numam-dpdk/drivers/net/ice/base/ice_common.c
Qi Zhang 9ec03609d8 net/ice/base: cleanup code
Remove unnecessary mac_type check, fix couple comment, and remove
unnecessary empty line.

Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Acked-by: Qiming Yang <qiming.yang@intel.com>
2020-09-18 18:55:10 +02:00

4814 lines
137 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "ice_common.h"
#include "ice_sched.h"
#include "ice_adminq_cmd.h"
#include "ice_flow.h"
#include "ice_switch.h"
#define ICE_PF_RESET_WAIT_COUNT 300
/**
* ice_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the MAC type of the adapter based on the
* vendor ID and device ID stored in the HW structure.
*/
static enum ice_status ice_set_mac_type(struct ice_hw *hw)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
return ICE_ERR_DEVICE_NOT_SUPPORTED;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_BACKPLANE:
case ICE_DEV_ID_E810C_QSFP:
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810_XXV_BACKPLANE:
case ICE_DEV_ID_E810_XXV_QSFP:
case ICE_DEV_ID_E810_XXV_SFP:
hw->mac_type = ICE_MAC_E810;
break;
case ICE_DEV_ID_E822C_10G_BASE_T:
case ICE_DEV_ID_E822C_BACKPLANE:
case ICE_DEV_ID_E822C_QSFP:
case ICE_DEV_ID_E822C_SFP:
case ICE_DEV_ID_E822C_SGMII:
case ICE_DEV_ID_E822L_10G_BASE_T:
case ICE_DEV_ID_E822L_BACKPLANE:
case ICE_DEV_ID_E822L_SFP:
case ICE_DEV_ID_E822L_SGMII:
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
hw->mac_type = ICE_MAC_GENERIC;
break;
default:
hw->mac_type = ICE_MAC_UNKNOWN;
break;
}
ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
return ICE_SUCCESS;
}
/**
* ice_clear_pf_cfg - Clear PF configuration
* @hw: pointer to the hardware structure
*
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
* configuration, flow director filters, etc.).
*/
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_manage_mac_read - manage MAC address read command
* @hw: pointer to the HW struct
* @buf: a virtual buffer to hold the manage MAC read response
* @buf_size: Size of the virtual buffer
* @cd: pointer to command details structure or NULL
*
* This function is used to return per PF station MAC address (0x0107).
* NOTE: Upon successful completion of this command, MAC address information
* is returned in user specified buffer. Please interpret user specified
* buffer as "manage_mac_read" response.
* Response such as various MAC addresses are stored in HW struct (port.mac)
* ice_discover_dev_caps is expected to be called before this function is
* called.
*/
static enum ice_status
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_read_resp *resp;
struct ice_aqc_manage_mac_read *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 flags;
u8 i;
cmd = &desc.params.mac_read;
if (buf_size < sizeof(*resp))
return ICE_ERR_BUF_TOO_SHORT;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
return status;
resp = (struct ice_aqc_manage_mac_read_resp *)buf;
flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
return ICE_ERR_CFG;
}
/* A single port can report up to two (LAN and WoL) addresses */
for (i = 0; i < cmd->num_addr; i++)
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
ice_memcpy(hw->port_info->mac.lan_addr,
resp[i].mac_addr, ETH_ALEN,
ICE_DMA_TO_NONDMA);
ice_memcpy(hw->port_info->mac.perm_addr,
resp[i].mac_addr,
ETH_ALEN, ICE_DMA_TO_NONDMA);
break;
}
return ICE_SUCCESS;
}
/**
* ice_aq_get_phy_caps - returns PHY capabilities
* @pi: port information structure
* @qual_mods: report qualified modules
* @report_mode: report mode capabilities
* @pcaps: structure for PHY capabilities to be filled
* @cd: pointer to command details structure or NULL
*
* Returns the various PHY capabilities supported on the Port (0x0600)
*/
enum ice_status
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_phy_caps *cmd;
u16 pcaps_size = sizeof(*pcaps);
struct ice_aq_desc desc;
enum ice_status status;
struct ice_hw *hw;
cmd = &desc.params.get_phy;
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
return ICE_ERR_PARAM;
hw = pi->hw;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
if (qual_mods)
cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
cmd->param0 |= CPU_TO_LE16(report_mode);
status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
report_mode);
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)LE64_TO_CPU(pcaps->phy_type_low));
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)LE64_TO_CPU(pcaps->phy_type_high));
ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
pcaps->low_power_ctrl_an);
ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
pcaps->eeer_value);
ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
pcaps->link_fec_options);
ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
pcaps->module_compliance_enforcement);
ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
pcaps->extended_compliance_code);
ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
pcaps->module_type[0]);
ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
pcaps->module_type[1]);
ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
pcaps->module_type[2]);
if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
sizeof(pi->phy.link_info.module_type),
ICE_NONDMA_TO_NONDMA);
}
return status;
}
/**
* ice_aq_get_link_topo_handle - get link topology node return status
* @pi: port information structure
* @node_type: requested node type
* @cd: pointer to command details structure or NULL
*
* Get link topology node return status for specified node type (0x06E0)
*
* Node type cage can be used to determine if cage is present. If AQC
* returns error (ENOENT), then no cage present. If no cage present, then
* connection type is backplane or BASE-T.
*/
static enum ice_status
ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_topo *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.get_link_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
ICE_AQC_LINK_TOPO_NODE_CTX_S);
/* set node type */
cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/**
* ice_is_media_cage_present
* @pi: port information structure
*
* Returns true if media cage is present, else false. If no cage, then
* media type is backplane or BASE-T.
*/
static bool ice_is_media_cage_present(struct ice_port_info *pi)
{
/* Node type cage can be used to determine if cage is present. If AQC
* returns error (ENOENT), then no cage present. If no cage present then
* connection type is backplane or BASE-T.
*/
return !ice_aq_get_link_topo_handle(pi,
ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
NULL);
}
/**
* ice_get_media_type - Gets media type
* @pi: port information structure
*/
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
{
struct ice_link_status *hw_link_info;
if (!pi)
return ICE_MEDIA_UNKNOWN;
hw_link_info = &pi->phy.link_info;
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
/* If more than one media type is selected, report unknown */
return ICE_MEDIA_UNKNOWN;
if (hw_link_info->phy_type_low) {
/* 1G SGMII is a special case where some DA cable PHYs
* may show this as an option when it really shouldn't
* be since SGMII is meant to be between a MAC and a PHY
* in a backplane. Try to detect this case and handle it
*/
if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
(hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
return ICE_MEDIA_DA;
switch (hw_link_info->phy_type_low) {
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
return ICE_MEDIA_FIBER;
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
return ICE_MEDIA_FIBER;
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_T:
return ICE_MEDIA_BASET;
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
return ICE_MEDIA_DA;
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50G_AUI1:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
if (ice_is_media_cage_present(pi))
return ICE_MEDIA_AUI;
/* fall-through */
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
return ICE_MEDIA_BACKPLANE;
}
} else {
switch (hw_link_info->phy_type_high) {
case ICE_PHY_TYPE_HIGH_100G_AUI2:
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
if (ice_is_media_cage_present(pi))
return ICE_MEDIA_AUI;
/* fall-through */
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
return ICE_MEDIA_BACKPLANE;
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
return ICE_MEDIA_FIBER;
}
}
return ICE_MEDIA_UNKNOWN;
}
/**
* ice_aq_get_link_info
* @pi: port information structure
* @ena_lse: enable/disable LinkStatusEvent reporting
* @link: pointer to link status structure - optional
* @cd: pointer to command details structure or NULL
*
* Get Link Status (0x607). Returns the link status of the adapter.
*/
enum ice_status
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
struct ice_link_status *link, struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_status_data link_data = { 0 };
struct ice_aqc_get_link_status *resp;
struct ice_link_status *li_old, *li;
enum ice_media_type *hw_media_type;
struct ice_fc_info *hw_fc_info;
bool tx_pause, rx_pause;
struct ice_aq_desc desc;
enum ice_status status;
struct ice_hw *hw;
u16 cmd_flags;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
li_old = &pi->phy.link_info_old;
hw_media_type = &pi->phy.media_type;
li = &pi->phy.link_info;
hw_fc_info = &pi->fc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
resp = &desc.params.get_link_status;
resp->cmd_flags = CPU_TO_LE16(cmd_flags);
resp->lport_num = pi->lport;
status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
if (status != ICE_SUCCESS)
return status;
/* save off old link status information */
*li_old = *li;
/* update current link status information */
li->link_speed = LE16_TO_CPU(link_data.link_speed);
li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
*hw_media_type = ice_get_media_type(pi);
li->link_info = link_data.link_info;
li->an_info = link_data.an_info;
li->ext_info = link_data.ext_info;
li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
li->topo_media_conflict = link_data.topo_media_conflict;
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
ICE_AQ_CFG_PACING_TYPE_M);
/* update fc info */
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
if (tx_pause && rx_pause)
hw_fc_info->current_mode = ICE_FC_FULL;
else if (tx_pause)
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
else if (rx_pause)
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
else
hw_fc_info->current_mode = ICE_FC_NONE;
li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
ice_debug(hw, ICE_DBG_LINK, "get link info\n");
ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)li->phy_type_low);
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)li->phy_type_high);
ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
li->max_frame_size);
ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
/* save link status information */
if (link)
*link = *li;
/* flag cleared so calling functions don't call AQ again */
pi->phy.get_link_info = false;
return ICE_SUCCESS;
}
/**
* ice_fill_tx_timer_and_fc_thresh
* @hw: pointer to the HW struct
* @cmd: pointer to MAC cfg structure
*
* Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
* descriptor
*/
static void
ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
struct ice_aqc_set_mac_cfg *cmd)
{
u16 fc_thres_val, tx_timer_val;
u32 val;
/* We read back the transmit timer and fc threshold value of
* LFC. Thus, we will use index =
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
*
* Also, because we are opearating on transmit timer and fc
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
*/
#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
/* Retrieve the transmit timer */
val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
tx_timer_val = val &
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
/* Retrieve the fc threshold */
val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
}
/**
* ice_aq_set_mac_cfg
* @hw: pointer to the HW struct
* @max_frame_size: Maximum Frame Size to be supported
* @cd: pointer to command details structure or NULL
*
* Set MAC configuration (0x0603)
*/
enum ice_status
ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
{
struct ice_aqc_set_mac_cfg *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_mac_cfg;
if (max_frame_size == 0)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
ice_fill_tx_timer_and_fc_thresh(hw, cmd);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
* @hw: pointer to the HW struct
*/
enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw;
enum ice_status status;
hw->switch_info = (struct ice_switch_info *)
ice_malloc(hw, sizeof(*hw->switch_info));
sw = hw->switch_info;
if (!sw)
return ICE_ERR_NO_MEMORY;
INIT_LIST_HEAD(&sw->vsi_list_map_head);
sw->prof_res_bm_init = 0;
status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
if (status) {
ice_free(hw, hw->switch_info);
return status;
}
return ICE_SUCCESS;
}
/**
* ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
* @hw: pointer to the HW struct
* @sw: pointer to switch info struct for which function clears filters
*/
static void
ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
{
struct ice_vsi_list_map_info *v_pos_map;
struct ice_vsi_list_map_info *v_tmp_map;
struct ice_sw_recipe *recps;
u8 i;
if (!sw)
return;
LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
ice_vsi_list_map_info, list_entry) {
LIST_DEL(&v_pos_map->list_entry);
ice_free(hw, v_pos_map);
}
recps = sw->recp_list;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
recps[i].root_rid = i;
LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
&recps[i].rg_list, ice_recp_grp_entry,
l_entry) {
LIST_DEL(&rg_entry->l_entry);
ice_free(hw, rg_entry);
}
if (recps[i].adv_rule) {
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
ice_destroy_lock(&recps[i].filt_rule_lock);
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
&recps[i].filt_rules,
ice_adv_fltr_mgmt_list_entry,
list_entry) {
LIST_DEL(&lst_itr->list_entry);
ice_free(hw, lst_itr->lkups);
ice_free(hw, lst_itr);
}
} else {
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
ice_destroy_lock(&recps[i].filt_rule_lock);
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
&recps[i].filt_rules,
ice_fltr_mgmt_list_entry,
list_entry) {
LIST_DEL(&lst_itr->list_entry);
ice_free(hw, lst_itr);
}
}
if (recps[i].root_buf)
ice_free(hw, recps[i].root_buf);
}
ice_rm_sw_replay_rule_info(hw, sw);
ice_free(hw, sw->recp_list);
ice_free(hw, sw);
}
/**
* ice_cleanup_all_fltr_mgmt - cleanup filter management list and locks
* @hw: pointer to the HW struct
*/
void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
}
/**
* ice_get_itr_intrl_gran
* @hw: pointer to the HW struct
*
* Determines the ITR/INTRL granularities based on the maximum aggregate
* bandwidth according to the device's configuration during power-on.
