numam-dpdk/lib/librte_mbuf/rte_mbuf.h
Olivier Matz 6046898f50 net/mbuf: remove unused Rx error flags
Following the discussions from:
http://dpdk.org/ml/archives/dev/2015-July/021721.html
http://dpdk.org/ml/archives/dev/2016-April/038143.html

The value of these flags is 0, making them useless. Today, no example
application checks them on Rx, and only few drivers sets them and
silently give wrong packets to the application, which should not happen.

This patch removes the unused flags from rte_mbuf and their use in the
drivers. The i40e and fm10k are kept as they are today and should be
fixed to drop bad packets. The enic driver is managed by its maintainer
in another patch.

Fixes: c22265f6 ("mbuf: add new packet flags for i40e")

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2016-06-20 17:21:49 +02:00

2019 lines
57 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_MBUF_H_
#define _RTE_MBUF_H_
/**
* @file
* RTE Mbuf
*
* The mbuf library provides the ability to create and destroy buffers
* that may be used by the RTE application to store message
* buffers. The message buffers are stored in a mempool, using the
* RTE mempool library.
*
* This library provide an API to allocate/free packet mbufs, which are
* used to carry network packets.
*
* To understand the concepts of packet buffers or mbufs, you
* should read "TCP/IP Illustrated, Volume 2: The Implementation,
* Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
* http://www.kohala.com/start/tcpipiv2.html
*/
#include <stdint.h>
#include <rte_common.h>
#include <rte_mempool.h>
#include <rte_memory.h>
#include <rte_atomic.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Packet Offload Features Flags. It also carry packet type information.
* Critical resources. Both rx/tx shared these bits. Be cautious on any change
*
* - RX flags start at bit position zero, and get added to the left of previous
* flags.
* - The most-significant 3 bits are reserved for generic mbuf flags
* - TX flags therefore start at bit position 60 (i.e. 63-3), and new flags get
* added to the right of the previously defined flags i.e. they should count
* downwards, not upwards.
*
* Keep these flags synchronized with rte_get_rx_ol_flag_name() and
* rte_get_tx_ol_flag_name().
*/
/**
* RX packet is a 802.1q VLAN packet. This flag was set by PMDs when
* the packet is recognized as a VLAN, but the behavior between PMDs
* was not the same. This flag is kept for some time to avoid breaking
* applications and should be replaced by PKT_RX_VLAN_STRIPPED.
*/
#define PKT_RX_VLAN_PKT (1ULL << 0)
#define PKT_RX_RSS_HASH (1ULL << 1) /**< RX packet with RSS hash result. */
#define PKT_RX_FDIR (1ULL << 2) /**< RX packet with FDIR match indicate. */
#define PKT_RX_L4_CKSUM_BAD (1ULL << 3) /**< L4 cksum of RX pkt. is not OK. */
#define PKT_RX_IP_CKSUM_BAD (1ULL << 4) /**< IP cksum of RX pkt. is not OK. */
#define PKT_RX_EIP_CKSUM_BAD (1ULL << 5) /**< External IP header checksum error. */
/**
* A vlan has been stripped by the hardware and its tci is saved in
* mbuf->vlan_tci. This can only happen if vlan stripping is enabled
* in the RX configuration of the PMD.
*/
#define PKT_RX_VLAN_STRIPPED (1ULL << 6)
/* hole, some bits can be reused here */
#define PKT_RX_IEEE1588_PTP (1ULL << 9) /**< RX IEEE1588 L2 Ethernet PT Packet. */
#define PKT_RX_IEEE1588_TMST (1ULL << 10) /**< RX IEEE1588 L2/L4 timestamped packet.*/
#define PKT_RX_FDIR_ID (1ULL << 13) /**< FD id reported if FDIR match. */
#define PKT_RX_FDIR_FLX (1ULL << 14) /**< Flexible bytes reported if FDIR match. */
/**
* The 2 vlans have been stripped by the hardware and their tci are
* saved in mbuf->vlan_tci (inner) and mbuf->vlan_tci_outer (outer).
* This can only happen if vlan stripping is enabled in the RX
* configuration of the PMD. If this flag is set, PKT_RX_VLAN_STRIPPED
* must also be set.
*/
#define PKT_RX_QINQ_STRIPPED (1ULL << 15)
/**
* Deprecated.
* RX packet with double VLAN stripped.
* This flag is replaced by PKT_RX_QINQ_STRIPPED.
*/
#define PKT_RX_QINQ_PKT PKT_RX_QINQ_STRIPPED
/* add new RX flags here */
/* add new TX flags here */
/**
* Second VLAN insertion (QinQ) flag.
*/
#define PKT_TX_QINQ_PKT (1ULL << 49) /**< TX packet with double VLAN inserted. */
/**
* TCP segmentation offload. To enable this offload feature for a
* packet to be transmitted on hardware supporting TSO:
* - set the PKT_TX_TCP_SEG flag in mbuf->ol_flags (this flag implies
* PKT_TX_TCP_CKSUM)
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - if it's IPv4, set the PKT_TX_IP_CKSUM flag and write the IP checksum
* to 0 in the packet
* - fill the mbuf offload information: l2_len, l3_len, l4_len, tso_segsz
* - calculate the pseudo header checksum without taking ip_len in account,
* and set it in the TCP header. Refer to rte_ipv4_phdr_cksum() and
* rte_ipv6_phdr_cksum() that can be used as helpers.
*/
#define PKT_TX_TCP_SEG (1ULL << 50)
#define PKT_TX_IEEE1588_TMST (1ULL << 51) /**< TX IEEE1588 packet to timestamp. */
/**
* Bits 52+53 used for L4 packet type with checksum enabled: 00: Reserved,
* 01: TCP checksum, 10: SCTP checksum, 11: UDP checksum. To use hardware
* L4 checksum offload, the user needs to:
* - fill l2_len and l3_len in mbuf
* - set the flags PKT_TX_TCP_CKSUM, PKT_TX_SCTP_CKSUM or PKT_TX_UDP_CKSUM
* - set the flag PKT_TX_IPV4 or PKT_TX_IPV6
* - calculate the pseudo header checksum and set it in the L4 header (only
* for TCP or UDP). See rte_ipv4_phdr_cksum() and rte_ipv6_phdr_cksum().
