update(h, data, key, prim_bkt, short_sig);
if (ret != -1) {
enqueue_slot_back(h, cached_free_slots, slot_id);
goto failure;
}
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
ret = search_and_update(h, data, key, cur_bkt, short_sig);
if (ret != -1) {
enqueue_slot_back(h, cached_free_slots, slot_id);
goto failure;
}
}
/* Search sec and ext buckets to find an empty entry to insert. */
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
/* Check if slot is available */
if (likely(cur_bkt->key_idx[i] == EMPTY_SLOT)) {
cur_bkt->sig_current[i] = short_sig;
/* Store to signature and key should not
* leak after the store to key_idx. i.e.
* key_idx is the guard variable for signature
* and key.
*/
__atomic_store_n(&cur_bkt->key_idx[i],
slot_id,
__ATOMIC_RELEASE);
__hash_rw_writer_unlock(h);
return slot_id - 1;
}
}
}
/* Failed to get an empty entry from extendable buckets. Link a new
* extendable bucket. We first get a free bucket from ring.
*/
if (rte_ring_sc_dequeue_elem(h->free_ext_bkts, &ext_bkt_id,
sizeof(uint32_t)) != 0 ||
ext_bkt_id == 0) {
ret = -ENOSPC;
goto failure;
}
/* Use the first location of the new bucket */
(h->buckets_ext[ext_bkt_id - 1]).sig_current[0] = short_sig;
/* Store to signature and key should not leak after
* the store to key_idx. i.e. key_idx is the guard variable
* for signature and key.
*/
__atomic_store_n(&(h->buckets_ext[ext_bkt_id - 1]).key_idx[0],
slot_id,
__ATOMIC_RELEASE);
/* Link the new bucket to sec bucket linked list */
last = rte_hash_get_last_bkt(sec_bkt);
last->next = &h->buckets_ext[ext_bkt_id - 1];
__hash_rw_writer_unlock(h);
return slot_id - 1;
failure:
__hash_rw_writer_unlock(h);
return ret;
}
int32_t
rte_hash_add_key_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_add_key_with_hash(h, key, sig, 0);
}
int32_t
rte_hash_add_key(const struct rte_hash *h, const void *key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
}
int
rte_hash_add_key_with_hash_data(const struct rte_hash *h,
const void *key, hash_sig_t sig, void *data)
{
int ret;
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
ret = __rte_hash_add_key_with_hash(h, key, sig, data);
if (ret >= 0)
return 0;
else
return ret;
}
int
rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
{
int ret;
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
if (ret >= 0)
return 0;
else
return ret;
}
/* Search one bucket to find the match key - uses rw lock */
static inline int32_t
search_one_bucket_l(const struct rte_hash *h, const void *key,
uint16_t sig, void **data,
const struct rte_hash_bucket *bkt)
{
int i;
struct rte_hash_key *k, *keys = h->key_store;
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
if (bkt->sig_current[i] == sig &&
bkt->key_idx[i] != EMPTY_SLOT) {
k = (struct rte_hash_key *) ((char *)keys +
bkt->key_idx[i] * h->key_entry_size);
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
if (data != NULL)
*data = k->pdata;
/*
* Return index where key is stored,
* subtracting the first dummy index
*/
return bkt->key_idx[i] - 1;
}
}
}
return -1;
}
/* Search one bucket to find the match key */
static inline int32_t
search_one_bucket_lf(const struct rte_hash *h, const void *key, uint16_t sig,
void **data, const struct rte_hash_bucket *bkt)
{
int i;
uint32_t key_idx;
struct rte_hash_key *k, *keys = h->key_store;
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
/* Signature comparison is done before the acquire-load
* of the key index to achieve better performance.
* This can result in the reader loading old signature
* (which matches), while the key_idx is updated to a
* value that belongs to a new key. However, the full
* key comparison will ensure that the lookup fails.