*/
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
{
u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
switch (max_agg_bw) {
case ICE_MAX_AGG_BW_200G:
case ICE_MAX_AGG_BW_100G:
case ICE_MAX_AGG_BW_50G:
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
break;
case ICE_MAX_AGG_BW_25G:
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
break;
}
}
/**
* ice_print_rollback_msg - print FW rollback message
* @hw: pointer to the hardware structure
*/
void ice_print_rollback_msg(struct ice_hw *hw)
{
char nvm_str[ICE_NVM_VER_LEN] = { 0 };
struct ice_orom_info *orom;
struct ice_nvm_info *nvm;
orom = &hw->flash.orom;
nvm = &hw->flash.nvm;
SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
nvm->major, nvm->minor, nvm->eetrack, orom->major,
orom->build, orom->patch);
ice_warn(hw,
"Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
}
/**
* ice_init_hw - main hardware initialization routine
* @hw: pointer to the hardware structure
*/
enum ice_status ice_init_hw(struct ice_hw *hw)
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
u16 mac_buf_len;
void *mac_buf;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Set MAC type based on DeviceID */
status = ice_set_mac_type(hw);
if (status)
return status;
hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
PF_FUNC_RID_FUNCTION_NUMBER_M) >>
PF_FUNC_RID_FUNCTION_NUMBER_S;
status = ice_reset(hw, ICE_RESET_PFR);
if (status)
return status;
ice_get_itr_intrl_gran(hw);
status = ice_create_all_ctrlq(hw);
if (status)
goto err_unroll_cqinit;
status = ice_init_nvm(hw);
if (status)
goto err_unroll_cqinit;
if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
ice_print_rollback_msg(hw);
status = ice_clear_pf_cfg(hw);
if (status)
goto err_unroll_cqinit;
/* Set bit to enable Flow Director filters */
wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
INIT_LIST_HEAD(&hw->fdir_list_head);
ice_clear_pxe_mode(hw);
status = ice_get_caps(hw);
if (status)
goto err_unroll_cqinit;
hw->port_info = (struct ice_port_info *)
ice_malloc(hw, sizeof(*hw->port_info));
if (!hw->port_info) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_cqinit;
}
/* set the back pointer to HW */
hw->port_info->hw = hw;
/* Initialize port_info struct with switch configuration data */
status = ice_get_initial_sw_cfg(hw);
if (status)
goto err_unroll_alloc;
hw->evb_veb = true;
/* Query the allocated resources for Tx scheduler */
status = ice_sched_query_res_alloc(hw);
if (status) {
ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
goto err_unroll_alloc;
}
ice_sched_get_psm_clk_freq(hw);
/* Initialize port_info struct with scheduler data */
status = ice_sched_init_port(hw->port_info);
if (status)
goto err_unroll_sched;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_sched;
}
/* Initialize port_info struct with PHY capabilities */
status = ice_aq_get_phy_caps(hw->port_info, false,
ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
ice_free(hw, pcaps);
if (status)
ice_debug(hw, ICE_DBG_PHY, "Get PHY capabilities failed, continuing anyway\n");
/* Initialize port_info struct with link information */
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
if (status)
goto err_unroll_sched;
/* need a valid SW entry point to build a Tx tree */
if (!hw->sw_entry_point_layer) {
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
status = ICE_ERR_CFG;
goto err_unroll_sched;
}
INIT_LIST_HEAD(&hw->agg_list);
/* Initialize max burst size */
if (!hw->max_burst_size)
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
status = ice_init_fltr_mgmt_struct(hw);
if (status)
goto err_unroll_sched;
/* Get MAC information */
/* A single port can report up to two (LAN and WoL) addresses */
mac_buf = ice_calloc(hw, 2,
sizeof(struct ice_aqc_manage_mac_read_resp));
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
if (!mac_buf) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_fltr_mgmt_struct;
}
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
ice_free(hw, mac_buf);
if (status)
goto err_unroll_fltr_mgmt_struct;
/* enable jumbo frame support at MAC level */
status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
if (status)
goto err_unroll_fltr_mgmt_struct;
/* Obtain counter base index which would be used by flow director */
status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
if (status)
goto err_unroll_fltr_mgmt_struct;
status = ice_init_hw_tbls(hw);
if (status)
goto err_unroll_fltr_mgmt_struct;
ice_init_lock(&hw->tnl_lock);
return ICE_SUCCESS;
err_unroll_fltr_mgmt_struct:
ice_cleanup_fltr_mgmt_struct(hw);
err_unroll_sched:
ice_sched_cleanup_all(hw);
err_unroll_alloc:
ice_free(hw, hw->port_info);
hw->port_info = NULL;
err_unroll_cqinit:
ice_destroy_all_ctrlq(hw);
return status;
}
/**
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
* @hw: pointer to the hardware structure
*
* This should be called only during nominal operation, not as a result of
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
* applicable initializations if it fails for any reason.
*/
void ice_deinit_hw(struct ice_hw *hw)
{
ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
ice_cleanup_fltr_mgmt_struct(hw);
ice_sched_cleanup_all(hw);
ice_sched_clear_agg(hw);
ice_free_seg(hw);
ice_free_hw_tbls(hw);
ice_destroy_lock(&hw->tnl_lock);
if (hw->port_info) {
ice_free(hw, hw->port_info);
hw->port_info = NULL;
}
ice_destroy_all_ctrlq(hw);
/* Clear VSI contexts if not already cleared */
ice_clear_all_vsi_ctx(hw);
}
/**
* ice_check_reset - Check to see if a global reset is complete
* @hw: pointer to the hardware structure
*/
enum ice_status ice_check_reset(struct ice_hw *hw)
{
u32 cnt, reg = 0, grst_timeout, uld_mask;
/* Poll for Device Active state in case a recent CORER, GLOBR,
* or EMPR has occurred. The grst delay value is in 100ms units.
* Add 1sec for outstanding AQ commands that can take a long time.
*/
grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
GLGEN_RSTCTL_GRSTDEL_S) + 10;
for (cnt = 0; cnt < grst_timeout; cnt++) {
ice_msec_delay(100, true);
reg = rd32(hw, GLGEN_RSTAT);
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
break;
}
if (cnt == grst_timeout) {
ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
GLNVM_ULD_PCIER_DONE_1_M |\
GLNVM_ULD_CORER_DONE_M |\
GLNVM_ULD_GLOBR_DONE_M |\
GLNVM_ULD_POR_DONE_M |\
GLNVM_ULD_POR_DONE_1_M |\
GLNVM_ULD_PCIER_DONE_2_M)
uld_mask = ICE_RESET_DONE_MASK;
/* Device is Active; check Global Reset processes are done */
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, GLNVM_ULD) & uld_mask;
if (reg == uld_mask) {
ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
break;
}
ice_msec_delay(10, true);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
reg);
return ICE_ERR_RESET_FAILED;
}
return ICE_SUCCESS;
}
/**
* ice_pf_reset - Reset the PF
* @hw: pointer to the hardware structure
*
* If a global reset has been triggered, this function checks
* for its completion and then issues the PF reset
*/
static enum ice_status ice_pf_reset(struct ice_hw *hw)
{
u32 cnt, reg;
/* If at function entry a global reset was already in progress, i.e.
* state is not 'device active' or any of the reset done bits are not
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
* global reset is done.
*/
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
/* poll on global reset currently in progress until done */
if (ice_check_reset(hw))
return ICE_ERR_RESET_FAILED;
return ICE_SUCCESS;
}
/* Reset the PF */
reg = rd32(hw, PFGEN_CTRL);
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
/* Wait for the PFR to complete. The wait time is the global config lock
* timeout plus the PFR timeout which will account for a possible reset
* that is occurring during a download package operation.
*/
for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, PFGEN_CTRL);
if (!(reg & PFGEN_CTRL_PFSWR_M))
break;
ice_msec_delay(1, true);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
return ICE_SUCCESS;
}
/**
* ice_reset - Perform different types of reset
* @hw: pointer to the hardware structure
* @req: reset request
*
* This function triggers a reset as specified by the req parameter.
*
* Note:
* If anything other than a PF reset is triggered, PXE mode is restored.
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
* interface has been restored in the rebuild flow.