* For SCTP, set the crc field to 0.
*/
#define PKT_TX_L4_NO_CKSUM (0ULL << 52) /**< Disable L4 cksum of TX pkt. */
#define PKT_TX_TCP_CKSUM (1ULL << 52) /**< TCP cksum of TX pkt. computed by NIC. */
#define PKT_TX_SCTP_CKSUM (2ULL << 52) /**< SCTP cksum of TX pkt. computed by NIC. */
#define PKT_TX_UDP_CKSUM (3ULL << 52) /**< UDP cksum of TX pkt. computed by NIC. */
#define PKT_TX_L4_MASK (3ULL << 52) /**< Mask for L4 cksum offload request. */
/**
* Offload the IP checksum in the hardware. The flag PKT_TX_IPV4 should
* also be set by the application, although a PMD will only check
* PKT_TX_IP_CKSUM.
* - set the IP checksum field in the packet to 0
* - fill the mbuf offload information: l2_len, l3_len
*/
#define PKT_TX_IP_CKSUM (1ULL << 54)
/**
* Packet is IPv4. This flag must be set when using any offload feature
* (TSO, L3 or L4 checksum) to tell the NIC that the packet is an IPv4
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV4 (1ULL << 55)
/**
* Packet is IPv6. This flag must be set when using an offload feature
* (TSO or L4 checksum) to tell the NIC that the packet is an IPv6
* packet. If the packet is a tunneled packet, this flag is related to
* the inner headers.
*/
#define PKT_TX_IPV6 (1ULL << 56)
#define PKT_TX_VLAN_PKT (1ULL << 57) /**< TX packet is a 802.1q VLAN packet. */
/**
* Offload the IP checksum of an external header in the hardware. The
* flag PKT_TX_OUTER_IPV4 should also be set by the application, alto ugh
* a PMD will only check PKT_TX_IP_CKSUM. The IP checksum field in the
* packet must be set to 0.
* - set the outer IP checksum field in the packet to 0
* - fill the mbuf offload information: outer_l2_len, outer_l3_len
*/
#define PKT_TX_OUTER_IP_CKSUM (1ULL << 58)
/**
* Packet outer header is IPv4. This flag must be set when using any
* outer offload feature (L3 or L4 checksum) to tell the NIC that the
* outer header of the tunneled packet is an IPv4 packet.
*/
#define PKT_TX_OUTER_IPV4 (1ULL << 59)
/**
* Packet outer header is IPv6. This flag must be set when using any
* outer offload feature (L4 checksum) to tell the NIC that the outer
* header of the tunneled packet is an IPv6 packet.
*/
#define PKT_TX_OUTER_IPV6 (1ULL << 60)
#define __RESERVED (1ULL << 61) /**< reserved for future mbuf use */
#define IND_ATTACHED_MBUF (1ULL << 62) /**< Indirect attached mbuf */
/* Use final bit of flags to indicate a control mbuf */
#define CTRL_MBUF_FLAG (1ULL << 63) /**< Mbuf contains control data */
/*
* 32 bits are divided into several fields to mark packet types. Note that
* each field is indexical.
* - Bit 3:0 is for L2 types.
* - Bit 7:4 is for L3 or outer L3 (for tunneling case) types.
* - Bit 11:8 is for L4 or outer L4 (for tunneling case) types.
* - Bit 15:12 is for tunnel types.
* - Bit 19:16 is for inner L2 types.
* - Bit 23:20 is for inner L3 types.
* - Bit 27:24 is for inner L4 types.
* - Bit 31:28 is reserved.
*
* To be compatible with Vector PMD, RTE_PTYPE_L3_IPV4, RTE_PTYPE_L3_IPV4_EXT,
* RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV6_EXT, RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP
* and RTE_PTYPE_L4_SCTP should be kept as below in a contiguous 7 bits.
*
* Note that L3 types values are selected for checking IPV4/IPV6 header from
* performance point of view. Reading annotations of RTE_ETH_IS_IPV4_HDR and
* RTE_ETH_IS_IPV6_HDR is needed for any future changes of L3 type values.
*
* Note that the packet types of the same packet recognized by different
* hardware may be different, as different hardware may have different
* capability of packet type recognition.
*
* examples:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=0x29
* | 'version'=6, 'next header'=0x3A
* | 'ICMPv6 header'>
* will be recognized on i40e hardware as packet type combination of,
* RTE_PTYPE_L2_ETHER |
* RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
* RTE_PTYPE_TUNNEL_IP |
* RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
* RTE_PTYPE_INNER_L4_ICMP.
*
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=0x2F
* | 'GRE header'
* | 'version'=6, 'next header'=0x11
* | 'UDP header'>
* will be recognized on i40e hardware as packet type combination of,
* RTE_PTYPE_L2_ETHER |
* RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
* RTE_PTYPE_TUNNEL_GRENAT |
* RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
* RTE_PTYPE_INNER_L4_UDP.
*/
#define RTE_PTYPE_UNKNOWN 0x00000000
/**
* Ethernet packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=[0x0800|0x86DD]>
*/
#define RTE_PTYPE_L2_ETHER 0x00000001
/**
* Ethernet packet type for time sync.
*
* Packet format:
* <'ether type'=0x88F7>
*/
#define RTE_PTYPE_L2_ETHER_TIMESYNC 0x00000002
/**
* ARP (Address Resolution Protocol) packet type.
*
* Packet format:
* <'ether type'=0x0806>
*/
#define RTE_PTYPE_L2_ETHER_ARP 0x00000003
/**
* LLDP (Link Layer Discovery Protocol) packet type.
*
* Packet format:
* <'ether type'=0x88CC>
*/
#define RTE_PTYPE_L2_ETHER_LLDP 0x00000004
/**
* NSH (Network Service Header) packet type.