*/
if (bkt->sig_current[i] == sig) {
key_idx = __atomic_load_n(&bkt->key_idx[i],
__ATOMIC_ACQUIRE);
if (key_idx != EMPTY_SLOT) {
k = (struct rte_hash_key *) ((char *)keys +
key_idx * h->key_entry_size);
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
if (data != NULL) {
*data = __atomic_load_n(
&k->pdata,
__ATOMIC_ACQUIRE);
}
/*
* Return index where key is stored,
* subtracting the first dummy index
*/
return key_idx - 1;
}
}
}
}
return -1;
}
static inline int32_t
__rte_hash_lookup_with_hash_l(const struct rte_hash *h, const void *key,
hash_sig_t sig, void **data)
{
uint32_t prim_bucket_idx, sec_bucket_idx;
struct rte_hash_bucket *bkt, *cur_bkt;
int ret;
uint16_t short_sig;
short_sig = get_short_sig(sig);
prim_bucket_idx = get_prim_bucket_index(h, sig);
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
bkt = &h->buckets[prim_bucket_idx];
__hash_rw_reader_lock(h);
/* Check if key is in primary location */
ret = search_one_bucket_l(h, key, short_sig, data, bkt);
if (ret != -1) {
__hash_rw_reader_unlock(h);
return ret;
}
/* Calculate secondary hash */
bkt = &h->buckets[sec_bucket_idx];
/* Check if key is in secondary location */
FOR_EACH_BUCKET(cur_bkt, bkt) {
ret = search_one_bucket_l(h, key, short_sig,
data, cur_bkt);
if (ret != -1) {
__hash_rw_reader_unlock(h);
return ret;
}
}
__hash_rw_reader_unlock(h);
return -ENOENT;
}
static inline int32_t
__rte_hash_lookup_with_hash_lf(const struct rte_hash *h, const void *key,
hash_sig_t sig, void **data)
{
uint32_t prim_bucket_idx, sec_bucket_idx;
struct rte_hash_bucket *bkt, *cur_bkt;
uint32_t cnt_b, cnt_a;
int ret;
uint16_t short_sig;
short_sig = get_short_sig(sig);
prim_bucket_idx = get_prim_bucket_index(h, sig);
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
do {
/* Load the table change counter before the lookup
* starts. Acquire semantics will make sure that
* loads in search_one_bucket are not hoisted.
*/
cnt_b = __atomic_load_n(h->tbl_chng_cnt,
__ATOMIC_ACQUIRE);
/* Check if key is in primary location */
bkt = &h->buckets[prim_bucket_idx];
ret = search_one_bucket_lf(h, key, short_sig, data, bkt);
if (ret != -1)
return ret;
/* Calculate secondary hash */
bkt = &h->buckets[sec_bucket_idx];
/* Check if key is in secondary location */
FOR_EACH_BUCKET(cur_bkt, bkt) {
ret = search_one_bucket_lf(h, key, short_sig,
data, cur_bkt);
if (ret != -1)
return ret;
}
/* The loads of sig_current in search_one_bucket
* should not move below the load from tbl_chng_cnt.
*/
__atomic_thread_fence(__ATOMIC_ACQUIRE);
/* Re-read the table change counter to check if the
* table has changed during search. If yes, re-do
* the search.
* This load should not get hoisted. The load
* acquires on cnt_b, key index in primary bucket
* and key index in secondary bucket will make sure
* that it does not get hoisted.
*/
cnt_a = __atomic_load_n(h->tbl_chng_cnt,
__ATOMIC_ACQUIRE);
} while (cnt_b != cnt_a);
return -ENOENT;
}
static inline int32_t
__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
hash_sig_t sig, void **data)
{
if (h->readwrite_concur_lf_support)
return __rte_hash_lookup_with_hash_lf(h, key, sig, data);
else
return __rte_hash_lookup_with_hash_l(h, key, sig, data);
}
int32_t
rte_hash_lookup_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_lookup_with_hash(h, key, sig, NULL);
}
int32_t
rte_hash_lookup(const struct rte_hash *h, const void *key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
}
int
rte_hash_lookup_with_hash_data(const struct rte_hash *h,
const void *key, hash_sig_t sig, void **data)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_lookup_with_hash(h, key, sig, data);
}
int
rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
}
static inline void
remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
{
unsigned lcore_id, n_slots;
struct lcore_cache *cached_free_slots;
if (h->use_local_cache) {
lcore_id = rte_lcore_id();
cached_free_slots = &h->local_free_slots[lcore_id];
/* Cache full, need to free it. */
if (cached_free_slots->len == LCORE_CACHE_SIZE) {
/* Need to enqueue the free slots in global ring. */
n_slots = rte_ring_mp_enqueue_burst_elem(h->free_slots,
cached_free_slots->objs,
sizeof(uint32_t),
LCORE_CACHE_SIZE, NULL);
ERR_IF_TRUE((n_slots == 0),
"%s: could not enqueue free slots in global ring\n",
__func__);
cached_free_slots->len -= n_slots;
}
/* Put index of new free slot in cache. */
cached_free_slots->objs[cached_free_slots->len] =
bkt->key_idx[i];
cached_free_slots->len++;
} else {
rte_ring_sp_enqueue_elem(h->free_slots,
&bkt->key_idx[i], sizeof(uint32_t));
}
}
/* Compact the linked list by moving key from last entry in linked list to the
* empty slot.
