numam-dpdk/drivers/crypto/scheduler/scheduler_pkt_size_distr.c
Slawomir Mrozowicz b3bbd9e5f2 cryptodev: support device independent sessions
Change crypto device's session management to make it
device independent and simplify architecture when session
is intended to be used on more than one device.

Sessions private data is agnostic to underlying device
by adding an indirection in the sessions private data
using the crypto driver identifier.
A single session can contain indirections to multiple device types.

New function rte_cryptodev_sym_session_init has been created,
to initialize the driver private session data per driver to be
used on a same session, and rte_cryptodev_sym_session_clear
to clear this data before calling rte_cryptodev_sym_session_free.

Signed-off-by: Slawomir Mrozowicz <slawomirx.mrozowicz@intel.com>
Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Acked-by: Declan Doherty <declan.doherty@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2017-07-06 22:34:55 +02:00

447 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"
#define DEF_PKT_SIZE_THRESHOLD (0xffffff80)
#define SLAVE_IDX_SWITCH_MASK (0x01)
#define PRIMARY_SLAVE_IDX 0
#define SECONDARY_SLAVE_IDX 1
#define NB_PKT_SIZE_SLAVES 2
/** pkt size based scheduler context */
struct psd_scheduler_ctx {
uint32_t threshold;
};
/** pkt size based scheduler queue pair context */
struct psd_scheduler_qp_ctx {
struct scheduler_slave primary_slave;
struct scheduler_slave secondary_slave;
uint32_t threshold;
uint8_t deq_idx;
} __rte_cache_aligned;
/** scheduling operation variables' wrapping */
struct psd_schedule_op {
uint8_t slave_idx;
uint16_t pos;
};
static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct scheduler_qp_ctx *qp_ctx = qp;
struct psd_scheduler_qp_ctx *psd_qp_ctx = qp_ctx->private_qp_ctx;
struct rte_crypto_op *sched_ops[NB_PKT_SIZE_SLAVES][nb_ops];
uint32_t in_flight_ops[NB_PKT_SIZE_SLAVES] = {
psd_qp_ctx->primary_slave.nb_inflight_cops,
psd_qp_ctx->secondary_slave.nb_inflight_cops
};
struct psd_schedule_op enq_ops[NB_PKT_SIZE_SLAVES] = {
{PRIMARY_SLAVE_IDX, 0}, {SECONDARY_SLAVE_IDX, 0}
};
struct psd_schedule_op *p_enq_op;
uint16_t i, processed_ops_pri = 0, processed_ops_sec = 0;
uint32_t job_len;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < nb_ops && i < 4; i++) {
rte_prefetch0(ops[i]->sym);
rte_prefetch0(ops[i]->sym->session);
}
for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
rte_prefetch0(ops[i + 4]->sym);
rte_prefetch0(ops[i + 4]->sym->session);
rte_prefetch0(ops[i + 5]->sym);
rte_prefetch0(ops[i + 5]->sym->session);
rte_prefetch0(ops[i + 6]->sym);
rte_prefetch0(ops[i + 6]->sym->session);
rte_prefetch0(ops[i + 7]->sym);
rte_prefetch0(ops[i + 7]->sym->session);
/* job_len is initialized as cipher data length, once
* it is 0, equals to auth data length
*/
job_len = ops[i]->sym->cipher.data.length;
job_len += (ops[i]->sym->cipher.data.length == 0) *
ops[i]->sym->auth.data.length;
/* decide the target op based on the job length */
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
/* stop schedule cops before the queue is full, this shall
* prevent the failed enqueue
*/
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
qp_ctx->max_nb_objs) {
i = nb_ops;
break;
}
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i];
p_enq_op->pos++;
job_len = ops[i+1]->sym->cipher.data.length;
job_len += (ops[i+1]->sym->cipher.data.length == 0) *
ops[i+1]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
qp_ctx->max_nb_objs) {