*
* Packet format:
* <'ether type'=0x894F>
*/
#define RTE_PTYPE_L2_ETHER_NSH 0x00000005
/**
* Mask of layer 2 packet types.
* It is used for outer packet for tunneling cases.
*/
#define RTE_PTYPE_L2_MASK 0x0000000f
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for outer packet for tunneling cases, and does not contain any
* header option.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=5>
*/
#define RTE_PTYPE_L3_IPV4 0x00000010
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for outer packet for tunneling cases, and contains header
* options.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[6-15], 'options'>
*/
#define RTE_PTYPE_L3_IPV4_EXT 0x00000030
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for outer packet for tunneling cases, and does not contain any
* extension header.
*
* Packet format:
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=0x3B>
*/
#define RTE_PTYPE_L3_IPV6 0x00000040
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for outer packet for tunneling cases, and may or maynot contain
* header options.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[5-15], <'options'>>
*/
#define RTE_PTYPE_L3_IPV4_EXT_UNKNOWN 0x00000090
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for outer packet for tunneling cases, and contains extension
* headers.
*
* Packet format:
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* 'extension headers'>
*/
#define RTE_PTYPE_L3_IPV6_EXT 0x000000c0
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for outer packet for tunneling cases, and may or maynot contain
* extension headers.
*
* Packet format:
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x3B|0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* <'extension headers'>>
*/
#define RTE_PTYPE_L3_IPV6_EXT_UNKNOWN 0x000000e0
/**
* Mask of layer 3 packet types.
* It is used for outer packet for tunneling cases.
*/
#define RTE_PTYPE_L3_MASK 0x000000f0
/**
* TCP (Transmission Control Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=6, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=6>
*/
#define RTE_PTYPE_L4_TCP 0x00000100
/**
* UDP (User Datagram Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17>
*/
#define RTE_PTYPE_L4_UDP 0x00000200
/**
* Fragmented IP (Internet Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* It refers to those packets of any IP types, which can be recognized as
* fragmented. A fragmented packet cannot be recognized as any other L4 types
* (RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP,
* RTE_PTYPE_L4_NONFRAG).
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'MF'=1>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=44>
*/
#define RTE_PTYPE_L4_FRAG 0x00000300
/**
* SCTP (Stream Control Transmission Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=132, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=132>
*/
#define RTE_PTYPE_L4_SCTP 0x00000400
/**
* ICMP (Internet Control Message Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=1, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=1>
*/
#define RTE_PTYPE_L4_ICMP 0x00000500
/**
* Non-fragmented IP (Internet Protocol) packet type.
* It is used for outer packet for tunneling cases.
*
* It refers to those packets of any IP types, while cannot be recognized as
* any of above L4 types (RTE_PTYPE_L4_TCP, RTE_PTYPE_L4_UDP,
* RTE_PTYPE_L4_FRAG, RTE_PTYPE_L4_SCTP, RTE_PTYPE_L4_ICMP).
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'!=[6|17|132|1], 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'!=[6|17|44|132|1]>
*/
#define RTE_PTYPE_L4_NONFRAG 0x00000600
/**
* Mask of layer 4 packet types.
* It is used for outer packet for tunneling cases.
*/
#define RTE_PTYPE_L4_MASK 0x00000f00
/**
* IP (Internet Protocol) in IP (Internet Protocol) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=[4|41]>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[4|41]>
*/
#define RTE_PTYPE_TUNNEL_IP 0x00001000
/**
* GRE (Generic Routing Encapsulation) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=47>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=47>
*/
#define RTE_PTYPE_TUNNEL_GRE 0x00002000
/**
* VXLAN (Virtual eXtensible Local Area Network) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17
* | 'destination port'=4798>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17
* | 'destination port'=4798>
*/
#define RTE_PTYPE_TUNNEL_VXLAN 0x00003000
/**
* NVGRE (Network Virtualization using Generic Routing Encapsulation) tunneling
* packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=47
* | 'protocol type'=0x6558>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=47
* | 'protocol type'=0x6558'>
*/
#define RTE_PTYPE_TUNNEL_NVGRE 0x00004000
/**
* GENEVE (Generic Network Virtualization Encapsulation) tunneling packet type.
*
* Packet format:
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17
* | 'destination port'=6081>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17
* | 'destination port'=6081>
*/
#define RTE_PTYPE_TUNNEL_GENEVE 0x00005000
/**
* Tunneling packet type of Teredo, VXLAN (Virtual eXtensible Local Area
* Network) or GRE (Generic Routing Encapsulation) could be recognized as this
* packet type, if they can not be recognized independently as of hardware
* capability.
*/
#define RTE_PTYPE_TUNNEL_GRENAT 0x00006000
/**
* Mask of tunneling packet types.
*/
#define RTE_PTYPE_TUNNEL_MASK 0x0000f000
/**
* Ethernet packet type.
* It is used for inner packet type only.
*
* Packet format (inner only):
* <'ether type'=[0x800|0x86DD]>
*/
#define RTE_PTYPE_INNER_L2_ETHER 0x00010000
/**
* Ethernet packet type with VLAN (Virtual Local Area Network) tag.
*
* Packet format (inner only):
* <'ether type'=[0x800|0x86DD], vlan=[1-4095]>
*/
#define RTE_PTYPE_INNER_L2_ETHER_VLAN 0x00020000
/**
* Mask of inner layer 2 packet types.
*/
#define RTE_PTYPE_INNER_L2_MASK 0x000f0000
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for inner packet only, and does not contain any header option.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=5>
*/
#define RTE_PTYPE_INNER_L3_IPV4 0x00100000
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for inner packet only, and contains header options.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[6-15], 'options'>
*/
#define RTE_PTYPE_INNER_L3_IPV4_EXT 0x00200000
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for inner packet only, and does not contain any extension header.
*
* Packet format (inner only):
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=0x3B>
*/
#define RTE_PTYPE_INNER_L3_IPV6 0x00300000
/**
* IP (Internet Protocol) version 4 packet type.
* It is used for inner packet only, and may or maynot contain header options.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'ihl'=[5-15], <'options'>>
*/
#define RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN 0x00400000
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for inner packet only, and contains extension headers.