*/
static inline void
__rte_hash_compact_ll(const struct rte_hash *h,
struct rte_hash_bucket *cur_bkt, int pos) {
int i;
struct rte_hash_bucket *last_bkt;
if (!cur_bkt->next)
return;
last_bkt = rte_hash_get_last_bkt(cur_bkt);
for (i = RTE_HASH_BUCKET_ENTRIES - 1; i >= 0; i--) {
if (last_bkt->key_idx[i] != EMPTY_SLOT) {
cur_bkt->sig_current[pos] = last_bkt->sig_current[i];
__atomic_store_n(&cur_bkt->key_idx[pos],
last_bkt->key_idx[i],
__ATOMIC_RELEASE);
if (h->readwrite_concur_lf_support) {
/* Inform the readers that the table has changed
* Since there is one writer, load acquire on
* tbl_chng_cnt is not required.
*/
__atomic_store_n(h->tbl_chng_cnt,
*h->tbl_chng_cnt + 1,
__ATOMIC_RELEASE);
/* The store to sig_current should
* not move above the store to tbl_chng_cnt.
*/
__atomic_thread_fence(__ATOMIC_RELEASE);
}
last_bkt->sig_current[i] = NULL_SIGNATURE;
__atomic_store_n(&last_bkt->key_idx[i],
EMPTY_SLOT,
__ATOMIC_RELEASE);
return;
}
}
}
/* Search one bucket and remove the matched key.
* Writer is expected to hold the lock while calling this
* function.
*/
static inline int32_t
search_and_remove(const struct rte_hash *h, const void *key,
struct rte_hash_bucket *bkt, uint16_t sig, int *pos)
{
struct rte_hash_key *k, *keys = h->key_store;
unsigned int i;
uint32_t key_idx;
/* Check if key is in bucket */
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
key_idx = __atomic_load_n(&bkt->key_idx[i],
__ATOMIC_ACQUIRE);
if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) {
k = (struct rte_hash_key *) ((char *)keys +
key_idx * h->key_entry_size);
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
bkt->sig_current[i] = NULL_SIGNATURE;
/* Free the key store index if
* no_free_on_del is disabled.
*/
if (!h->no_free_on_del)
remove_entry(h, bkt, i);
__atomic_store_n(&bkt->key_idx[i],
EMPTY_SLOT,
__ATOMIC_RELEASE);
*pos = i;
/*
* Return index where key is stored,
* subtracting the first dummy index
*/
return key_idx - 1;
}
}
}
return -1;
}
static inline int32_t
__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
hash_sig_t sig)
{
uint32_t prim_bucket_idx, sec_bucket_idx;
struct rte_hash_bucket *prim_bkt, *sec_bkt, *prev_bkt, *last_bkt;
struct rte_hash_bucket *cur_bkt;
int pos;
int32_t ret, i;
uint16_t short_sig;
short_sig = get_short_sig(sig);
prim_bucket_idx = get_prim_bucket_index(h, sig);
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
prim_bkt = &h->buckets[prim_bucket_idx];
__hash_rw_writer_lock(h);
/* look for key in primary bucket */
ret = search_and_remove(h, key, prim_bkt, short_sig, &pos);
if (ret != -1) {
__rte_hash_compact_ll(h, prim_bkt, pos);
last_bkt = prim_bkt->next;
prev_bkt = prim_bkt;
goto return_bkt;
}
/* Calculate secondary hash */
sec_bkt = &h->buckets[sec_bucket_idx];
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
ret = search_and_remove(h, key, cur_bkt, short_sig, &pos);
if (ret != -1) {
__rte_hash_compact_ll(h, cur_bkt, pos);
last_bkt = sec_bkt->next;
prev_bkt = sec_bkt;
goto return_bkt;
}
}
__hash_rw_writer_unlock(h);
return -ENOENT;
/* Search last bucket to see if empty to be recycled */
return_bkt:
if (!last_bkt) {
__hash_rw_writer_unlock(h);
return ret;
}
while (last_bkt->next) {
prev_bkt = last_bkt;
last_bkt = last_bkt->next;
}
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
if (last_bkt->key_idx[i] != EMPTY_SLOT)
break;
}
/* found empty bucket and recycle */
if (i == RTE_HASH_BUCKET_ENTRIES) {
prev_bkt->next = NULL;
uint32_t index = last_bkt - h->buckets_ext + 1;
/* Recycle the empty bkt if
* no_free_on_del is disabled.