*/
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
u32 val = 0;
switch (req) {
case ICE_RESET_PFR:
return ice_pf_reset(hw);
case ICE_RESET_CORER:
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
val = GLGEN_RTRIG_CORER_M;
break;
case ICE_RESET_GLOBR:
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
val = GLGEN_RTRIG_GLOBR_M;
break;
default:
return ICE_ERR_PARAM;
}
val |= rd32(hw, GLGEN_RTRIG);
wr32(hw, GLGEN_RTRIG, val);
ice_flush(hw);
/* wait for the FW to be ready */
return ice_check_reset(hw);
}
/**
* ice_copy_rxq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_rxq_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Copies rxq context from dense structure to HW register space
*/
static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
{
u8 i;
if (!ice_rxq_ctx)
return ICE_ERR_BAD_PTR;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
wr32(hw, QRX_CONTEXT(i, rxq_index),
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
}
return ICE_SUCCESS;
}
/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
{ 0 }
};
/**
* ice_write_rxq_ctx
* @hw: pointer to the hardware structure
* @rlan_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Converts rxq context from sparse to dense structure and then writes
* it to HW register space and enables the hardware to prefetch descriptors
* instead of only fetching them on demand
*/
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
u32 rxq_index)
{
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
if (!rlan_ctx)
return ICE_ERR_BAD_PTR;
rlan_ctx->prefena = 1;
ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}
/**
* ice_clear_rxq_ctx
* @hw: pointer to the hardware structure
* @rxq_index: the index of the Rx queue to clear
*
* Clears rxq context in HW register space
*/
enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
{
u8 i;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Clear each dword register separately */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
return ICE_SUCCESS;
}
/* LAN Tx Queue Context */
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
{ 0 }
};
/**
* ice_copy_tx_cmpltnq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
* @tx_cmpltnq_index: the index of the completion queue
*
* Copies Tx completion queue context from dense structure to HW register space
*/
static enum ice_status
ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
u32 tx_cmpltnq_index)
{
u8 i;
if (!ice_tx_cmpltnq_ctx)
return ICE_ERR_BAD_PTR;
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
}
return ICE_SUCCESS;
}
/* LAN Tx Completion Queue Context */
static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len, 18, 64),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation, 1, 96),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr, 22, 97),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num, 3, 128),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num, 10, 131),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type, 2, 141),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr, 1, 160),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid, 8, 161),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache, 512, 192),
{ 0 }
};
/**
* ice_write_tx_cmpltnq_ctx
* @hw: pointer to the hardware structure
* @tx_cmpltnq_ctx: pointer to the completion queue context
* @tx_cmpltnq_index: the index of the completion queue
*
* Converts completion queue context from sparse to dense structure and then
* writes it to HW register space
*/
enum ice_status
ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
u32 tx_cmpltnq_index)
{
u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
}
/**
* ice_clear_tx_cmpltnq_ctx
* @hw: pointer to the hardware structure
* @tx_cmpltnq_index: the index of the completion queue to clear
*
* Clears Tx completion queue context in HW register space
*/
enum ice_status
ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
{
u8 i;
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
return ICE_ERR_PARAM;
/* Clear each dword register separately */
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
return ICE_SUCCESS;
}
/**
* ice_copy_tx_drbell_q_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
* @tx_drbell_q_index: the index of the doorbell queue
*
* Copies doorbell queue context from dense structure to HW register space
*/
static enum ice_status
ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
u32 tx_drbell_q_index)
{
u8 i;
if (!ice_tx_drbell_q_ctx)
return ICE_ERR_BAD_PTR;
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
}
return ICE_SUCCESS;
}
/* LAN Tx Doorbell Queue Context info */
static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tx_drbell_q_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len, 13, 64),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num, 3, 80),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num, 8, 84),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type, 2, 94),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid, 8, 96),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd, 1, 104),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr, 1, 108),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en, 1, 112),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head, 13, 128),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail, 13, 144),
{ 0 }
};
/**
* ice_write_tx_drbell_q_ctx
* @hw: pointer to the hardware structure
* @tx_drbell_q_ctx: pointer to the doorbell queue context
* @tx_drbell_q_index: the index of the doorbell queue
*
* Converts doorbell queue context from sparse to dense structure and then
* writes it to HW register space
*/
enum ice_status
ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
u32 tx_drbell_q_index)
{
u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
ice_tx_drbell_q_ctx_info);
return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
}
/**
* ice_clear_tx_drbell_q_ctx
* @hw: pointer to the hardware structure
* @tx_drbell_q_index: the index of the doorbell queue to clear
*
* Clears doorbell queue context in HW register space
*/
enum ice_status
ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
{
u8 i;
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Clear each dword register separately */
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
return ICE_SUCCESS;
}
/* FW Admin Queue command wrappers */
/**
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
* @hw: pointer to the HW struct
* @desc: descriptor describing the command
* @buf: buffer to use for indirect commands (NULL for direct commands)
* @buf_size: size of buffer for indirect commands (0 for direct commands)
* @cd: pointer to command details structure
*
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
*/
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
u16 buf_size, struct ice_sq_cd *cd)
{
if (hw->aq_send_cmd_fn) {
enum ice_status status = ICE_ERR_NOT_READY;
u16 retval = ICE_AQ_RC_OK;
ice_acquire_lock(&hw->adminq.sq_lock);
if (!hw->aq_send_cmd_fn(hw->aq_send_cmd_param, desc,
buf, buf_size)) {
retval = LE16_TO_CPU(desc->retval);
/* strip off FW internal code */
if (retval)
retval &= 0xff;
if (retval == ICE_AQ_RC_OK)
status = ICE_SUCCESS;
else
status = ICE_ERR_AQ_ERROR;
}
hw->adminq.sq_last_status = (enum ice_aq_err)retval;
ice_release_lock(&hw->adminq.sq_lock);
return status;
}
return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
}
/**
* ice_aq_get_fw_ver
* @hw: pointer to the HW struct
* @cd: pointer to command details structure or NULL
*
* Get the firmware version (0x0001) from the admin queue commands
*/
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
struct ice_aqc_get_ver *resp;
struct ice_aq_desc desc;
enum ice_status status;
resp = &desc.params.get_ver;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
hw->fw_branch = resp->fw_branch;
hw->fw_maj_ver = resp->fw_major;
hw->fw_min_ver = resp->fw_minor;
hw->fw_patch = resp->fw_patch;
hw->fw_build = LE32_TO_CPU(resp->fw_build);
hw->api_branch = resp->api_branch;
hw->api_maj_ver = resp->api_major;
hw->api_min_ver = resp->api_minor;
hw->api_patch = resp->api_patch;
}
return status;
}
/**
* ice_aq_send_driver_ver
* @hw: pointer to the HW struct
* @dv: driver's major, minor version
* @cd: pointer to command details structure or NULL
*
* Send the driver version (0x0002) to the firmware
*/
enum ice_status
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
struct ice_sq_cd *cd)
{
struct ice_aqc_driver_ver *cmd;
struct ice_aq_desc desc;
u16 len;
cmd = &desc.params.driver_ver;
if (!dv)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->major_ver = dv->major_ver;
cmd->minor_ver = dv->minor_ver;
cmd->build_ver = dv->build_ver;
cmd->subbuild_ver = dv->subbuild_ver;
len = 0;
while (len < sizeof(dv->driver_string) &&
IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
len++;
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
}
/**
* ice_aq_q_shutdown
* @hw: pointer to the HW struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well (0x0003).
*/
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
struct ice_aqc_q_shutdown *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.q_shutdown;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
if (unloading)
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_req_res
* @hw: pointer to the HW struct
* @res: resource ID
* @access: access type
* @sdp_number: resource number
* @timeout: the maximum time in ms that the driver may hold the resource
* @cd: pointer to command details structure or NULL
*
* Requests common resource using the admin queue commands (0x0008).
* When attempting to acquire the Global Config Lock, the driver can
* learn of three states:
* 1) ICE_SUCCESS - acquired lock, and can perform download package
* 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
* 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
* successfully downloaded the package; the driver does
* not have to download the package and can continue
* loading
*
* Note that if the caller is in an acquire lock, perform action, release lock
* phase of operation, it is possible that the FW may detect a timeout and issue
* a CORER. In this case, the driver will receive a CORER interrupt and will
* have to determine its cause. The calling thread that is handling this flow
* will likely get an error propagated back to it indicating the Download
* Package, Update Package or the Release Resource AQ commands timed out.
*/
static enum ice_status
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd_resp = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
cmd_resp->res_id = CPU_TO_LE16(res);
cmd_resp->access_type = CPU_TO_LE16(access);
cmd_resp->res_number = CPU_TO_LE32(sdp_number);
cmd_resp->timeout = CPU_TO_LE32(*timeout);
*timeout = 0;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
/* The completion specifies the maximum time in ms that the driver
* may hold the resource in the Timeout field.
*/
/* Global config lock response utilizes an additional status field.
*
* If the Global config lock resource is held by some other driver, the
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
* and the timeout field indicates the maximum time the current owner
* of the resource has to free it.
*/
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
*timeout = LE32_TO_CPU(cmd_resp->timeout);
return ICE_SUCCESS;
} else if (LE16_TO_CPU(cmd_resp->status) ==
ICE_AQ_RES_GLBL_IN_PROG) {
*timeout = LE32_TO_CPU(cmd_resp->timeout);
return ICE_ERR_AQ_ERROR;
} else if (LE16_TO_CPU(cmd_resp->status) ==
ICE_AQ_RES_GLBL_DONE) {
return ICE_ERR_AQ_NO_WORK;
}
/* invalid FW response, force a timeout immediately */
*timeout = 0;
return ICE_ERR_AQ_ERROR;
}
/* If the resource is held by some other driver, the command completes
* with a busy return value and the timeout field indicates the maximum
* time the current owner of the resource has to free it.
*/
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
*timeout = LE32_TO_CPU(cmd_resp->timeout);
return status;
}
/**
* ice_aq_release_res
* @hw: pointer to the HW struct
* @res: resource ID
* @sdp_number: resource number
* @cd: pointer to command details structure or NULL
*
* release common resource using the admin queue commands (0x0009)
*/
static enum ice_status
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
cmd->res_id = CPU_TO_LE16(res);
cmd->res_number = CPU_TO_LE32(sdp_number);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_acquire_res
* @hw: pointer to the HW structure
* @res: resource ID
* @access: access type (read or write)
* @timeout: timeout in milliseconds
*
* This function will attempt to acquire the ownership of a resource.
*/
enum ice_status
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u32 timeout)
{
#define ICE_RES_POLLING_DELAY_MS 10
u32 delay = ICE_RES_POLLING_DELAY_MS;
u32 time_left = timeout;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
* previously acquired the resource and performed any necessary updates;
* in this case the caller does not obtain the resource and has no
* further work to do.