*
* Packet format (inner only):
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* 'extension headers'>
*/
#define RTE_PTYPE_INNER_L3_IPV6_EXT 0x00500000
/**
* IP (Internet Protocol) version 6 packet type.
* It is used for inner packet only, and may or maynot contain extension
* headers.
*
* Packet format (inner only):
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=[0x3B|0x0|0x2B|0x2C|0x32|0x33|0x3C|0x87],
* <'extension headers'>>
*/
#define RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN 0x00600000
/**
* Mask of inner layer 3 packet types.
*/
#define RTE_PTYPE_INNER_L3_MASK 0x00f00000
/**
* TCP (Transmission Control Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=6, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=6>
*/
#define RTE_PTYPE_INNER_L4_TCP 0x01000000
/**
* UDP (User Datagram Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=17, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=17>
*/
#define RTE_PTYPE_INNER_L4_UDP 0x02000000
/**
* Fragmented IP (Internet Protocol) packet type.
* It is used for inner packet only, and may or maynot have layer 4 packet.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'MF'=1>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=44>
*/
#define RTE_PTYPE_INNER_L4_FRAG 0x03000000
/**
* SCTP (Stream Control Transmission Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=132, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=132>
*/
#define RTE_PTYPE_INNER_L4_SCTP 0x04000000
/**
* ICMP (Internet Control Message Protocol) packet type.
* It is used for inner packet only.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'=1, 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'=1>
*/
#define RTE_PTYPE_INNER_L4_ICMP 0x05000000
/**
* Non-fragmented IP (Internet Protocol) packet type.
* It is used for inner packet only, and may or maynot have other unknown layer
* 4 packet types.
*
* Packet format (inner only):
* <'ether type'=0x0800
* | 'version'=4, 'protocol'!=[6|17|132|1], 'MF'=0>
* or,
* <'ether type'=0x86DD
* | 'version'=6, 'next header'!=[6|17|44|132|1]>
*/
#define RTE_PTYPE_INNER_L4_NONFRAG 0x06000000
/**
* Mask of inner layer 4 packet types.
*/
#define RTE_PTYPE_INNER_L4_MASK 0x0f000000
/**
* Check if the (outer) L3 header is IPv4. To avoid comparing IPv4 types one by
* one, bit 4 is selected to be used for IPv4 only. Then checking bit 4 can
* determine if it is an IPV4 packet.
*/
#define RTE_ETH_IS_IPV4_HDR(ptype) ((ptype) & RTE_PTYPE_L3_IPV4)
/**
* Check if the (outer) L3 header is IPv4. To avoid comparing IPv4 types one by
* one, bit 6 is selected to be used for IPv4 only. Then checking bit 6 can
* determine if it is an IPV4 packet.
*/
#define RTE_ETH_IS_IPV6_HDR(ptype) ((ptype) & RTE_PTYPE_L3_IPV6)
/* Check if it is a tunneling packet */
#define RTE_ETH_IS_TUNNEL_PKT(ptype) ((ptype) & (RTE_PTYPE_TUNNEL_MASK | \
RTE_PTYPE_INNER_L2_MASK | \
RTE_PTYPE_INNER_L3_MASK | \
RTE_PTYPE_INNER_L4_MASK))
/** Alignment constraint of mbuf private area. */
#define RTE_MBUF_PRIV_ALIGN 8
/**
* Get the name of a RX offload flag
*
* @param mask
* The mask describing the flag.
* @return
* The name of this flag, or NULL if it's not a valid RX flag.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask);
/**
* Get the name of a TX offload flag
*
* @param mask
* The mask describing the flag. Usually only one bit must be set.
* Several bits can be given if they belong to the same mask.
* Ex: PKT_TX_L4_MASK.
* @return
* The name of this flag, or NULL if it's not a valid TX flag.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask);
/**
* Some NICs need at least 2KB buffer to RX standard Ethernet frame without
* splitting it into multiple segments.
* So, for mbufs that planned to be involved into RX/TX, the recommended
* minimal buffer length is 2KB + RTE_PKTMBUF_HEADROOM.
*/
#define RTE_MBUF_DEFAULT_DATAROOM 2048
#define RTE_MBUF_DEFAULT_BUF_SIZE \
(RTE_MBUF_DEFAULT_DATAROOM + RTE_PKTMBUF_HEADROOM)
/* define a set of marker types that can be used to refer to set points in the
* mbuf */
typedef void *MARKER[0]; /**< generic marker for a point in a structure */
typedef uint8_t MARKER8[0]; /**< generic marker with 1B alignment */
typedef uint64_t MARKER64[0]; /**< marker that allows us to overwrite 8 bytes
* with a single assignment */
/**
* The generic rte_mbuf, containing a packet mbuf.
*/
struct rte_mbuf {
MARKER cacheline0;
void *buf_addr; /**< Virtual address of segment buffer. */
phys_addr_t buf_physaddr; /**< Physical address of segment buffer. */
uint16_t buf_len; /**< Length of segment buffer. */
/* next 6 bytes are initialised on RX descriptor rearm */
MARKER8 rearm_data;
uint16_t data_off;
/**
* 16-bit Reference counter.
* It should only be accessed using the following functions:
* rte_mbuf_refcnt_update(), rte_mbuf_refcnt_read(), and
* rte_mbuf_refcnt_set(). The functionality of these functions (atomic,
* or non-atomic) is controlled by the CONFIG_RTE_MBUF_REFCNT_ATOMIC
* config option.
*/
union {
rte_atomic16_t refcnt_atomic; /**< Atomically accessed refcnt */
uint16_t refcnt; /**< Non-atomically accessed refcnt */
};
uint8_t nb_segs; /**< Number of segments. */
uint8_t port; /**< Input port. */
uint64_t ol_flags; /**< Offload features. */
/* remaining bytes are set on RX when pulling packet from descriptor */
MARKER rx_descriptor_fields1;
/*
* The packet type, which is the combination of outer/inner L2, L3, L4
* and tunnel types. The packet_type is about data really present in the
* mbuf. Example: if vlan stripping is enabled, a received vlan packet
* would have RTE_PTYPE_L2_ETHER and not RTE_PTYPE_L2_VLAN because the
* vlan is stripped from the data.