*/
if (h->no_free_on_del)
/* Store index of an empty ext bkt to be recycled
* on calling rte_hash_del_xxx APIs.
* When lock free read-write concurrency is enabled,
* an empty ext bkt cannot be put into free list
* immediately (as readers might be using it still).
* Hence freeing of the ext bkt is piggy-backed to
* freeing of the key index.
*/
h->ext_bkt_to_free[ret] = index;
else
rte_ring_sp_enqueue_elem(h->free_ext_bkts, &index,
sizeof(uint32_t));
}
__hash_rw_writer_unlock(h);
return ret;
}
int32_t
rte_hash_del_key_with_hash(const struct rte_hash *h,
const void *key, hash_sig_t sig)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_del_key_with_hash(h, key, sig);
}
int32_t
rte_hash_del_key(const struct rte_hash *h, const void *key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
}
int
rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
void **key)
{
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
struct rte_hash_key *k, *keys = h->key_store;
k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
h->key_entry_size);
*key = k->key;
if (position !=
__rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
NULL)) {
return -ENOENT;
}
return 0;
}
int
rte_hash_free_key_with_position(const struct rte_hash *h,
const int32_t position)
{
/* Key index where key is stored, adding the first dummy index */
uint32_t key_idx = position + 1;
RETURN_IF_TRUE(((h == NULL) || (key_idx == EMPTY_SLOT)), -EINVAL);
unsigned int lcore_id, n_slots;
struct lcore_cache *cached_free_slots;
const uint32_t total_entries = h->use_local_cache ?
h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1
: h->entries + 1;
/* Out of bounds */
if (key_idx >= total_entries)
return -EINVAL;
if (h->ext_table_support && h->readwrite_concur_lf_support) {
uint32_t index = h->ext_bkt_to_free[position];
if (index) {
/* Recycle empty ext bkt to free list. */
rte_ring_sp_enqueue_elem(h->free_ext_bkts, &index,
sizeof(uint32_t));
h->ext_bkt_to_free[position] = 0;
}
}
if (h->use_local_cache) {
lcore_id = rte_lcore_id();
cached_free_slots = &h->local_free_slots[lcore_id];
/* Cache full, need to free it. */
if (cached_free_slots->len == LCORE_CACHE_SIZE) {
/* Need to enqueue the free slots in global ring. */
n_slots = rte_ring_mp_enqueue_burst_elem(h->free_slots,
cached_free_slots->objs,
sizeof(uint32_t),
LCORE_CACHE_SIZE, NULL);
RETURN_IF_TRUE((n_slots == 0), -EFAULT);
cached_free_slots->len -= n_slots;
}
/* Put index of new free slot in cache. */
cached_free_slots->objs[cached_free_slots->len] = key_idx;
cached_free_slots->len++;
} else {
rte_ring_sp_enqueue_elem(h->free_slots, &key_idx,
sizeof(uint32_t));
}
return 0;
}
static inline void
compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
const struct rte_hash_bucket *prim_bkt,
const struct rte_hash_bucket *sec_bkt,
uint16_t sig,
enum rte_hash_sig_compare_function sig_cmp_fn)
{
unsigned int i;
/* For match mask the first bit of every two bits indicates the match */
switch (sig_cmp_fn) {
#if defined(RTE_MACHINE_CPUFLAG_SSE2)
case RTE_HASH_COMPARE_SSE:
/* Compare all signatures in the bucket */
*prim_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
_mm_load_si128(
(__m128i const *)prim_bkt->sig_current),
_mm_set1_epi16(sig)));
/* Compare all signatures in the bucket */
*sec_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
_mm_load_si128(
(__m128i const *)sec_bkt->sig_current),
_mm_set1_epi16(sig)));
break;
#elif defined(RTE_MACHINE_CPUFLAG_NEON)
case RTE_HASH_COMPARE_NEON: {
uint16x8_t vmat, vsig, x;
int16x8_t shift = {-15, -13, -11, -9, -7, -5, -3, -1};
vsig = vld1q_dup_u16((uint16_t const *)&sig);
/* Compare all signatures in the primary bucket */
vmat = vceqq_u16(vsig,
vld1q_u16((uint16_t const *)prim_bkt->sig_current));
x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
*prim_hash_matches = (uint32_t)(vaddvq_u16(x));
/* Compare all signatures in the secondary bucket */