*/
if (status == ICE_ERR_AQ_NO_WORK)
goto ice_acquire_res_exit;
if (status)
ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
/* If necessary, poll until the current lock owner timeouts */
timeout = time_left;
while (status && timeout && time_left) {
ice_msec_delay(delay, true);
timeout = (timeout > delay) ? timeout - delay : 0;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
if (status == ICE_ERR_AQ_NO_WORK)
/* lock free, but no work to do */
break;
if (!status)
/* lock acquired */
break;
}
if (status && status != ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
ice_acquire_res_exit:
if (status == ICE_ERR_AQ_NO_WORK) {
if (access == ICE_RES_WRITE)
ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
else
ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
}
return status;
}
/**
* ice_release_res
* @hw: pointer to the HW structure
* @res: resource ID
*
* This function will release a resource using the proper Admin Command.
*/
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
enum ice_status status;
u32 total_delay = 0;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_release_res(hw, res, 0, NULL);
/* there are some rare cases when trying to release the resource
* results in an admin queue timeout, so handle them correctly
*/
while ((status == ICE_ERR_AQ_TIMEOUT) &&
(total_delay < hw->adminq.sq_cmd_timeout)) {
ice_msec_delay(1, true);
status = ice_aq_release_res(hw, res, 0, NULL);
total_delay++;
}
}
/**
* ice_aq_alloc_free_res - command to allocate/free resources
* @hw: pointer to the HW struct
* @num_entries: number of resource entries in buffer
* @buf: Indirect buffer to hold data parameters and response
* @buf_size: size of buffer for indirect commands
* @opc: pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Helper function to allocate/free resources using the admin queue commands
*/
enum ice_status
ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_alloc_free_res_cmd *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.sw_res_ctrl;
if (!buf)
return ICE_ERR_PARAM;
if (buf_size < (num_entries * sizeof(buf->elem[0])))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->num_entries = CPU_TO_LE16(num_entries);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_alloc_hw_res - allocate resource
* @hw: pointer to the HW struct
* @type: type of resource
* @num: number of resources to allocate
* @btm: allocate from bottom
* @res: pointer to array that will receive the resources
*/
enum ice_status
ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(buf, elem, num);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to allocate resource. */
buf->num_elems = CPU_TO_LE16(num);
buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
if (btm)
buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (status)
goto ice_alloc_res_exit;
ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
ICE_NONDMA_TO_NONDMA);
ice_alloc_res_exit:
ice_free(hw, buf);
return status;
}
/**
* ice_free_hw_res - free allocated HW resource
* @hw: pointer to the HW struct
* @type: type of resource to free
* @num: number of resources
* @res: pointer to array that contains the resources to free
*/
enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(buf, elem, num);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to free resource. */
buf->num_elems = CPU_TO_LE16(num);
buf->res_type = CPU_TO_LE16(type);
ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
ICE_NONDMA_TO_NONDMA);
status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
ice_aqc_opc_free_res, NULL);
if (status)
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
ice_free(hw, buf);
return status;
}
/**
* ice_get_num_per_func - determine number of resources per PF
* @hw: pointer to the HW structure
* @max: value to be evenly split between each PF
*
* Determine the number of valid functions by going through the bitmap returned
* from parsing capabilities and use this to calculate the number of resources
* per PF based on the max value passed in.
*/
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
{
u8 funcs;
#define ICE_CAPS_VALID_FUNCS_M 0xFF
funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
ICE_CAPS_VALID_FUNCS_M);
if (!funcs)
return 0;
return max / funcs;
}
/**
* ice_parse_common_caps - parse common device/function capabilities
* @hw: pointer to the HW struct
* @caps: pointer to common capabilities structure
* @elem: the capability element to parse
* @prefix: message prefix for tracing capabilities
*
* Given a capability element, extract relevant details into the common
* capability structure.
*
* Returns: true if the capability matches one of the common capability ids,
* false otherwise.
*/
static bool
ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
struct ice_aqc_list_caps_elem *elem, const char *prefix)
{
u32 logical_id = LE32_TO_CPU(elem->logical_id);
u32 phys_id = LE32_TO_CPU(elem->phys_id);
u32 number = LE32_TO_CPU(elem->number);
u16 cap = LE16_TO_CPU(elem->cap);
bool found = true;
switch (cap) {
case ICE_AQC_CAPS_VALID_FUNCTIONS:
caps->valid_functions = number;
ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
caps->valid_functions);
break;
case ICE_AQC_CAPS_DCB:
caps->dcb = (number == 1);
caps->active_tc_bitmap = logical_id;
caps->maxtc = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
caps->active_tc_bitmap);
ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
break;
case ICE_AQC_CAPS_RSS:
caps->rss_table_size = number;
caps->rss_table_entry_width = logical_id;
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
caps->rss_table_size);
ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
caps->rss_table_entry_width);
break;
case ICE_AQC_CAPS_RXQS:
caps->num_rxq = number;
caps->rxq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
caps->num_rxq);
ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
caps->rxq_first_id);
break;
case ICE_AQC_CAPS_TXQS:
caps->num_txq = number;
caps->txq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
caps->num_txq);
ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
caps->txq_first_id);
break;
case ICE_AQC_CAPS_MSIX:
caps->num_msix_vectors = number;
caps->msix_vector_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
caps->num_msix_vectors);
ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
caps->msix_vector_first_id);
break;
case ICE_AQC_CAPS_MAX_MTU:
caps->max_mtu = number;
ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
prefix, caps->max_mtu);
break;
default:
/* Not one of the recognized common capabilities */
found = false;
}
return found;
}
/**
* ice_recalc_port_limited_caps - Recalculate port limited capabilities
* @hw: pointer to the HW structure
* @caps: pointer to capabilities structure to fix
*
* Re-calculate the capabilities that are dependent on the number of physical
* ports; i.e. some features are not supported or function differently on
* devices with more than 4 ports.
*/
static void
ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
{
/* This assumes device capabilities are always scanned before function
* capabilities during the initialization flow.
*/
if (hw->dev_caps.num_funcs > 4) {
/* Max 4 TCs per port */
caps->maxtc = 4;
ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
caps->maxtc);
}
}
/**
* ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @cap: pointer to the capability element to parse
*
* Extract function capabilities for ICE_AQC_CAPS_VSI.
*/
static void
ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
struct ice_aqc_list_caps_elem *cap)
{
func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
LE32_TO_CPU(cap->number));
ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
func_p->guar_num_vsi);
}
/**
* ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
*
* Extract function capabilities for ICE_AQC_CAPS_FD.
*/
static void
ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
{
u32 reg_val, val;
if (hw->dcf_enabled)
return;
reg_val = rd32(hw, GLQF_FD_SIZE);
val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
GLQF_FD_SIZE_FD_GSIZE_S;
func_p->fd_fltr_guar =
ice_get_num_per_func(hw, val);
val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
GLQF_FD_SIZE_FD_BSIZE_S;
func_p->fd_fltr_best_effort = val;
ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
func_p->fd_fltr_guar);
ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
func_p->fd_fltr_best_effort);
}
/**
* ice_parse_func_caps - Parse function capabilities
* @hw: pointer to the HW struct
* @func_p: pointer to function capabilities structure
* @buf: buffer containing the function capability records
* @cap_count: the number of capabilities
*
* Helper function to parse function (0x000A) capabilities list. For
* capabilities shared between device and function, this relies on
* ice_parse_common_caps.
*
* Loop through the list of provided capabilities and extract the relevant
* data into the function capabilities structured.
*/
static void
ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
void *buf, u32 cap_count)
{
struct ice_aqc_list_caps_elem *cap_resp;
u32 i;
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
for (i = 0; i < cap_count; i++) {
u16 cap = LE16_TO_CPU(cap_resp[i].cap);
bool found;
found = ice_parse_common_caps(hw, &func_p->common_cap,
&cap_resp[i], "func caps");
switch (cap) {
case ICE_AQC_CAPS_VSI:
ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_FD:
ice_parse_fdir_func_caps(hw, func_p);
break;
default:
/* Don't list common capabilities as unknown */
if (!found)
ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
i, cap);
break;
}
}
ice_recalc_port_limited_caps(hw, &func_p->common_cap);
}
/**
* ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
*/
static void
ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = LE32_TO_CPU(cap->number);
dev_p->num_funcs = ice_hweight32(number);
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
dev_p->num_funcs);
}
/**
* ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_VSI for device capabilities.
*/
static void
ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = LE32_TO_CPU(cap->number);
dev_p->num_vsi_allocd_to_host = number;
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
dev_p->num_vsi_allocd_to_host);
}
/**
* ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @cap: capability element to parse
*
* Parse ICE_AQC_CAPS_FD for device capabilities.
*/
static void
ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
struct ice_aqc_list_caps_elem *cap)
{
u32 number = LE32_TO_CPU(cap->number);
dev_p->num_flow_director_fltr = number;
ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
dev_p->num_flow_director_fltr);
}
/**
* ice_parse_dev_caps - Parse device capabilities
* @hw: pointer to the HW struct
* @dev_p: pointer to device capabilities structure
* @buf: buffer containing the device capability records
* @cap_count: the number of capabilities
*
* Helper device to parse device (0x000B) capabilities list. For
* capabilities shared between device and function, this relies on
* ice_parse_common_caps.
*
* Loop through the list of provided capabilities and extract the relevant
* data into the device capabilities structured.
*/
static void
ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
void *buf, u32 cap_count)
{
struct ice_aqc_list_caps_elem *cap_resp;
u32 i;
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
for (i = 0; i < cap_count; i++) {
u16 cap = LE16_TO_CPU(cap_resp[i].cap);
bool found;
found = ice_parse_common_caps(hw, &dev_p->common_cap,
&cap_resp[i], "dev caps");
switch (cap) {
case ICE_AQC_CAPS_VALID_FUNCTIONS:
ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_VSI:
ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
break;
case ICE_AQC_CAPS_FD:
ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
break;
default:
/* Don't list common capabilities as unknown */
if (!found)
ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
i, cap);
break;
}
}
ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
}
/**
* ice_aq_list_caps - query function/device capabilities
* @hw: pointer to the HW struct
* @buf: a buffer to hold the capabilities
* @buf_size: size of the buffer
* @cap_count: if not NULL, set to the number of capabilities reported
* @opc: capabilities type to discover, device or function
* @cd: pointer to command details structure or NULL
*
* Get the function (0x000A) or device (0x000B) capabilities description from
* firmware and store it in the buffer.
*
* If the cap_count pointer is not NULL, then it is set to the number of
* capabilities firmware will report. Note that if the buffer size is too
* small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
* cap_count will still be updated in this case. It is recommended that the
* buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
* firmware could return) to avoid this.