*/
union {
uint32_t packet_type; /**< L2/L3/L4 and tunnel information. */
struct {
uint32_t l2_type:4; /**< (Outer) L2 type. */
uint32_t l3_type:4; /**< (Outer) L3 type. */
uint32_t l4_type:4; /**< (Outer) L4 type. */
uint32_t tun_type:4; /**< Tunnel type. */
uint32_t inner_l2_type:4; /**< Inner L2 type. */
uint32_t inner_l3_type:4; /**< Inner L3 type. */
uint32_t inner_l4_type:4; /**< Inner L4 type. */
};
};
uint32_t pkt_len; /**< Total pkt len: sum of all segments. */
uint16_t data_len; /**< Amount of data in segment buffer. */
/** VLAN TCI (CPU order), valid if PKT_RX_VLAN_STRIPPED is set. */
uint16_t vlan_tci;
union {
uint32_t rss; /**< RSS hash result if RSS enabled */
struct {
union {
struct {
uint16_t hash;
uint16_t id;
};
uint32_t lo;
/**< Second 4 flexible bytes */
};
uint32_t hi;
/**< First 4 flexible bytes or FD ID, dependent on
PKT_RX_FDIR_* flag in ol_flags. */
} fdir; /**< Filter identifier if FDIR enabled */
struct {
uint32_t lo;
uint32_t hi;
} sched; /**< Hierarchical scheduler */
uint32_t usr; /**< User defined tags. See rte_distributor_process() */
} hash; /**< hash information */
uint32_t seqn; /**< Sequence number. See also rte_reorder_insert() */
/** Outer VLAN TCI (CPU order), valid if PKT_RX_QINQ_STRIPPED is set. */
uint16_t vlan_tci_outer;
/* second cache line - fields only used in slow path or on TX */
MARKER cacheline1 __rte_cache_min_aligned;
union {
void *userdata; /**< Can be used for external metadata */
uint64_t udata64; /**< Allow 8-byte userdata on 32-bit */
};
struct rte_mempool *pool; /**< Pool from which mbuf was allocated. */
struct rte_mbuf *next; /**< Next segment of scattered packet. */
/* fields to support TX offloads */
union {
uint64_t tx_offload; /**< combined for easy fetch */
struct {
uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
uint64_t l3_len:9; /**< L3 (IP) Header Length. */
uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
uint64_t tso_segsz:16; /**< TCP TSO segment size */
/* fields for TX offloading of tunnels */
uint64_t outer_l3_len:9; /**< Outer L3 (IP) Hdr Length. */
uint64_t outer_l2_len:7; /**< Outer L2 (MAC) Hdr Length. */
/* uint64_t unused:8; */
};
};
/** Size of the application private data. In case of an indirect
* mbuf, it stores the direct mbuf private data size. */
uint16_t priv_size;
/** Timesync flags for use with IEEE1588. */
uint16_t timesync;
} __rte_cache_aligned;
/**
* Prefetch the first part of the mbuf
*
* The first 64 bytes of the mbuf corresponds to fields that are used early
* in the receive path. If the cache line of the architecture is higher than
* 64B, the second part will also be prefetched.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part1(struct rte_mbuf *m)
{
rte_prefetch0(&m->cacheline0);
}
/**
* Prefetch the second part of the mbuf
*
* The next 64 bytes of the mbuf corresponds to fields that are used in the
* transmit path. If the cache line of the architecture is higher than 64B,
* this function does nothing as it is expected that the full mbuf is
* already in cache.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part2(struct rte_mbuf *m)
{
#if RTE_CACHE_LINE_SIZE == 64
rte_prefetch0(&m->cacheline1);
#else
RTE_SET_USED(m);
#endif
}
static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
/**
* Return the DMA address of the beginning of the mbuf data
*
* @param mb
* The pointer to the mbuf.
* @return
* The physical address of the beginning of the mbuf data
*/
static inline phys_addr_t
rte_mbuf_data_dma_addr(const struct rte_mbuf *mb)
{
return mb->buf_physaddr + mb->data_off;
}
/**
* Return the default DMA address of the beginning of the mbuf data
*
* This function is used by drivers in their receive function, as it
* returns the location where data should be written by the NIC, taking
* the default headroom in account.
*
* @param mb
* The pointer to the mbuf.
* @return
* The physical address of the beginning of the mbuf data
*/
static inline phys_addr_t
rte_mbuf_data_dma_addr_default(const struct rte_mbuf *mb)
{
return mb->buf_physaddr + RTE_PKTMBUF_HEADROOM;
}
/**
* Return the mbuf owning the data buffer address of an indirect mbuf.
*
* @param mi
* The pointer to the indirect mbuf.
* @return
* The address of the direct mbuf corresponding to buffer_addr.
*/
static inline struct rte_mbuf *
rte_mbuf_from_indirect(struct rte_mbuf *mi)
{
return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
}
/**
* Return the buffer address embedded in the given mbuf.
*
* @param md
* The pointer to the mbuf.
* @return
* The address of the data buffer owned by the mbuf.
*/
static inline char *
rte_mbuf_to_baddr(struct rte_mbuf *md)
{
char *buffer_addr;
buffer_addr = (char *)md + sizeof(*md) + rte_pktmbuf_priv_size(md->pool);
return buffer_addr;
}
/**
* Returns TRUE if given mbuf is indirect, or FALSE otherwise.
*/
#define RTE_MBUF_INDIRECT(mb) ((mb)->ol_flags & IND_ATTACHED_MBUF)
/**
* Returns TRUE if given mbuf is direct, or FALSE otherwise.
*/
#define RTE_MBUF_DIRECT(mb) (!RTE_MBUF_INDIRECT(mb))
/**
* Private data in case of pktmbuf pool.
*
* A structure that contains some pktmbuf_pool-specific data that are
* appended after the mempool structure (in private data).