i = nb_ops;
break;
}
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+1];
p_enq_op->pos++;
job_len = ops[i+2]->sym->cipher.data.length;
job_len += (ops[i+2]->sym->cipher.data.length == 0) *
ops[i+2]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
qp_ctx->max_nb_objs) {
i = nb_ops;
break;
}
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+2];
p_enq_op->pos++;
job_len = ops[i+3]->sym->cipher.data.length;
job_len += (ops[i+3]->sym->cipher.data.length == 0) *
ops[i+3]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
qp_ctx->max_nb_objs) {
i = nb_ops;
break;
}
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i+3];
p_enq_op->pos++;
}
for (; i < nb_ops; i++) {
job_len = ops[i]->sym->cipher.data.length;
job_len += (ops[i]->sym->cipher.data.length == 0) *
ops[i]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
if (p_enq_op->pos + in_flight_ops[p_enq_op->slave_idx] ==
qp_ctx->max_nb_objs) {
i = nb_ops;
break;
}
sched_ops[p_enq_op->slave_idx][p_enq_op->pos] = ops[i];
p_enq_op->pos++;
}
processed_ops_pri = rte_cryptodev_enqueue_burst(
psd_qp_ctx->primary_slave.dev_id,
psd_qp_ctx->primary_slave.qp_id,
sched_ops[PRIMARY_SLAVE_IDX],
enq_ops[PRIMARY_SLAVE_IDX].pos);
/* enqueue shall not fail as the slave queue is monitored */
RTE_ASSERT(processed_ops_pri == enq_ops[PRIMARY_SLAVE_IDX].pos);
psd_qp_ctx->primary_slave.nb_inflight_cops += processed_ops_pri;
processed_ops_sec = rte_cryptodev_enqueue_burst(
psd_qp_ctx->secondary_slave.dev_id,
psd_qp_ctx->secondary_slave.qp_id,
sched_ops[SECONDARY_SLAVE_IDX],
enq_ops[SECONDARY_SLAVE_IDX].pos);
RTE_ASSERT(processed_ops_sec == enq_ops[SECONDARY_SLAVE_IDX].pos);
psd_qp_ctx->secondary_slave.nb_inflight_cops += processed_ops_sec;
return processed_ops_pri + processed_ops_sec;
}
static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
nb_ops);
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
nb_ops_to_enq);
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
return nb_ops_enqd;
}
static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct psd_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
struct scheduler_slave *slaves[NB_PKT_SIZE_SLAVES] = {
&qp_ctx->primary_slave, &qp_ctx->secondary_slave};
struct scheduler_slave *slave = slaves[qp_ctx->deq_idx];
uint16_t nb_deq_ops_pri = 0, nb_deq_ops_sec = 0;
if (slave->nb_inflight_cops) {
nb_deq_ops_pri = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
slave->nb_inflight_cops -= nb_deq_ops_pri;
}
qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_IDX_SWITCH_MASK;
if (nb_deq_ops_pri == nb_ops)
return nb_deq_ops_pri;
slave = slaves[qp_ctx->deq_idx];
if (slave->nb_inflight_cops) {
nb_deq_ops_sec = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, &ops[nb_deq_ops_pri],
nb_ops - nb_deq_ops_pri);
slave->nb_inflight_cops -= nb_deq_ops_sec;
if (!slave->nb_inflight_cops)
qp_ctx->deq_idx = (~qp_ctx->deq_idx) &
SLAVE_IDX_SWITCH_MASK;
}
return nb_deq_ops_pri + nb_deq_ops_sec;
}
static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
schedule_dequeue(qp, ops, nb_ops);
return scheduler_order_drain(order_ring, ops, nb_ops);
}
static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
scheduler_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct psd_scheduler_ctx *psd_ctx = sched_ctx->private_ctx;
uint16_t i;
/* for packet size based scheduler, nb_slaves have to >= 2 */
if (sched_ctx->nb_slaves < NB_PKT_SIZE_SLAVES) {
CS_LOG_ERR("not enough slaves to start");
return -1;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