*/
static enum ice_status
ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_list_caps *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_cap;
if (opc != ice_aqc_opc_list_func_caps &&
opc != ice_aqc_opc_list_dev_caps)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (cap_count)
*cap_count = LE32_TO_CPU(cmd->count);
return status;
}
/**
* ice_discover_dev_caps - Read and extract device capabilities
* @hw: pointer to the hardware structure
* @dev_caps: pointer to device capabilities structure
*
* Read the device capabilities and extract them into the dev_caps structure
* for later use.
*/
static enum ice_status
ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
{
enum ice_status status;
u32 cap_count = 0;
void *cbuf;
cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
if (!cbuf)
return ICE_ERR_NO_MEMORY;
/* Although the driver doesn't know the number of capabilities the
* device will return, we can simply send a 4KB buffer, the maximum
* possible size that firmware can return.
*/
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
ice_aqc_opc_list_dev_caps, NULL);
if (!status)
ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
ice_free(hw, cbuf);
return status;
}
/**
* ice_discover_func_caps - Read and extract function capabilities
* @hw: pointer to the hardware structure
* @func_caps: pointer to function capabilities structure
*
* Read the function capabilities and extract them into the func_caps structure
* for later use.
*/
static enum ice_status
ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
{
enum ice_status status;
u32 cap_count = 0;
void *cbuf;
cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
if (!cbuf)
return ICE_ERR_NO_MEMORY;
/* Although the driver doesn't know the number of capabilities the
* device will return, we can simply send a 4KB buffer, the maximum
* possible size that firmware can return.
*/
cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
ice_aqc_opc_list_func_caps, NULL);
if (!status)
ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
ice_free(hw, cbuf);
return status;
}
/**
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
* @hw: pointer to the hardware structure
*/
void ice_set_safe_mode_caps(struct ice_hw *hw)
{
struct ice_hw_func_caps *func_caps = &hw->func_caps;
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
struct ice_hw_common_caps cached_caps;
u32 num_funcs;
/* cache some func_caps values that should be restored after memset */
cached_caps = func_caps->common_cap;
/* unset func capabilities */
memset(func_caps, 0, sizeof(*func_caps));
#define ICE_RESTORE_FUNC_CAP(name) \
func_caps->common_cap.name = cached_caps.name
/* restore cached values */
ICE_RESTORE_FUNC_CAP(valid_functions);
ICE_RESTORE_FUNC_CAP(txq_first_id);
ICE_RESTORE_FUNC_CAP(rxq_first_id);
ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
ICE_RESTORE_FUNC_CAP(max_mtu);
ICE_RESTORE_FUNC_CAP(nvm_unified_update);
/* one Tx and one Rx queue in safe mode */
func_caps->common_cap.num_rxq = 1;
func_caps->common_cap.num_txq = 1;
/* two MSIX vectors, one for traffic and one for misc causes */
func_caps->common_cap.num_msix_vectors = 2;
func_caps->guar_num_vsi = 1;
/* cache some dev_caps values that should be restored after memset */
cached_caps = dev_caps->common_cap;
num_funcs = dev_caps->num_funcs;
/* unset dev capabilities */
memset(dev_caps, 0, sizeof(*dev_caps));
#define ICE_RESTORE_DEV_CAP(name) \
dev_caps->common_cap.name = cached_caps.name
/* restore cached values */
ICE_RESTORE_DEV_CAP(valid_functions);
ICE_RESTORE_DEV_CAP(txq_first_id);
ICE_RESTORE_DEV_CAP(rxq_first_id);
ICE_RESTORE_DEV_CAP(msix_vector_first_id);
ICE_RESTORE_DEV_CAP(max_mtu);
ICE_RESTORE_DEV_CAP(nvm_unified_update);
dev_caps->num_funcs = num_funcs;
/* one Tx and one Rx queue per function in safe mode */
dev_caps->common_cap.num_rxq = num_funcs;
dev_caps->common_cap.num_txq = num_funcs;
/* two MSIX vectors per function */
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
}
/**
* ice_get_caps - get info about the HW
* @hw: pointer to the hardware structure
*/
enum ice_status ice_get_caps(struct ice_hw *hw)
{
enum ice_status status;
status = ice_discover_dev_caps(hw, &hw->dev_caps);
if (status)
return status;
return ice_discover_func_caps(hw, &hw->func_caps);
}
/**
* ice_aq_manage_mac_write - manage MAC address write command
* @hw: pointer to the HW struct
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
* @flags: flags to control write behavior
* @cd: pointer to command details structure or NULL
*
* This function is used to write MAC address to the NVM (0x0108).
*/
enum ice_status
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_write *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.mac_write;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
cmd->flags = flags;
ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_DMA);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_clear_pxe_mode
* @hw: pointer to the HW struct
*
* Tell the firmware that the driver is taking over from PXE (0x0110).
*/
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_clear_pxe_mode - clear pxe operations mode
* @hw: pointer to the HW struct
*
* Make sure all PXE mode settings are cleared, including things
* like descriptor fetch/write-back mode.
*/
void ice_clear_pxe_mode(struct ice_hw *hw)
{
if (ice_check_sq_alive(hw, &hw->adminq))
ice_aq_clear_pxe_mode(hw);
}
/**
* ice_get_link_speed_based_on_phy_type - returns link speed
* @phy_type_low: lower part of phy_type
* @phy_type_high: higher part of phy_type
*
* This helper function will convert an entry in PHY type structure
* [phy_type_low, phy_type_high] to its corresponding link speed.
* Note: In the structure of [phy_type_low, phy_type_high], there should
* be one bit set, as this function will convert one PHY type to its
* speed.
* If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
* If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
*/
static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
{
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
switch (phy_type_low) {
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_100M_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
break;
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_1G_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
break;
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
break;
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
break;
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
break;
case ICE_PHY_TYPE_LOW_25GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
break;
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
break;
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1:
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
break;
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
switch (phy_type_high) {
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_AUI2:
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return speed_phy_type_low;
else
return speed_phy_type_high;
}
/**
* ice_update_phy_type
* @phy_type_low: pointer to the lower part of phy_type
* @phy_type_high: pointer to the higher part of phy_type
* @link_speeds_bitmap: targeted link speeds bitmap
*
* Note: For the link_speeds_bitmap structure, you can check it at
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
* link_speeds_bitmap include multiple speeds.
*
* Each entry in this [phy_type_low, phy_type_high] structure will
* present a certain link speed. This helper function will turn on bits
* in [phy_type_low, phy_type_high] structure based on the value of
* link_speeds_bitmap input parameter.
*/
void
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
u16 link_speeds_bitmap)
{
u64 pt_high;
u64 pt_low;
int index;
u16 speed;
/* We first check with low part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
pt_low = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
if (link_speeds_bitmap & speed)
*phy_type_low |= BIT_ULL(index);
}
/* We then check with high part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
pt_high = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
if (link_speeds_bitmap & speed)
*phy_type_high |= BIT_ULL(index);
}
}
/**
* ice_aq_set_phy_cfg
* @hw: pointer to the HW struct
* @pi: port info structure of the interested logical port
* @cfg: structure with PHY configuration data to be set
* @cd: pointer to command details structure or NULL
*
* Set the various PHY configuration parameters supported on the Port.
* One or more of the Set PHY config parameters may be ignored in an MFP
* mode as the PF may not have the privilege to set some of the PHY Config
* parameters. This status will be indicated by the command response (0x0601).
*/
enum ice_status
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
enum ice_status status;
if (!cfg)
return ICE_ERR_PARAM;
/* Ensure that only valid bits of cfg->caps can be turned on. */
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
cfg->caps);
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
desc.params.set_phy.lport_num = pi->lport;
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
(unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
(unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
cfg->low_power_ctrl_an);
ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
cfg->link_fec_opt);
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
status = ICE_SUCCESS;
if (!status)
pi->phy.curr_user_phy_cfg = *cfg;
return status;
}
/**
* ice_update_link_info - update status of the HW network link
* @pi: port info structure of the interested logical port
*/
enum ice_status ice_update_link_info(struct ice_port_info *pi)
{
struct ice_link_status *li;
enum ice_status status;
if (!pi)
return ICE_ERR_PARAM;
li = &pi->phy.link_info;
status = ice_aq_get_link_info(pi, true, NULL, NULL);
if (status)
return status;
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_hw *hw;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
pcaps, NULL);
ice_free(hw, pcaps);
}
return status;
}
/**
* ice_cache_phy_user_req
* @pi: port information structure
* @cache_data: PHY logging data
* @cache_mode: PHY logging mode
*
* Log the user request on (FC, FEC, SPEED) for later user.
*/
static void
ice_cache_phy_user_req(struct ice_port_info *pi,
struct ice_phy_cache_mode_data cache_data,
enum ice_phy_cache_mode cache_mode)
{
if (!pi)
return;
switch (cache_mode) {
case ICE_FC_MODE:
pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
break;
case ICE_SPEED_MODE:
pi->phy.curr_user_speed_req =
cache_data.data.curr_user_speed_req;
break;
case ICE_FEC_MODE:
pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
break;
default:
break;
}
}
/**
* ice_caps_to_fc_mode
* @caps: PHY capabilities
*
* Convert PHY FC capabilities to ice FC mode
*/
enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
{
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_FULL;
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
return ICE_FC_TX_PAUSE;
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_RX_PAUSE;
return ICE_FC_NONE;
}
/**
* ice_caps_to_fec_mode
* @caps: PHY capabilities
* @fec_options: Link FEC options
*
* Convert PHY FEC capabilities to ice FEC mode
*/
enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
{
if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
return ICE_FEC_AUTO;
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
ICE_AQC_PHY_FEC_25G_KR_REQ))
return ICE_FEC_BASER;
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
return ICE_FEC_RS;
return ICE_FEC_NONE;
}
/**
* ice_cfg_phy_fc - Configure PHY FC data based on FC mode
* @pi: port information structure
* @cfg: PHY configuration data to set FC mode
* @req_mode: FC mode to configure
*/
static enum ice_status
ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
enum ice_fc_mode req_mode)
{
struct ice_phy_cache_mode_data cache_data;
u8 pause_mask = 0x0;
if (!pi || !cfg)
return ICE_ERR_BAD_PTR;
switch (req_mode) {
case ICE_FC_AUTO:
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(pi->hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
/* Query the value of FC that both the NIC and attached media
* can do.