*/
struct rte_pktmbuf_pool_private {
uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
};
#ifdef RTE_LIBRTE_MBUF_DEBUG
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
#else /* RTE_LIBRTE_MBUF_DEBUG */
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
#endif /* RTE_LIBRTE_MBUF_DEBUG */
#ifdef RTE_MBUF_REFCNT_ATOMIC
/**
* Reads the value of an mbuf's refcnt.
* @param m
* Mbuf to read
* @return
* Reference count number.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return (uint16_t)(rte_atomic16_read(&m->refcnt_atomic));
}
/**
* Sets an mbuf's refcnt to a defined value.
* @param m
* Mbuf to update
* @param new_value
* Value set
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
rte_atomic16_set(&m->refcnt_atomic, new_value);
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
* @param m
* Mbuf to update
* @param value
* Value to add/subtract
* @return
* Updated value
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
/*
* The atomic_add is an expensive operation, so we don't want to
* call it in the case where we know we are the uniq holder of
* this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
* operation has to be used because concurrent accesses on the
* reference counter can occur.
*/
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
rte_mbuf_refcnt_set(m, 1 + value);
return 1 + value;
}
return (uint16_t)(rte_atomic16_add_return(&m->refcnt_atomic, value));
}
#else /* ! RTE_MBUF_REFCNT_ATOMIC */
/**
* Adds given value to an mbuf's refcnt and returns its new value.
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
m->refcnt = (uint16_t)(m->refcnt + value);
return m->refcnt;
}
/**
* Reads the value of an mbuf's refcnt.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return m->refcnt;
}
/**
* Sets an mbuf's refcnt to the defined value.
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
m->refcnt = new_value;
}
#endif /* RTE_MBUF_REFCNT_ATOMIC */
/** Mbuf prefetch */
#define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
if ((m) != NULL) \
rte_prefetch0(m); \
} while (0)
/**
* Sanity checks on an mbuf.
*
* Check the consistency of the given mbuf. The function will cause a
* panic if corruption is detected.
*
* @param m
* The mbuf to be checked.
* @param is_header
* True if the mbuf is a packet header, false if it is a sub-segment
* of a packet (in this case, some fields like nb_segs are not checked)
*/
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
/**
* Allocate an unitialized mbuf from mempool *mp*.
*
* This function can be used by PMDs (especially in RX functions) to
* allocate an unitialized mbuf. The driver is responsible of
* initializing all the required fields. See rte_pktmbuf_reset().
* For standard needs, prefer rte_pktmbuf_alloc().
*
* @param mp
* The mempool from which mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
void *mb = NULL;
if (rte_mempool_get(mp, &mb) < 0)
return NULL;
m = (struct rte_mbuf *)mb;
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 0);
rte_mbuf_refcnt_set(m, 1);
__rte_mbuf_sanity_check(m, 0);
return m;
}
/* compat with older versions */
__rte_deprecated static inline struct rte_mbuf *
__rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
return rte_mbuf_raw_alloc(mp);
}
/**
* @internal Put mbuf back into its original mempool.
* The use of that function is reserved for RTE internal needs.
* Please use rte_pktmbuf_free().
*
* @param m
* The mbuf to be freed.
*/
static inline void __attribute__((always_inline))
__rte_mbuf_raw_free(struct rte_mbuf *m)
{
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 0);
rte_mempool_put(m->pool, m);
}
/* Operations on ctrl mbuf */
/**
* The control mbuf constructor.
*
* This function initializes some fields in an mbuf structure that are
* not modified by the user once created (mbuf type, origin pool, buffer
* start address, and so on). This function is given as a callback function
* to rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which the mbuf is allocated.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_ctrlmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* Allocate a new mbuf (type is ctrl) from mempool *mp*.
*
* This new mbuf is initialized with data pointing to the beginning of
* buffer, and with a length of zero.
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
#define rte_ctrlmbuf_alloc(mp) rte_pktmbuf_alloc(mp)
/**
* Free a control mbuf back into its original mempool.
*
* @param m
* The control mbuf to be freed.
*/
#define rte_ctrlmbuf_free(m) rte_pktmbuf_free(m)
/**
* A macro that returns the pointer to the carried data.
*
* The value that can be read or assigned.
*
* @param m
* The control mbuf.
*/
#define rte_ctrlmbuf_data(m) ((char *)((m)->buf_addr) + (m)->data_off)
/**
* A macro that returns the length of the carried data.
*
* The value that can be read or assigned.
*
* @param m
* The control mbuf.
*/
#define rte_ctrlmbuf_len(m) rte_pktmbuf_data_len(m)
/**
* Tests if an mbuf is a control mbuf
*
* @param m
* The mbuf to be tested
* @return
* - True (1) if the mbuf is a control mbuf
* - False(0) otherwise
*/
static inline int
rte_is_ctrlmbuf(struct rte_mbuf *m)
{
return !!(m->ol_flags & CTRL_MBUF_FLAG);
}
/* Operations on pkt mbuf */
/**
* The packet mbuf constructor.
*
* This function initializes some fields in the mbuf structure that are
* not modified by the user once created (origin pool, buffer start
* address, and so on). This function is given as a callback function to
* rte_mempool_create() at pool creation time.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* A packet mbuf pool constructor.
*
* This function initializes the mempool private data in the case of a
* pktmbuf pool. This private data is needed by the driver. The
* function is given as a callback function to rte_mempool_create() at
* pool creation. It can be extended by the user, for example, to
* provide another packet size.
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer comes from the ``init_arg``
* parameter of rte_mempool_create().
*/
void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
/**
* Create a mbuf pool.
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool_create() with the proper packet constructor
* and mempool constructor.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned n,
unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id);
/**
* Get the data room size of mbufs stored in a pktmbuf_pool
*
* The data room size is the amount of data that can be stored in a
* mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
*
* @param mp
* The packet mbuf pool.
* @return
* The data room size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_data_room_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_data_room_size;
}
/**
* Get the application private size of mbufs stored in a pktmbuf_pool
*
* The private size of mbuf is a zone located between the rte_mbuf
* structure and the data buffer where an application can store data
* associated to a packet.
