numam-dpdk/drivers/net/ice/ice_dcf_ethdev.c
Thomas Monjalon fbd1913561 ethdev: remove old close behaviour
The temporary flag RTE_ETH_DEV_CLOSE_REMOVE is removed.
It was introduced in DPDK 18.11 in order to give time for PMDs to migrate.

The old behaviour was to free only queues when closing a port.
The new behaviour is calling rte_eth_dev_release_port() which does
three more tasks:
	- trigger event callback
	- reset state and few pointers
	- free all generic port resources

The private port resources must be released in the .dev_close callback.

The .remove callback should:
	- call .dev_close callback
	- call rte_eth_dev_release_port()
	- free multi-port device shared resources

Despite waiting two years, some drivers have not migrated,
so they may hit issues with the incompatible new behaviour.
After sending emails, adding logs, and announcing the deprecation,
the only last solution is to declare these drivers as unmaintained:
	ionic, liquidio, nfp
Below is a summary of what to implement in those drivers.

* The freeing of private port resources must be moved
from the ".remove(device)" function to the ".dev_close(port)" function.

* If a generic resource (.mac_addrs or .hash_mac_addrs) cannot be freed,
it must be set to NULL in ".dev_close" function to protect from
subsequent rte_eth_dev_release_port() freeing.

* Note 1:
The generic resources are freed in rte_eth_dev_release_port(),
after ".dev_close" is called in rte_eth_dev_close(), but not when
calling ".dev_close" directly from the ".remove" PMD function.
That's why rte_eth_dev_release_port() must still be called explicitly
from ".remove(device)" after calling the ".dev_close" PMD function.

* Note 2:
If a device can have multiple ports, the common resources must be freed
only in the ".remove(device)" function.

* Note 3:
The port is supposed to be in a stopped state when it is closed.
If it is not the case, it is free to the PMD implementation
how to react when trying to close a non-stopped port:
either try to stop it automatically or just return an error.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Reviewed-by: Liron Himi <lironh@marvell.com>
Reviewed-by: Haiyue Wang <haiyue.wang@intel.com>
Acked-by: Jeff Guo <jia.guo@intel.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
2020-09-30 19:19:14 +02:00