*/
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
pcaps, NULL);
if (status) {
ice_free(pi->hw, pcaps);
return status;
}
pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
ice_free(pi->hw, pcaps);
break;
}
case ICE_FC_FULL:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_RX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_TX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
break;
default:
break;
}
/* clear the old pause settings */
cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
/* set the new capabilities */
cfg->caps |= pause_mask;
/* Cache user FC request */
cache_data.data.curr_user_fc_req = req_mode;
ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
return ICE_SUCCESS;
}
/**
* ice_set_fc
* @pi: port information structure
* @aq_failures: pointer to status code, specific to ice_set_fc routine
* @ena_auto_link_update: enable automatic link update
*
* Set the requested flow control mode.
*/
enum ice_status
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
{
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
struct ice_hw *hw;
if (!pi || !aq_failures)
return ICE_ERR_BAD_PTR;
*aq_failures = 0;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
/* Get the current PHY config */
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
goto out;
}
ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
/* Configure the set PHY data */
status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
if (status) {
if (status != ICE_ERR_BAD_PTR)
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
goto out;
}
/* If the capabilities have changed, then set the new config */
if (cfg.caps != pcaps->caps) {
int retry_count, retry_max = 10;
/* Auto restart link so settings take effect */
if (ena_auto_link_update)
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
goto out;
}
/* Update the link info
* It sometimes takes a really long time for link to
* come back from the atomic reset. Thus, we wait a
* little bit.
*/
for (retry_count = 0; retry_count < retry_max; retry_count++) {
status = ice_update_link_info(pi);
if (status == ICE_SUCCESS)
break;
ice_msec_delay(100, true);
}
if (status)
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
}
out:
ice_free(hw, pcaps);
return status;
}
/**
* ice_phy_caps_equals_cfg
* @phy_caps: PHY capabilities
* @phy_cfg: PHY configuration
*
* Helper function to determine if PHY capabilities matches PHY
* configuration
*/
bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
struct ice_aqc_set_phy_cfg_data *phy_cfg)
{
u8 caps_mask, cfg_mask;
if (!phy_caps || !phy_cfg)
return false;
/* These bits are not common between capabilities and configuration.
* Do not use them to determine equality.
*/
caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
ICE_AQC_PHY_EN_MOD_QUAL);
cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
phy_caps->phy_type_high != phy_cfg->phy_type_high ||
((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
phy_caps->eee_cap != phy_cfg->eee_cap ||
phy_caps->eeer_value != phy_cfg->eeer_value ||
phy_caps->link_fec_options != phy_cfg->link_fec_opt)
return false;
return true;
}
/**
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
* @pi: port information structure
* @caps: PHY ability structure to copy date from
* @cfg: PHY configuration structure to copy data to
*
* Helper function to copy AQC PHY get ability data to PHY set configuration
* data structure
*/
void
ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *caps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
if (!pi || !caps || !cfg)
return;
ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
cfg->phy_type_low = caps->phy_type_low;
cfg->phy_type_high = caps->phy_type_high;
cfg->caps = caps->caps;
cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
cfg->eee_cap = caps->eee_cap;
cfg->eeer_value = caps->eeer_value;
cfg->link_fec_opt = caps->link_fec_options;
cfg->module_compliance_enforcement =
caps->module_compliance_enforcement;
if (ice_fw_supports_link_override(pi->hw)) {
struct ice_link_default_override_tlv tlv;
if (ice_get_link_default_override(&tlv, pi))
return;
if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
cfg->module_compliance_enforcement |=
ICE_LINK_OVERRIDE_STRICT_MODE;
}
}
/**
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
* @pi: port information structure
* @cfg: PHY configuration data to set FEC mode
* @fec: FEC mode to configure
*/
enum ice_status
ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
enum ice_fec_mode fec)
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw;
if (!pi || !cfg)
return ICE_ERR_BAD_PTR;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
NULL);
if (status)
goto out;
cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
cfg->link_fec_opt = pcaps->link_fec_options;
switch (fec) {
case ICE_FEC_BASER:
/* Clear RS bits, and AND BASE-R ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_REQ;
break;
case ICE_FEC_RS:
/* Clear BASE-R bits, and AND RS ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
break;
case ICE_FEC_NONE:
/* Clear all FEC option bits. */
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
break;
case ICE_FEC_AUTO:
/* AND auto FEC bit, and all caps bits. */
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
cfg->link_fec_opt |= pcaps->link_fec_options;
break;
default:
status = ICE_ERR_PARAM;
break;
}
if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
struct ice_link_default_override_tlv tlv;
if (ice_get_link_default_override(&tlv, pi))
goto out;
if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
(tlv.options & ICE_LINK_OVERRIDE_EN))
cfg->link_fec_opt = tlv.fec_options;
}
out:
ice_free(hw, pcaps);
return status;
}
/**
* ice_get_link_status - get status of the HW network link
* @pi: port information structure
* @link_up: pointer to bool (true/false = linkup/linkdown)
*
* Variable link_up is true if link is up, false if link is down.
* The variable link_up is invalid if status is non zero. As a
* result of this call, link status reporting becomes enabled
*/
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
{
struct ice_phy_info *phy_info;
enum ice_status status = ICE_SUCCESS;
if (!pi || !link_up)
return ICE_ERR_PARAM;
phy_info = &pi->phy;
if (phy_info->get_link_info) {
status = ice_update_link_info(pi);
if (status)
ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
status);
}
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
return status;
}
/**
* ice_aq_set_link_restart_an
* @pi: pointer to the port information structure
* @ena_link: if true: enable link, if false: disable link
* @cd: pointer to command details structure or NULL
*
* Sets up the link and restarts the Auto-Negotiation over the link.
*/
enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
struct ice_sq_cd *cd)
{
struct ice_aqc_restart_an *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.restart_an;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
cmd->lport_num = pi->lport;
if (ena_link)
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
else
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_event_mask
* @hw: pointer to the HW struct
* @port_num: port number of the physical function
* @mask: event mask to be set
* @cd: pointer to command details structure or NULL
*
* Set event mask (0x0613)
*/
enum ice_status
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_event_mask *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_event_mask;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
cmd->lport_num = port_num;
cmd->event_mask = CPU_TO_LE16(mask);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_mac_loopback
* @hw: pointer to the HW struct
* @ena_lpbk: Enable or Disable loopback
* @cd: pointer to command details structure or NULL
*
* Enable/disable loopback on a given port
*/
enum ice_status
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
{
struct ice_aqc_set_mac_lb *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_mac_lb;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
if (ena_lpbk)
cmd->lb_mode = ICE_AQ_MAC_LB_EN;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_port_id_led
* @pi: pointer to the port information
* @is_orig_mode: is this LED set to original mode (by the net-list)
* @cd: pointer to command details structure or NULL
*
* Set LED value for the given port (0x06e9)
*/
enum ice_status
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_id_led *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
cmd = &desc.params.set_port_id_led;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
if (is_orig_mode)
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
else
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_sff_eeprom
* @hw: pointer to the HW struct
* @lport: bits [7:0] = logical port, bit [8] = logical port valid
* @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
* @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
* @page: QSFP page
* @set_page: set or ignore the page
* @data: pointer to data buffer to be read/written to the I2C device.
* @length: 1-16 for read, 1 for write.
* @write: 0 read, 1 for write.
* @cd: pointer to command details structure or NULL
*
* Read/Write SFF EEPROM (0x06EE)
*/
enum ice_status
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
bool write, struct ice_sq_cd *cd)
{
struct ice_aqc_sff_eeprom *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (!data || (mem_addr & 0xff00))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
cmd = &desc.params.read_write_sff_param;
desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
cmd->lport_num = (u8)(lport & 0xff);
cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
ICE_AQC_SFF_I2CBUS_7BIT_M) |
((set_page <<
ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
ICE_AQC_SFF_SET_EEPROM_PAGE_M));
cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
if (write)
cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
return status;
}
/**
* __ice_aq_get_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: VSI FW index
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
* @glob_lut_idx: global LUT index
* @set: set true to set the table, false to get the table
*
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
*/
static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
u16 lut_size, u8 glob_lut_idx, bool set)
{
struct ice_aqc_get_set_rss_lut *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
u16 flags = 0;
cmd_resp = &desc.params.get_set_rss_lut;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
}
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
ICE_AQC_GSET_RSS_LUT_VSI_VALID);
switch (lut_type) {
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
break;
default:
status = ICE_ERR_PARAM;
goto ice_aq_get_set_rss_lut_exit;
}
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
if (!set)
goto ice_aq_get_set_rss_lut_send;
} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
if (!set)
goto ice_aq_get_set_rss_lut_send;
} else {
goto ice_aq_get_set_rss_lut_send;
}
/* LUT size is only valid for Global and PF table types */
switch (lut_size) {
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
}
/* fall-through */
default:
status = ICE_ERR_PARAM;
goto ice_aq_get_set_rss_lut_exit;
}
ice_aq_get_set_rss_lut_send:
cmd_resp->flags = CPU_TO_LE16(flags);
status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
ice_aq_get_set_rss_lut_exit:
return status;
}
/**
* ice_aq_get_rss_lut
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
*
* get the RSS lookup table, PF or VSI type
*/
enum ice_status
ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
u8 *lut, u16 lut_size)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
lut_type, lut, lut_size, 0, false);
}
/**
* ice_aq_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
*
* set the RSS lookup table, PF or VSI type
*/
enum ice_status
ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
u8 *lut, u16 lut_size)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
lut_type, lut, lut_size, 0, true);
}
/**
* __ice_aq_get_set_rss_key
* @hw: pointer to the HW struct
* @vsi_id: VSI FW index
* @key: pointer to key info struct
* @set: set true to set the key, false to get the key
*
* get (0x0B04) or set (0x0B02) the RSS key per VSI
*/
static enum
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
struct ice_aqc_get_set_rss_keys *key,
bool set)
{
struct ice_aqc_get_set_rss_key *cmd_resp;
u16 key_size = sizeof(*key);
struct ice_aq_desc desc;
cmd_resp = &desc.params.get_set_rss_key;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
}
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
ICE_AQC_GSET_RSS_KEY_VSI_VALID);
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
}
/**
* ice_aq_get_rss_key
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @key: pointer to key info struct
*
* get the RSS key per VSI
*/
enum ice_status
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *key)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
key, false);
}
/**
* ice_aq_set_rss_key
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @keys: pointer to key info struct
*
* set the RSS key per VSI
*/
enum ice_status
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *keys)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
keys, true);
}
/**
* ice_aq_add_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: Number of added queue groups
* @qg_list: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* Add Tx LAN queue (0x0C30)
*
* NOTE:
* Prior to calling add Tx LAN queue:
* Initialize the following as part of the Tx queue context:
* Completion queue ID if the queue uses Completion queue, Quanta profile,
* Cache profile and Packet shaper profile.