vmat = vceqq_u16(vsig,
vld1q_u16((uint16_t const *)sec_bkt->sig_current));
x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
*sec_hash_matches = (uint32_t)(vaddvq_u16(x));
}
break;
#endif
default:
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
*prim_hash_matches |=
((sig == prim_bkt->sig_current[i]) << (i << 1));
*sec_hash_matches |=
((sig == sec_bkt->sig_current[i]) << (i << 1));
}
}
}
static inline void
__bulk_lookup_l(const struct rte_hash *h, const void **keys,
const struct rte_hash_bucket **primary_bkt,
const struct rte_hash_bucket **secondary_bkt,
uint16_t *sig, int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
uint64_t hits = 0;
int32_t i;
int32_t ret;
uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
struct rte_hash_bucket *cur_bkt, *next_bkt;
__hash_rw_reader_lock(h);
/* Compare signatures and prefetch key slot of first hit */
for (i = 0; i < num_keys; i++) {
compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
primary_bkt[i], secondary_bkt[i],
sig[i], h->sig_cmp_fn);
if (prim_hitmask[i]) {
uint32_t first_hit =
__builtin_ctzl(prim_hitmask[i])
>> 1;
uint32_t key_idx =
primary_bkt[i]->key_idx[first_hit];
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
rte_prefetch0(key_slot);
continue;
}
if (sec_hitmask[i]) {
uint32_t first_hit =
__builtin_ctzl(sec_hitmask[i])
>> 1;
uint32_t key_idx =
secondary_bkt[i]->key_idx[first_hit];
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
rte_prefetch0(key_slot);
}
}
/* Compare keys, first hits in primary first */
for (i = 0; i < num_keys; i++) {
positions[i] = -ENOENT;
while (prim_hitmask[i]) {
uint32_t hit_index =
__builtin_ctzl(prim_hitmask[i])
>> 1;
uint32_t key_idx =
primary_bkt[i]->key_idx[hit_index];
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
/*
* If key index is 0, do not compare key,
* as it is checking the dummy slot
*/
if (!!key_idx &
!rte_hash_cmp_eq(
key_slot->key, keys[i], h)) {
if (data != NULL)
data[i] = key_slot->pdata;
hits |= 1ULL << i;
positions[i] = key_idx - 1;
goto next_key;
}
prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
}
while (sec_hitmask[i]) {
uint32_t hit_index =
__builtin_ctzl(sec_hitmask[i])
>> 1;
uint32_t key_idx =
secondary_bkt[i]->key_idx[hit_index];
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
/*
* If key index is 0, do not compare key,
* as it is checking the dummy slot
*/
if (!!key_idx &
!rte_hash_cmp_eq(
key_slot->key, keys[i], h)) {
if (data != NULL)
data[i] = key_slot->pdata;
hits |= 1ULL << i;
positions[i] = key_idx - 1;
goto next_key;
}
sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
}
next_key:
continue;
}
/* all found, do not need to go through ext bkt */
if ((hits == ((1ULL << num_keys) - 1)) || !h->ext_table_support) {
if (hit_mask != NULL)
*hit_mask = hits;
__hash_rw_reader_unlock(h);
return;
}
/* need to check ext buckets for match */
for (i = 0; i < num_keys; i++) {
if ((hits & (1ULL << i)) != 0)
continue;
next_bkt = secondary_bkt[i]->next;
FOR_EACH_BUCKET(cur_bkt, next_bkt) {
if (data != NULL)
ret = search_one_bucket_l(h, keys[i],
sig[i], &data[i], cur_bkt);
else
ret = search_one_bucket_l(h, keys[i],
sig[i], NULL, cur_bkt);
if (ret != -1) {
positions[i] = ret;
hits |= 1ULL << i;
break;
}
}
}
__hash_rw_reader_unlock(h);
if (hit_mask != NULL)
*hit_mask = hits;
}
static inline void
__bulk_lookup_lf(const struct rte_hash *h, const void **keys,
const struct rte_hash_bucket **primary_bkt,
const struct rte_hash_bucket **secondary_bkt,
uint16_t *sig, int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
uint64_t hits = 0;
int32_t i;
int32_t ret;
uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
struct rte_hash_bucket *cur_bkt, *next_bkt;
uint32_t cnt_b, cnt_a;
for (i = 0; i < num_keys; i++)
positions[i] = -ENOENT;
do {
/* Load the table change counter before the lookup
* starts. Acquire semantics will make sure that
* loads in compare_signatures are not hoisted.