*
* @param mp
* The packet mbuf pool.
* @return
* The private size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_priv_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_priv_size;
}
/**
* Reset the fields of a packet mbuf to their default values.
*
* The given mbuf must have only one segment.
*
* @param m
* The packet mbuf to be resetted.
*/
static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
{
m->next = NULL;
m->pkt_len = 0;
m->tx_offload = 0;
m->vlan_tci = 0;
m->vlan_tci_outer = 0;
m->nb_segs = 1;
m->port = 0xff;
m->ol_flags = 0;
m->packet_type = 0;
m->data_off = (RTE_PKTMBUF_HEADROOM <= m->buf_len) ?
RTE_PKTMBUF_HEADROOM : m->buf_len;
m->data_len = 0;
__rte_mbuf_sanity_check(m, 1);
}
/**
* Allocate a new mbuf from a mempool.
*
* This new mbuf contains one segment, which has a length of 0. The pointer
* to data is initialized to have some bytes of headroom in the buffer
* (if buffer size allows).
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
rte_pktmbuf_reset(m);
return m;
}
/**
* Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
* values.
*
* @param pool
* The mempool from which mbufs are allocated.
* @param mbufs
* Array of pointers to mbufs
* @param count
* Array size
* @return
* - 0: Success
*/
static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
struct rte_mbuf **mbufs, unsigned count)
{
unsigned idx = 0;
int rc;
rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
if (unlikely(rc))
return rc;
/* To understand duff's device on loop unwinding optimization, see
* https://en.wikipedia.org/wiki/Duff's_device.
* Here while() loop is used rather than do() while{} to avoid extra
* check if count is zero.
*/
switch (count % 4) {
case 0:
while (idx != count) {
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
case 3:
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
case 2:
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
case 1:
RTE_ASSERT(rte_mbuf_refcnt_read(mbufs[idx]) == 0);
rte_mbuf_refcnt_set(mbufs[idx], 1);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
}
}
return 0;
}
/**
* Attach packet mbuf to another packet mbuf.
*
* After attachment we refer the mbuf we attached as 'indirect',
* while mbuf we attached to as 'direct'.
* The direct mbuf's reference counter is incremented.
*
* Right now, not supported:
* - attachment for already indirect mbuf (e.g. - mi has to be direct).
* - mbuf we trying to attach (mi) is used by someone else
* e.g. it's reference counter is greater then 1.
*
* @param mi
* The indirect packet mbuf.
* @param m
* The packet mbuf we're attaching to.
*/
static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
{
struct rte_mbuf *md;
RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
rte_mbuf_refcnt_read(mi) == 1);
/* if m is not direct, get the mbuf that embeds the data */
if (RTE_MBUF_DIRECT(m))
md = m;
else
md = rte_mbuf_from_indirect(m);
rte_mbuf_refcnt_update(md, 1);
mi->priv_size = m->priv_size;
mi->buf_physaddr = m->buf_physaddr;
mi->buf_addr = m->buf_addr;
mi->buf_len = m->buf_len;
mi->next = m->next;
mi->data_off = m->data_off;
mi->data_len = m->data_len;
mi->port = m->port;
mi->vlan_tci = m->vlan_tci;
mi->vlan_tci_outer = m->vlan_tci_outer;
mi->tx_offload = m->tx_offload;
mi->hash = m->hash;
mi->next = NULL;
mi->pkt_len = mi->data_len;
mi->nb_segs = 1;
mi->ol_flags = m->ol_flags | IND_ATTACHED_MBUF;
mi->packet_type = m->packet_type;
__rte_mbuf_sanity_check(mi, 1);
__rte_mbuf_sanity_check(m, 0);
}
/**
* Detach an indirect packet mbuf.
*
* - restore original mbuf address and length values.
* - reset pktmbuf data and data_len to their default values.
* - decrement the direct mbuf's reference counter. When the
* reference counter becomes 0, the direct mbuf is freed.
*
* All other fields of the given packet mbuf will be left intact.
*
* @param m
* The indirect attached packet mbuf.
*/
static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
{
struct rte_mbuf *md = rte_mbuf_from_indirect(m);
struct rte_mempool *mp = m->pool;
uint32_t mbuf_size, buf_len, priv_size;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_physaddr = rte_mempool_virt2phy(mp, m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
m->data_len = 0;
m->ol_flags = 0;
if (rte_mbuf_refcnt_update(md, -1) == 0)
__rte_mbuf_raw_free(md);
}
static inline struct rte_mbuf* __attribute__((always_inline))
__rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
if (likely(rte_mbuf_refcnt_update(m, -1) == 0)) {
/* if this is an indirect mbuf, it is detached. */
if (RTE_MBUF_INDIRECT(m))
rte_pktmbuf_detach(m);
return m;
}
return NULL;
}
/**
* Free a segment of a packet mbuf into its original mempool.
*
* Free an mbuf, without parsing other segments in case of chained
* buffers.
*
* @param m
* The packet mbuf segment to be freed.
*/
static inline void __attribute__((always_inline))
rte_pktmbuf_free_seg(struct rte_mbuf *m)
{
if (likely(NULL != (m = __rte_pktmbuf_prefree_seg(m)))) {
m->next = NULL;
__rte_mbuf_raw_free(m);
}
}
/**
* Free a packet mbuf back into its original mempool.
*
* Free an mbuf, and all its segments in case of chained buffers. Each
* segment is added back into its original mempool.
*
* @param m
* The packet mbuf to be freed.
*/
static inline void rte_pktmbuf_free(struct rte_mbuf *m)
{
struct rte_mbuf *m_next;
__rte_mbuf_sanity_check(m, 1);
while (m != NULL) {
m_next = m->next;
rte_pktmbuf_free_seg(m);
m = m_next;
}
}
/**
* Creates a "clone" of the given packet mbuf.
*
* Walks through all segments of the given packet mbuf, and for each of them:
* - Creates a new packet mbuf from the given pool.
* - Attaches newly created mbuf to the segment.
* Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
* from the original packet mbuf.
*
* @param md
* The packet mbuf to be cloned.
* @param mp
* The mempool from which the "clone" mbufs are allocated.
* @return
* - The pointer to the new "clone" mbuf on success.
* - NULL if allocation fails.
*/
static inline struct rte_mbuf *rte_pktmbuf_clone(struct rte_mbuf *md,
struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint8_t nseg;
if (unlikely ((mc = rte_pktmbuf_alloc(mp)) == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
rte_pktmbuf_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely (mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/**
* Adds given value to the refcnt of all packet mbuf segments.
*
* Walks through all segments of given packet mbuf and for each of them
* invokes rte_mbuf_refcnt_update().
*
* @param m
* The packet mbuf whose refcnt to be updated.
* @param v
* The value to add to the mbuf's segments refcnt.
*/
static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
{
__rte_mbuf_sanity_check(m, 1);
do {
rte_mbuf_refcnt_update(m, v);
} while ((m = m->next) != NULL);
}
/**
* Get the headroom in a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the headroom.
*/
static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return m->data_off;
}
/**
* Get the tailroom of a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the tailroom.
*/
static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
m->data_len);
}
/**
* Get the last segment of the packet.
*
* @param m
* The packet mbuf.
* @return
* The last segment of the given mbuf.
*/
static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
{
struct rte_mbuf *m2 = (struct rte_mbuf *)m;
__rte_mbuf_sanity_check(m, 1);
while (m2->next != NULL)
m2 = m2->next;
return m2;
}
/**
* A macro that points to an offset into the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param o
* The offset into the mbuf data.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod_offset(m, t, o) \
((t)((char *)(m)->buf_addr + (m)->data_off + (o)))
/**
* A macro that points to the start of the data in the mbuf.
*
* The returned pointer is cast to type t. Before using this
* function, the user must ensure that the first segment is large
* enough to accommodate its data.
*
* @param m
* The packet mbuf.
* @param t
* The type to cast the result into.
*/
#define rte_pktmbuf_mtod(m, t) rte_pktmbuf_mtod_offset(m, t, 0)
/**
* A macro that returns the physical address that points to an offset of the
* start of the data in the mbuf
*
* @param m
* The packet mbuf.
* @param o
* The offset into the data to calculate address from.
*/
#define rte_pktmbuf_mtophys_offset(m, o) \
(phys_addr_t)((m)->buf_physaddr + (m)->data_off + (o))
/**
* A macro that returns the physical address that points to the start of the
* data in the mbuf
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_mtophys(m) rte_pktmbuf_mtophys_offset(m, 0)
/**
* A macro that returns the length of the packet.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
/**
* A macro that returns the length of the segment.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_data_len(m) ((m)->data_len)
/**
* Prepend len bytes to an mbuf data area.
*
* Returns a pointer to the new
* data start address. If there is not enough headroom in the first
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The pkt mbuf.
* @param len
* The amount of data to prepend (in bytes).
* @return
* A pointer to the start of the newly prepended data, or
* NULL if there is not enough headroom space in the first segment
*/
static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > rte_pktmbuf_headroom(m)))
return NULL;
m->data_off -= len;
m->data_len = (uint16_t)(m->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Append len bytes to an mbuf.
*
* Append len bytes to an mbuf and return a pointer to the start address
* of the added data. If there is not enough tailroom in the last
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to append (in bytes).
* @return
* A pointer to the start of the newly appended data, or
* NULL if there is not enough tailroom space in the last segment
*/
static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
{
void *tail;
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
return NULL;
tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
m_last->data_len = (uint16_t)(m_last->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char*) tail;
}
/**
* Remove len bytes at the beginning of an mbuf.
*
* Returns a pointer to the start address of the new data area. If the
* length is greater than the length of the first segment, then the
* function will fail and return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* A pointer to the new start of the data.
*/
static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > m->data_len))
return NULL;
m->data_len = (uint16_t)(m->data_len - len);
m->data_off += len;
m->pkt_len = (m->pkt_len - len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Remove len bytes of data at the end of the mbuf.
*
* If the length is greater than the length of the last segment, the
* function will fail and return -1 without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* - 0: On success.
* - -1: On error.
*/
static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
{
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > m_last->data_len))
return -1;
m_last->data_len = (uint16_t)(m_last->data_len - len);
m->pkt_len = (m->pkt_len - len);
return 0;
}
/**
* Test if mbuf data is contiguous.
*
* @param m
* The packet mbuf.
* @return
* - 1, if all data is contiguous (one segment).
* - 0, if there is several segments.
*/
static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return !!(m->nb_segs == 1);
}
/**
* Chain an mbuf to another, thereby creating a segmented packet.
*
* Note: The implementation will do a linear walk over the segments to find
* the tail entry. For cases when there are many segments, it's better to
* chain the entries manually.
*
* @param head
* The head of the mbuf chain (the first packet)
* @param tail
* The mbuf to put last in the chain
*
* @return
* - 0, on success.
* - -EOVERFLOW, if the chain is full (256 entries)
*/
static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
{
struct rte_mbuf *cur_tail;
/* Check for number-of-segments-overflow */
if (head->nb_segs + tail->nb_segs >= 1 << (sizeof(head->nb_segs) * 8))
return -EOVERFLOW;
/* Chain 'tail' onto the old tail */
cur_tail = rte_pktmbuf_lastseg(head);
cur_tail->next = tail;
/* accumulate number of segments and total length. */
head->nb_segs = (uint8_t)(head->nb_segs + tail->nb_segs);
head->pkt_len += tail->pkt_len;
/* pkt_len is only set in the head */
tail->pkt_len = tail->data_len;
return 0;
}
/**
* Dump an mbuf structure to the console.
*
* Dump all fields for the given packet mbuf and all its associated
* segments (in the case of a chained buffer).
*
* @param f
* A pointer to a file for output
* @param m
* The packet mbuf.
* @param dump_len
* If dump_len != 0, also dump the "dump_len" first data bytes of
* the packet.
*/
void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MBUF_H_ */