struct psd_scheduler_qp_ctx *ps_qp_ctx =
qp_ctx->private_qp_ctx;
ps_qp_ctx->primary_slave.dev_id =
sched_ctx->slaves[PRIMARY_SLAVE_IDX].dev_id;
ps_qp_ctx->primary_slave.qp_id = i;
ps_qp_ctx->primary_slave.nb_inflight_cops = 0;
ps_qp_ctx->secondary_slave.dev_id =
sched_ctx->slaves[SECONDARY_SLAVE_IDX].dev_id;
ps_qp_ctx->secondary_slave.qp_id = i;
ps_qp_ctx->secondary_slave.nb_inflight_cops = 0;
ps_qp_ctx->threshold = psd_ctx->threshold;
}
if (sched_ctx->reordering_enabled) {
dev->enqueue_burst = &schedule_enqueue_ordering;
dev->dequeue_burst = &schedule_dequeue_ordering;
} else {
dev->enqueue_burst = &schedule_enqueue;
dev->dequeue_burst = &schedule_dequeue;
}
return 0;
}
static int
scheduler_stop(struct rte_cryptodev *dev)
{
uint16_t i;
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
struct psd_scheduler_qp_ctx *ps_qp_ctx = qp_ctx->private_qp_ctx;
if (ps_qp_ctx->primary_slave.nb_inflight_cops +
ps_qp_ctx->secondary_slave.nb_inflight_cops) {
CS_LOG_ERR("Some crypto ops left in slave queue");
return -1;
}
}
return 0;
}
static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
struct psd_scheduler_qp_ctx *ps_qp_ctx;
ps_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*ps_qp_ctx), 0,
rte_socket_id());
if (!ps_qp_ctx) {
CS_LOG_ERR("failed allocate memory for private queue pair");
return -ENOMEM;
}
qp_ctx->private_qp_ctx = (void *)ps_qp_ctx;
return 0;
}
static int
scheduler_create_private_ctx(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct psd_scheduler_ctx *psd_ctx;
if (sched_ctx->private_ctx)
rte_free(sched_ctx->private_ctx);
psd_ctx = rte_zmalloc_socket(NULL, sizeof(struct psd_scheduler_ctx), 0,
rte_socket_id());
if (!psd_ctx) {
CS_LOG_ERR("failed allocate memory");
return -ENOMEM;
}
psd_ctx->threshold = DEF_PKT_SIZE_THRESHOLD;
sched_ctx->private_ctx = (void *)psd_ctx;
return 0;
}
static int
scheduler_option_set(struct rte_cryptodev *dev, uint32_t option_type,
void *option)
{
struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *)
dev->data->dev_private)->private_ctx;
uint32_t threshold;
if ((enum rte_cryptodev_schedule_option_type)option_type !=
CDEV_SCHED_OPTION_THRESHOLD) {
CS_LOG_ERR("Option not supported");
return -EINVAL;
}
threshold = ((struct rte_cryptodev_scheduler_threshold_option *)
option)->threshold;
if (!rte_is_power_of_2(threshold)) {
CS_LOG_ERR("Threshold is not power of 2");
return -EINVAL;
}
psd_ctx->threshold = ~(threshold - 1);
return 0;
}
static int
scheduler_option_get(struct rte_cryptodev *dev, uint32_t option_type,
void *option)
{
struct psd_scheduler_ctx *psd_ctx = ((struct scheduler_ctx *)
dev->data->dev_private)->private_ctx;
struct rte_cryptodev_scheduler_threshold_option *threshold_option;
if ((enum rte_cryptodev_schedule_option_type)option_type !=
CDEV_SCHED_OPTION_THRESHOLD) {
CS_LOG_ERR("Option not supported");
return -EINVAL;
}
threshold_option = option;
threshold_option->threshold = (~psd_ctx->threshold) + 1;
return 0;
}
struct rte_cryptodev_scheduler_ops scheduler_ps_ops = {
slave_attach,
slave_detach,
scheduler_start,
scheduler_stop,
scheduler_config_qp,
scheduler_create_private_ctx,
scheduler_option_set,
scheduler_option_get
};
struct rte_cryptodev_scheduler psd_scheduler = {
.name = "packet-size-based-scheduler",
.description = "scheduler which will distribute crypto op "
"burst based on the packet size",
.mode = CDEV_SCHED_MODE_PKT_SIZE_DISTR,
.ops = &scheduler_ps_ops
};
struct rte_cryptodev_scheduler *pkt_size_based_distr_scheduler = &psd_scheduler;