*/
cnt_b = __atomic_load_n(h->tbl_chng_cnt,
__ATOMIC_ACQUIRE);
/* Compare signatures and prefetch key slot of first hit */
for (i = 0; i < num_keys; i++) {
compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
primary_bkt[i], secondary_bkt[i],
sig[i], h->sig_cmp_fn);
if (prim_hitmask[i]) {
uint32_t first_hit =
__builtin_ctzl(prim_hitmask[i])
>> 1;
uint32_t key_idx =
primary_bkt[i]->key_idx[first_hit];
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
rte_prefetch0(key_slot);
continue;
}
if (sec_hitmask[i]) {
uint32_t first_hit =
__builtin_ctzl(sec_hitmask[i])
>> 1;
uint32_t key_idx =
secondary_bkt[i]->key_idx[first_hit];
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
rte_prefetch0(key_slot);
}
}
/* Compare keys, first hits in primary first */
for (i = 0; i < num_keys; i++) {
while (prim_hitmask[i]) {
uint32_t hit_index =
__builtin_ctzl(prim_hitmask[i])
>> 1;
uint32_t key_idx =
__atomic_load_n(
&primary_bkt[i]->key_idx[hit_index],
__ATOMIC_ACQUIRE);
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
/*
* If key index is 0, do not compare key,
* as it is checking the dummy slot
*/
if (!!key_idx &
!rte_hash_cmp_eq(
key_slot->key, keys[i], h)) {
if (data != NULL)
data[i] = __atomic_load_n(
&key_slot->pdata,
__ATOMIC_ACQUIRE);
hits |= 1ULL << i;
positions[i] = key_idx - 1;
goto next_key;
}
prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
}
while (sec_hitmask[i]) {
uint32_t hit_index =
__builtin_ctzl(sec_hitmask[i])
>> 1;
uint32_t key_idx =
__atomic_load_n(
&secondary_bkt[i]->key_idx[hit_index],
__ATOMIC_ACQUIRE);
const struct rte_hash_key *key_slot =
(const struct rte_hash_key *)(
(const char *)h->key_store +
key_idx * h->key_entry_size);
/*
* If key index is 0, do not compare key,
* as it is checking the dummy slot
*/
if (!!key_idx &
!rte_hash_cmp_eq(
key_slot->key, keys[i], h)) {
if (data != NULL)
data[i] = __atomic_load_n(
&key_slot->pdata,
__ATOMIC_ACQUIRE);
hits |= 1ULL << i;
positions[i] = key_idx - 1;
goto next_key;
}
sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
}
next_key:
continue;
}
/* all found, do not need to go through ext bkt */
if (hits == ((1ULL << num_keys) - 1)) {
if (hit_mask != NULL)
*hit_mask = hits;
return;
}
/* need to check ext buckets for match */
if (h->ext_table_support) {
for (i = 0; i < num_keys; i++) {
if ((hits & (1ULL << i)) != 0)
continue;
next_bkt = secondary_bkt[i]->next;
FOR_EACH_BUCKET(cur_bkt, next_bkt) {
if (data != NULL)
ret = search_one_bucket_lf(h,
keys[i], sig[i],
&data[i], cur_bkt);
else
ret = search_one_bucket_lf(h,
keys[i], sig[i],
NULL, cur_bkt);
if (ret != -1) {
positions[i] = ret;
hits |= 1ULL << i;
break;
}
}
}
}
/* The loads of sig_current in compare_signatures
* should not move below the load from tbl_chng_cnt.