*
* After add Tx LAN queue AQ command is completed:
* Interrupts should be associated with specific queues,
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
* flow.
*/
enum ice_status
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_add_tx_qgrp *list;
struct ice_aqc_add_txqs *cmd;
struct ice_aq_desc desc;
u16 i, sum_size = 0;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.add_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
if (!qg_list)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
for (i = 0, list = qg_list; i < num_qgrps; i++) {
sum_size += ice_struct_size(list, txqs, list->num_txqs);
list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
list->num_txqs);
}
if (buf_size != sum_size)
return ICE_ERR_PARAM;
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->num_qgrps = num_qgrps;
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}
/**
* ice_aq_dis_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: number of groups in the list
* @qg_list: the list of groups to disable
* @buf_size: the total size of the qg_list buffer in bytes
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* Disable LAN Tx queue (0x0C31)
*/
static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
struct ice_aqc_dis_txq_item *item;
struct ice_aqc_dis_txqs *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 i, sz = 0;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.dis_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
/* qg_list can be NULL only in VM/VF reset flow */
if (!qg_list && !rst_src)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
cmd->num_entries = num_qgrps;
cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
ICE_AQC_Q_DIS_TIMEOUT_M);
switch (rst_src) {
case ICE_VM_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
cmd->vmvf_and_timeout |=
CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_NO_RESET:
default:
break;
}
/* flush pipe on time out */
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
/* If no queue group info, we are in a reset flow. Issue the AQ */
if (!qg_list)
goto do_aq;
/* set RD bit to indicate that command buffer is provided by the driver
* and it needs to be read by the firmware
*/
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
for (i = 0, item = qg_list; i < num_qgrps; i++) {
u16 item_size = ice_struct_size(item, q_id, item->num_qs);
/* If the num of queues is even, add 2 bytes of padding */
if ((item->num_qs % 2) == 0)
item_size += 2;
sz += item_size;
item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
}
if (buf_size != sz)
return ICE_ERR_PARAM;
do_aq:
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
if (status) {
if (!qg_list)
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
vmvf_num, hw->adminq.sq_last_status);
else
ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
LE16_TO_CPU(qg_list[0].q_id[0]),
hw->adminq.sq_last_status);
}
return status;
}
/**
* ice_aq_move_recfg_lan_txq
* @hw: pointer to the hardware structure
* @num_qs: number of queues to move/reconfigure
* @is_move: true if this operation involves node movement
* @is_tc_change: true if this operation involves a TC change
* @subseq_call: true if this operation is a subsequent call
* @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
* @timeout: timeout in units of 100 usec (valid values 0-50)
* @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
* @buf: struct containing src/dest TEID and per-queue info
* @buf_size: size of buffer for indirect command
* @txqs_moved: out param, number of queues successfully moved
* @cd: pointer to command details structure or NULL
*
* Move / Reconfigure Tx LAN queues (0x0C32)
*/
enum ice_status
ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
bool is_tc_change, bool subseq_call, bool flush_pipe,
u8 timeout, u32 *blocked_cgds,
struct ice_aqc_move_txqs_data *buf, u16 buf_size,
u8 *txqs_moved, struct ice_sq_cd *cd)
{
struct ice_aqc_move_txqs *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.move_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
#define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
return ICE_ERR_PARAM;
if (is_tc_change && !flush_pipe && !blocked_cgds)
return ICE_ERR_PARAM;
if (!is_move && !is_tc_change)
return ICE_ERR_PARAM;
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
if (is_move)
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
if (is_tc_change)
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
if (subseq_call)
cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
if (flush_pipe)
cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
cmd->num_qs = num_qs;
cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
ICE_AQC_Q_CMD_TIMEOUT_M);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && txqs_moved)
*txqs_moved = cmd->num_qs;
if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
is_tc_change && !flush_pipe)
*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
return status;
}
/* End of FW Admin Queue command wrappers */
/**
* ice_write_byte - write a byte to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u8 src_byte, dest_byte, mask;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = (u8)(BIT(ce_info->width) - 1);
src_byte = *from;
src_byte &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_byte <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
dest_byte &= ~mask; /* get the bits not changing */
dest_byte |= src_byte; /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
}
/**
* ice_write_word - write a word to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u16 src_word, mask;
__le16 dest_word;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = BIT(ce_info->width) - 1;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_word = *(u16 *)from;
src_word &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_word <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
dest_word &= ~(CPU_TO_LE16(mask)); /* get the bits not changing */
dest_word |= CPU_TO_LE16(src_word); /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
}
/**
* ice_write_dword - write a dword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u32 src_dword, mask;
__le32 dest_dword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 32 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 5 bits so the shift will do nothing
*/
if (ce_info->width < 32)
mask = BIT(ce_info->width) - 1;
else
mask = (u32)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_dword = *(u32 *)from;
src_dword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_dword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
dest_dword &= ~(CPU_TO_LE32(mask)); /* get the bits not changing */
dest_dword |= CPU_TO_LE32(src_dword); /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
}
/**
* ice_write_qword - write a qword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u64 src_qword, mask;
__le64 dest_qword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 64 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 6 bits so the shift will do nothing
*/
if (ce_info->width < 64)
mask = BIT_ULL(ce_info->width) - 1;
else
mask = (u64)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_qword = *(u64 *)from;
src_qword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_qword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
dest_qword &= ~(CPU_TO_LE64(mask)); /* get the bits not changing */
dest_qword |= CPU_TO_LE64(src_qword); /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
}
/**
* ice_set_ctx - set context bits in packed structure
* @hw: pointer to the hardware structure
* @src_ctx: pointer to a generic non-packed context structure
* @dest_ctx: pointer to memory for the packed structure
* @ce_info: a description of the structure to be transformed
*/
enum ice_status
ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
const struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
/* We have to deal with each element of the FW response
* using the correct size so that we are correct regardless
* of the endianness of the machine.
*/
if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
f, ce_info[f].width, ce_info[f].size_of);
continue;
}
switch (ce_info[f].size_of) {
case sizeof(u8):
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u16):
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u32):
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u64):
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
return ICE_ERR_INVAL_SIZE;
}
}
return ICE_SUCCESS;
}
/**
* ice_read_byte - read context byte into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u8 dest_byte, mask;
u8 *src, *target;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = (u8)(BIT(ce_info->width) - 1);
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
dest_byte &= ~(mask);
dest_byte >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
}
/**
* ice_read_word - read context word into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u16 dest_word, mask;
u8 *src, *target;
__le16 src_word;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = BIT(ce_info->width) - 1;
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
/* the data in the memory is stored as little endian so mask it
* correctly
*/
src_word &= ~(CPU_TO_LE16(mask));
/* get the data back into host order before shifting */
dest_word = LE16_TO_CPU(src_word);
dest_word >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
}
/**
* ice_read_dword - read context dword into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u32 dest_dword, mask;
__le32 src_dword;
u8 *src, *target;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 32 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 5 bits so the shift will do nothing
*/
if (ce_info->width < 32)
mask = BIT(ce_info->width) - 1;
else
mask = (u32)~0;
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
/* the data in the memory is stored as little endian so mask it
* correctly
*/
src_dword &= ~(CPU_TO_LE32(mask));
/* get the data back into host order before shifting */
dest_dword = LE32_TO_CPU(src_dword);
dest_dword >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
}
/**
* ice_read_qword - read context qword into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u64 dest_qword, mask;
__le64 src_qword;
u8 *src, *target;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 64 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 6 bits so the shift will do nothing
*/
if (ce_info->width < 64)
mask = BIT_ULL(ce_info->width) - 1;
else
mask = (u64)~0;
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
/* the data in the memory is stored as little endian so mask it
* correctly
*/
src_qword &= ~(CPU_TO_LE64(mask));
/* get the data back into host order before shifting */
dest_qword = LE64_TO_CPU(src_qword);
dest_qword >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
}
/**
* ice_get_ctx - extract context bits from a packed structure
* @src_ctx: pointer to a generic packed context structure
* @dest_ctx: pointer to a generic non-packed context structure
* @ce_info: a description of the structure to be read from
*/
enum ice_status
ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
switch (ce_info[f].size_of) {
case 1:
ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case 2:
ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case 4:
ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case 8:
ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
/* nothing to do, just keep going */
break;
}
}
return ICE_SUCCESS;
}
/**
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
*/
struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
{
struct ice_vsi_ctx *vsi;
struct ice_q_ctx *q_ctx;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi)
return NULL;
if (q_handle >= vsi->num_lan_q_entries[tc])
return NULL;
if (!vsi->lan_q_ctx[tc])
return NULL;
q_ctx = vsi->lan_q_ctx[tc];
return &q_ctx[q_handle];
}
/**
* ice_ena_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
* @num_qgrps: Number of added queue groups
* @buf: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* This function adds one LAN queue
*/
enum ice_status
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_txsched_elem_data node = { 0 };
struct ice_sched_node *parent;
struct ice_q_ctx *q_ctx;
enum ice_status status;
struct ice_hw *hw;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (num_qgrps > 1 || buf->num_txqs > 1)
return ICE_ERR_MAX_LIMIT;
hw = pi->hw;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
if (!q_ctx) {
ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
q_handle);
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
/* find a parent node */
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
ICE_SCHED_NODE_OWNER_LAN);
if (!parent) {
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
buf->parent_teid = parent->info.node_teid;
node.parent_teid = parent->info.node_teid;
/* Mark that the values in the "generic" section as valid. The default
* value in the "generic" section is zero. This means that :
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
* - 0 priority among siblings, indicated by Bit 1-3.
* - WFQ, indicated by Bit 4.
* - 0 Adjustment value is used in PSM credit update flow, indicated by
* Bit 5-6.
* - Bit 7 is reserved.