*/
__atomic_thread_fence(__ATOMIC_ACQUIRE);
/* Re-read the table change counter to check if the
* table has changed during search. If yes, re-do
* the search.
* This load should not get hoisted. The load
* acquires on cnt_b, primary key index and secondary
* key index will make sure that it does not get
* hoisted.
*/
cnt_a = __atomic_load_n(h->tbl_chng_cnt,
__ATOMIC_ACQUIRE);
} while (cnt_b != cnt_a);
if (hit_mask != NULL)
*hit_mask = hits;
}
#define PREFETCH_OFFSET 4
static inline void
__bulk_lookup_prefetching_loop(const struct rte_hash *h,
const void **keys, int32_t num_keys,
uint16_t *sig,
const struct rte_hash_bucket **primary_bkt,
const struct rte_hash_bucket **secondary_bkt)
{
int32_t i;
uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
/* Prefetch first keys */
for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
rte_prefetch0(keys[i]);
/*
* Prefetch rest of the keys, calculate primary and
* secondary bucket and prefetch them
*/
for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
rte_prefetch0(keys[i + PREFETCH_OFFSET]);
prim_hash[i] = rte_hash_hash(h, keys[i]);
sig[i] = get_short_sig(prim_hash[i]);
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
primary_bkt[i] = &h->buckets[prim_index[i]];
secondary_bkt[i] = &h->buckets[sec_index[i]];
rte_prefetch0(primary_bkt[i]);
rte_prefetch0(secondary_bkt[i]);
}
/* Calculate and prefetch rest of the buckets */
for (; i < num_keys; i++) {
prim_hash[i] = rte_hash_hash(h, keys[i]);
sig[i] = get_short_sig(prim_hash[i]);
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
primary_bkt[i] = &h->buckets[prim_index[i]];
secondary_bkt[i] = &h->buckets[sec_index[i]];
rte_prefetch0(primary_bkt[i]);
rte_prefetch0(secondary_bkt[i]);
}
}
static inline void
__rte_hash_lookup_bulk_l(const struct rte_hash *h, const void **keys,
int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
__bulk_lookup_prefetching_loop(h, keys, num_keys, sig,
primary_bkt, secondary_bkt);
__bulk_lookup_l(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
positions, hit_mask, data);
}
static inline void
__rte_hash_lookup_bulk_lf(const struct rte_hash *h, const void **keys,
int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
__bulk_lookup_prefetching_loop(h, keys, num_keys, sig,
primary_bkt, secondary_bkt);
__bulk_lookup_lf(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
positions, hit_mask, data);
}
static inline void
__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
if (h->readwrite_concur_lf_support)
__rte_hash_lookup_bulk_lf(h, keys, num_keys, positions,
hit_mask, data);
else
__rte_hash_lookup_bulk_l(h, keys, num_keys, positions,
hit_mask, data);
}
int
rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
uint32_t num_keys, int32_t *positions)
{
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
(positions == NULL)), -EINVAL);
__rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
return 0;
}
int
rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
uint32_t num_keys, uint64_t *hit_mask, void *data[])
{
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
(hit_mask == NULL)), -EINVAL);
int32_t positions[num_keys];
__rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
/* Return number of hits */
return __builtin_popcountl(*hit_mask);
}
static inline void
__rte_hash_lookup_with_hash_bulk_l(const struct rte_hash *h,
const void **keys, hash_sig_t *prim_hash,
int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
int32_t i;
uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
/*
* Prefetch keys, calculate primary and
* secondary bucket and prefetch them
*/
for (i = 0; i < num_keys; i++) {
rte_prefetch0(keys[i]);
sig[i] = get_short_sig(prim_hash[i]);
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
primary_bkt[i] = &h->buckets[prim_index[i]];
secondary_bkt[i] = &h->buckets[sec_index[i]];
rte_prefetch0(primary_bkt[i]);
rte_prefetch0(secondary_bkt[i]);
}
__bulk_lookup_l(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
positions, hit_mask, data);
}
static inline void
__rte_hash_lookup_with_hash_bulk_lf(const struct rte_hash *h,
const void **keys, hash_sig_t *prim_hash,
int32_t num_keys, int32_t *positions,
uint64_t *hit_mask, void *data[])
{
int32_t i;
uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
/*
* Prefetch keys, calculate primary and
* secondary bucket and prefetch them
*/
for (i = 0; i < num_keys; i++) {
rte_prefetch0(keys[i]);
sig[i] = get_short_sig(prim_hash[i]);
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
primary_bkt[i] = &h->buckets[prim_index[i]];
secondary_bkt[i] = &h->buckets[sec_index[i]];
rte_prefetch0(primary_bkt[i]);
rte_prefetch0(secondary_bkt[i]);
}
__bulk_lookup_lf(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
positions, hit_mask, data);
}
static inline void
__rte_hash_lookup_with_hash_bulk(const struct rte_hash *h, const void **keys,
hash_sig_t *prim_hash, int32_t num_keys,
int32_t *positions, uint64_t *hit_mask, void *data[])
{
if (h->readwrite_concur_lf_support)
__rte_hash_lookup_with_hash_bulk_lf(h, keys, prim_hash,
num_keys, positions, hit_mask, data);
else
__rte_hash_lookup_with_hash_bulk_l(h, keys, prim_hash,
num_keys, positions, hit_mask, data);
}
int
rte_hash_lookup_with_hash_bulk(const struct rte_hash *h, const void **keys,
hash_sig_t *sig, uint32_t num_keys, int32_t *positions)
{
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) ||
(sig == NULL) || (num_keys == 0) ||
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
(positions == NULL)), -EINVAL);
__rte_hash_lookup_with_hash_bulk(h, keys, sig, num_keys,
positions, NULL, NULL);
return 0;
}
int
rte_hash_lookup_with_hash_bulk_data(const struct rte_hash *h,
const void **keys, hash_sig_t *sig,
uint32_t num_keys, uint64_t *hit_mask, void *data[])
{
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) ||
(sig == NULL) || (num_keys == 0) ||
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
(hit_mask == NULL)), -EINVAL);
int32_t positions[num_keys];
__rte_hash_lookup_with_hash_bulk(h, keys, sig, num_keys,
positions, hit_mask, data);
/* Return number of hits */
return __builtin_popcountl(*hit_mask);
}
int32_t
rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
{
uint32_t bucket_idx, idx, position;
struct rte_hash_key *next_key;
RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
const uint32_t total_entries_main = h->num_buckets *
RTE_HASH_BUCKET_ENTRIES;
const uint32_t total_entries = total_entries_main << 1;
/* Out of bounds of all buckets (both main table and ext table) */
if (*next >= total_entries_main)
goto extend_table;
/* Calculate bucket and index of current iterator */
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
idx = *next % RTE_HASH_BUCKET_ENTRIES;
/* If current position is empty, go to the next one */
while ((position = __atomic_load_n(&h->buckets[bucket_idx].key_idx[idx],
__ATOMIC_ACQUIRE)) == EMPTY_SLOT) {
(*next)++;
/* End of table */
if (*next == total_entries_main)
goto extend_table;
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
idx = *next % RTE_HASH_BUCKET_ENTRIES;
}
__hash_rw_reader_lock(h);
next_key = (struct rte_hash_key *) ((char *)h->key_store +
position * h->key_entry_size);
/* Return key and data */
*key = next_key->key;
*data = next_key->pdata;
__hash_rw_reader_unlock(h);
/* Increment iterator */
(*next)++;
return position - 1;
/* Begin to iterate extendable buckets */
extend_table:
/* Out of total bound or if ext bucket feature is not enabled */
if (*next >= total_entries || !h->ext_table_support)
return -ENOENT;
bucket_idx = (*next - total_entries_main) / RTE_HASH_BUCKET_ENTRIES;
idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
while ((position = h->buckets_ext[bucket_idx].key_idx[idx]) == EMPTY_SLOT) {
(*next)++;
if (*next == total_entries)
return -ENOENT;
bucket_idx = (*next - total_entries_main) /
RTE_HASH_BUCKET_ENTRIES;
idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
}
__hash_rw_reader_lock(h);
next_key = (struct rte_hash_key *) ((char *)h->key_store +
position * h->key_entry_size);
/* Return key and data */
*key = next_key->key;
*data = next_key->pdata;
__hash_rw_reader_unlock(h);
/* Increment iterator */
(*next)++;
return position - 1;
}