* Without setting the generic section as valid in valid_sections, the
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
*/
buf->txqs[0].info.valid_sections =
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
ICE_AQC_ELEM_VALID_EIR;
buf->txqs[0].info.generic = 0;
buf->txqs[0].info.cir_bw.bw_profile_idx =
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->txqs[0].info.cir_bw.bw_alloc =
CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
buf->txqs[0].info.eir_bw.bw_profile_idx =
CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
buf->txqs[0].info.eir_bw.bw_alloc =
CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
/* add the LAN queue */
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
LE16_TO_CPU(buf->txqs[0].txq_id),
hw->adminq.sq_last_status);
goto ena_txq_exit;
}
node.node_teid = buf->txqs[0].q_teid;
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
q_ctx->q_handle = q_handle;
q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
/* add a leaf node into scheduler tree queue layer */
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
if (!status)
status = ice_sched_replay_q_bw(pi, q_ctx);
ena_txq_exit:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_dis_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @num_queues: number of queues
* @q_handles: pointer to software queue handle array
* @q_ids: pointer to the q_id array
* @q_teids: pointer to queue node teids
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* This function removes queues and their corresponding nodes in SW DB
*/
enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
u16 *q_handles, u16 *q_ids, u32 *q_teids,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
struct ice_aqc_dis_txq_item *qg_list;
struct ice_q_ctx *q_ctx;
struct ice_hw *hw;
u16 i, buf_size;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
hw = pi->hw;
if (!num_queues) {
/* if queue is disabled already yet the disable queue command
* has to be sent to complete the VF reset, then call
* ice_aq_dis_lan_txq without any queue information
*/
if (rst_src)
return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
vmvf_num, NULL);
return ICE_ERR_CFG;
}
buf_size = ice_struct_size(qg_list, q_id, 1);
qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
if (!qg_list)
return ICE_ERR_NO_MEMORY;
ice_acquire_lock(&pi->sched_lock);
for (i = 0; i < num_queues; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
if (!node)
continue;
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
if (!q_ctx) {
ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
q_handles[i]);
continue;
}
if (q_ctx->q_handle != q_handles[i]) {
ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
q_ctx->q_handle, q_handles[i]);
continue;
}
qg_list->parent_teid = node->info.parent_teid;
qg_list->num_qs = 1;
qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
vmvf_num, cd);
if (status != ICE_SUCCESS)
break;
ice_free_sched_node(pi, node);
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
}
ice_release_lock(&pi->sched_lock);
ice_free(hw, qg_list);
return status;
}
/**
* ice_cfg_vsi_qs - configure the new/existing VSI queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @maxqs: max queues array per TC
* @owner: LAN or RDMA
*
* This function adds/updates the VSI queues per TC.
*/
static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
u16 *maxqs, u8 owner)
{
enum ice_status status = ICE_SUCCESS;
u8 i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
ice_for_each_traffic_class(i) {
/* configuration is possible only if TC node is present */
if (!ice_sched_get_tc_node(pi, i))
continue;
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
ice_is_tc_ena(tc_bitmap, i));
if (status)
break;
}
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_lan - configure VSI LAN queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @max_lanqs: max LAN queues array per TC
*
* This function adds/updates the VSI LAN queues per TC.
*/
enum ice_status
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
u16 *max_lanqs)
{
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_is_main_vsi - checks whether the VSI is main VSI
* @hw: pointer to the HW struct
* @vsi_handle: VSI handle
*
* Checks whether the VSI is the main VSI (the first PF VSI created on
* given PF).
*/
static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
{
return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
}
/**
* ice_replay_pre_init - replay pre initialization
* @hw: pointer to the HW struct
* @sw: pointer to switch info struct for which function initializes filters
*
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
*/
static enum ice_status
ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
{
enum ice_status status;
u8 i;
/* Delete old entries from replay filter list head if there is any */
ice_rm_sw_replay_rule_info(hw, sw);
/* In start of replay, move entries into replay_rules list, it
* will allow adding rules entries back to filt_rules list,
* which is operational list.
*/
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
&sw->recp_list[i].filt_replay_rules);
ice_sched_replay_agg_vsi_preinit(hw);
status = ice_sched_replay_root_node_bw(hw->port_info);
if (status)
return status;
return ice_sched_replay_tc_node_bw(hw->port_info);
}
/**
* ice_replay_vsi - replay VSI configuration
* @hw: pointer to the HW struct
* @vsi_handle: driver VSI handle
*
* Restore all VSI configuration after reset. It is required to call this
* function with main VSI first.
*/
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_port_info *pi = hw->port_info;
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
/* Replay pre-initialization if there is any */
if (ice_is_main_vsi(hw, vsi_handle)) {
status = ice_replay_pre_init(hw, sw);
if (status)
return status;
}
/* Replay per VSI all RSS configurations */
status = ice_replay_rss_cfg(hw, vsi_handle);
if (status)
return status;
/* Replay per VSI all filters */
status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
if (!status)
status = ice_replay_vsi_agg(hw, vsi_handle);
return status;
}
/**
* ice_replay_post - post replay configuration cleanup
* @hw: pointer to the HW struct
*
* Post replay cleanup.
*/
void ice_replay_post(struct ice_hw *hw)
{
/* Delete old entries from replay filter list head */
ice_rm_all_sw_replay_rule_info(hw);
ice_sched_replay_agg(hw);
}
/**
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: offset of 64 bit HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. Thus, save the value from the first read
* without adding to the statistic value so that we report stats which
* count up from zero.
*/
if (!prev_stat_loaded) {
*prev_stat = new_data;
return;
}
/* Calculate the difference between the new and old values, and then
* add it to the software stat value.
*/
if (new_data >= *prev_stat)
*cur_stat += new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
/* Update the previously stored value to prepare for next read */
*prev_stat = new_data;
}
/**
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: offset of HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u32 new_data;
new_data = rd32(hw, reg);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. Thus, save the value from the first read
* without adding to the statistic value so that we report stats which
* count up from zero.
*/
if (!prev_stat_loaded) {
*prev_stat = new_data;
return;
}
/* Calculate the difference between the new and old values, and then
* add it to the software stat value.
*/
if (new_data >= *prev_stat)
*cur_stat += new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
/* Update the previously stored value to prepare for next read */
*prev_stat = new_data;
}
/**
* ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
* @hw: ptr to the hardware info
* @vsi_handle: VSI handle
* @prev_stat_loaded: bool to specify if the previous stat values are loaded
* @cur_stats: ptr to current stats structure
*
* The GLV_REPC statistic register actually tracks two 16bit statistics, and
* thus cannot be read using the normal ice_stat_update32 function.
*
* Read the GLV_REPC register associated with the given VSI, and update the
* rx_no_desc and rx_error values in the ice_eth_stats structure.
*
* Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
* cleared each time it's read.
*
* Note that the GLV_RDPC register also counts the causes that would trigger
* GLV_REPC. However, it does not give the finer grained detail about why the
* packets are being dropped. The GLV_REPC values can be used to distinguish
* whether Rx packets are dropped due to errors or due to no available
* descriptors.
*/
void
ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
struct ice_eth_stats *cur_stats)
{
u16 vsi_num, no_desc, error_cnt;
u32 repc;
if (!ice_is_vsi_valid(hw, vsi_handle))
return;
vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
/* If we haven't loaded stats yet, just clear the current value */
if (!prev_stat_loaded) {
wr32(hw, GLV_REPC(vsi_num), 0);
return;
}
repc = rd32(hw, GLV_REPC(vsi_num));
no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
/* Clear the count by writing to the stats register */
wr32(hw, GLV_REPC(vsi_num), 0);
cur_stats->rx_no_desc += no_desc;
cur_stats->rx_errors += error_cnt;
}
/**
* ice_sched_query_elem - query element information from HW
* @hw: pointer to the HW struct
* @node_teid: node TEID to be queried
* @buf: buffer to element information
*
* This function queries HW element information
*/
enum ice_status
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
struct ice_aqc_txsched_elem_data *buf)
{
u16 buf_size, num_elem_ret = 0;
enum ice_status status;
buf_size = sizeof(*buf);
ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
buf->node_teid = CPU_TO_LE32(node_teid);
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
NULL);
if (status != ICE_SUCCESS || num_elem_ret != 1)
ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
return status;
}
/**
* ice_get_fw_mode - returns FW mode
* @hw: pointer to the HW struct
*/
enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
{
#define ICE_FW_MODE_DBG_M BIT(0)
#define ICE_FW_MODE_REC_M BIT(1)
#define ICE_FW_MODE_ROLLBACK_M BIT(2)
u32 fw_mode;
/* check the current FW mode */
fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
if (fw_mode & ICE_FW_MODE_DBG_M)
return ICE_FW_MODE_DBG;
else if (fw_mode & ICE_FW_MODE_REC_M)
return ICE_FW_MODE_REC;
else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
return ICE_FW_MODE_ROLLBACK;
else
return ICE_FW_MODE_NORMAL;
}
/**
* ice_fw_supports_link_override
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports link override
*/
bool ice_fw_supports_link_override(struct ice_hw *hw)
{
if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
return true;
if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
return true;
} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
return true;
}
return false;
}
/**
* ice_get_link_default_override
* @ldo: pointer to the link default override struct
* @pi: pointer to the port info struct
*
* Gets the link default override for a port
*/
enum ice_status
ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
struct ice_port_info *pi)
{
u16 i, tlv, tlv_len, tlv_start, buf, offset;
struct ice_hw *hw = pi->hw;
enum ice_status status;
status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
return status;
}
/* Each port has its own config; calculate for our port */
tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
/* link options first */
status = ice_read_sr_word(hw, tlv_start, &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
return status;
}
ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
ICE_LINK_OVERRIDE_PHY_CFG_S;
/* link PHY config */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
status = ice_read_sr_word(hw, offset, &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
return status;
}
ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
/* PHY types low */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_low |= ((u64)buf << (i * 16));
}
/* PHY types high */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_high |= ((u64)buf << (i * 16));
}
return status;
}
/**
* ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
* @caps: get PHY capability data
*/
bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
{
if (caps->caps & ICE_AQC_PHY_AN_MODE ||
caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
ICE_AQC_PHY_AN_EN_CLAUSE73 |
ICE_AQC_PHY_AN_EN_CLAUSE37))
return true;
return false;
}
/**
* ice_aq_set_lldp_mib - Set the LLDP MIB
* @hw: pointer to the HW struct
* @mib_type: Local, Remote or both Local and Remote MIBs
* @buf: pointer to the caller-supplied buffer to store the MIB block
* @buf_size: size of the buffer (in bytes)
* @cd: pointer to command details structure or NULL
*
* Set the LLDP MIB. (0x0A08)
*/
enum ice_status
ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_lldp_set_local_mib *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.lldp_set_mib;
if (buf_size == 0 || !buf)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
desc.datalen = CPU_TO_LE16(buf_size);
cmd->type = mib_type;
cmd->length = CPU_TO_LE16(buf_size);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_fw_supports_lldp_fltr - check NVM version supports lldp_fltr_ctrl
* @hw: pointer to HW struct
*/
bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
{
if (hw->mac_type != ICE_MAC_E810)
return false;
if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
return true;
if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
return true;
} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
return true;
}
return false;
}
/**
* ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
* @hw: pointer to HW struct
* @vsi_num: absolute HW index for VSI
* @add: boolean for if adding or removing a filter
*/
enum ice_status
ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
{
struct ice_aqc_lldp_filter_ctrl *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.lldp_filter_ctrl;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
if (add)
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
else
cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
cmd->vsi_num = CPU_TO_LE16(vsi_num);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}