1005 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <errno.h>
#include <stdbool.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_pci.h>
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_dev.h>
#include <iavf_devids.h>
#include "ice_generic_flow.h"
#include "ice_dcf_ethdev.h"
#include "ice_rxtx.h"
static uint16_t
ice_dcf_recv_pkts(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **bufs,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
static uint16_t
ice_dcf_xmit_pkts(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **bufs,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
static int
ice_dcf_init_rxq(struct rte_eth_dev *dev, struct ice_rx_queue *rxq)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_eth_dev_data *dev_data = dev->data;
struct iavf_hw *hw = &dcf_ad->real_hw.avf;
uint16_t buf_size, max_pkt_len, len;
buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len;
max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
/* Check if the jumbo frame and maximum packet length are set
* correctly.
*/
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
max_pkt_len > ICE_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, "
"as jumbo frame is enabled",
(uint32_t)RTE_ETHER_MAX_LEN,
(uint32_t)ICE_FRAME_SIZE_MAX);
return -EINVAL;
}
} else {
if (max_pkt_len < RTE_ETHER_MIN_LEN ||
max_pkt_len > RTE_ETHER_MAX_LEN) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, "
"as jumbo frame is disabled",
(uint32_t)RTE_ETHER_MIN_LEN,
(uint32_t)RTE_ETHER_MAX_LEN);
return -EINVAL;
}
}
rxq->max_pkt_len = max_pkt_len;
if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
(rxq->max_pkt_len + 2 * ICE_VLAN_TAG_SIZE) > buf_size) {
dev_data->scattered_rx = 1;
}
rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
return 0;
}
static int
ice_dcf_init_rx_queues(struct rte_eth_dev *dev)
{
struct ice_rx_queue **rxq =
(struct ice_rx_queue **)dev->data->rx_queues;
int i, ret;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = ice_dcf_init_rxq(dev, rxq[i]);
if (ret)
return ret;
}
ice_set_rx_function(dev);
ice_set_tx_function(dev);
return 0;
}
#define IAVF_MISC_VEC_ID RTE_INTR_VEC_ZERO_OFFSET
#define IAVF_RX_VEC_START RTE_INTR_VEC_RXTX_OFFSET
#define IAVF_ITR_INDEX_DEFAULT 0
#define IAVF_QUEUE_ITR_INTERVAL_DEFAULT 32 /* 32 us */
#define IAVF_QUEUE_ITR_INTERVAL_MAX 8160 /* 8160 us */
static inline uint16_t
iavf_calc_itr_interval(int16_t interval)
{
if (interval < 0 || interval > IAVF_QUEUE_ITR_INTERVAL_MAX)
interval = IAVF_QUEUE_ITR_INTERVAL_DEFAULT;
/* Convert to hardware count, as writing each 1 represents 2 us */
return interval / 2;
}
static int
ice_dcf_config_rx_queues_irqs(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint16_t interval, i;
int vec;
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (!intr_handle->intr_vec) {
PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
dev->data->nb_rx_queues);
return -1;
}
}
if (!dev->data->dev_conf.intr_conf.rxq ||
!rte_intr_dp_is_en(intr_handle)) {
/* Rx interrupt disabled, Map interrupt only for writeback */
hw->nb_msix = 1;
if (hw->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* If WB_ON_ITR supports, enable it */
hw->msix_base = IAVF_RX_VEC_START;
IAVF_WRITE_REG(&hw->avf,
IAVF_VFINT_DYN_CTLN1(hw->msix_base - 1),
IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK |
IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK);
} else {
/* If no WB_ON_ITR offload flags, need to set
* interrupt for descriptor write back.
*/
hw->msix_base = IAVF_MISC_VEC_ID;
/* set ITR to max */
interval =
iavf_calc_itr_interval(IAVF_QUEUE_ITR_INTERVAL_MAX);
IAVF_WRITE_REG(&hw->avf, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_INTENA_MASK |
(IAVF_ITR_INDEX_DEFAULT <<
IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
}
IAVF_WRITE_FLUSH(&hw->avf);
/* map all queues to the same interrupt */
for (i = 0; i < dev->data->nb_rx_queues; i++)
hw->rxq_map[hw->msix_base] |= 1 << i;
} else {
if (!rte_intr_allow_others(intr_handle)) {
hw->nb_msix = 1;
hw->msix_base = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
hw->rxq_map[hw->msix_base] |= 1 << i;
intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
}
PMD_DRV_LOG(DEBUG,
"vector %u are mapping to all Rx queues",
hw->msix_base);
} else {
/* If Rx interrupt is reuquired, and we can use
* multi interrupts, then the vec is from 1
*/
hw->nb_msix = RTE_MIN(hw->vf_res->max_vectors,
intr_handle->nb_efd);
hw->msix_base = IAVF_MISC_VEC_ID;
vec = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
hw->rxq_map[vec] |= 1 << i;
intr_handle->intr_vec[i] = vec++;
if (vec >= hw->nb_msix)
vec = IAVF_RX_VEC_START;
}
PMD_DRV_LOG(DEBUG,
"%u vectors are mapping to %u Rx queues",
hw->nb_msix, dev->data->nb_rx_queues);
}
}
if (ice_dcf_config_irq_map(hw)) {
PMD_DRV_LOG(ERR, "config interrupt mapping failed");
return -1;
}
return 0;
}
static int
alloc_rxq_mbufs(struct ice_rx_queue *rxq)
{
volatile union ice_rx_flex_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif
rxq->sw_ring[i].mbuf = (void *)mbuf;
}
return 0;
}
static int
ice_dcf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
struct ice_rx_queue *rxq;
int err = 0;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
rxq = dev->data->rx_queues[rx_queue_id];
err = alloc_rxq_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = ice_dcf_switch_queue(&ad->real_hw, rx_queue_id, true, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
return err;
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static inline void
reset_rx_queue(struct ice_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (!rxq)
return;
len = rxq->nb_rx_desc + ICE_RX_MAX_BURST;
for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < ICE_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
/* for rx bulk */
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
static inline void
reset_tx_queue(struct ice_tx_queue *txq)
{
struct ice_tx_entry *txe;
uint32_t i, size;
uint16_t prev;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i].cmd_type_offset_bsz =
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_tx_used = 0;
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
txq->nb_tx_free = txq->nb_tx_desc - 1;
txq->tx_next_dd = txq->tx_rs_thresh - 1;
txq->tx_next_rs = txq->tx_rs_thresh - 1;
}
static int
ice_dcf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_rx_queue *rxq;
int err;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
err = ice_dcf_switch_queue(hw, rx_queue_id, true, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxq->rx_rel_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
ice_dcf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
struct ice_tx_queue *txq;
int err = 0;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
txq = dev->data->tx_queues[tx_queue_id];
/* Init the RX tail register. */
txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(tx_queue_id);
IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = ice_dcf_switch_queue(&ad->real_hw, tx_queue_id, false, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
return err;
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
ice_dcf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_tx_queue *txq;
int err;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
err = ice_dcf_switch_queue(hw, tx_queue_id, false, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
txq = dev->data->tx_queues[tx_queue_id];
txq->tx_rel_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
ice_dcf_start_queues(struct rte_eth_dev *dev)
{
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
int nb_rxq = 0;
int nb_txq, i;
for (nb_txq = 0; nb_txq < dev->data->nb_tx_queues; nb_txq++) {
txq = dev->data->tx_queues[nb_txq];
if (txq->tx_deferred_start)
continue;
if (ice_dcf_tx_queue_start(dev, nb_txq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_txq);
goto tx_err;
}
}
for (nb_rxq = 0; nb_rxq < dev->data->nb_rx_queues; nb_rxq++) {
rxq = dev->data->rx_queues[nb_rxq];
if (rxq->rx_deferred_start)
continue;
if (ice_dcf_rx_queue_start(dev, nb_rxq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_rxq);
goto rx_err;
}
}
return 0;
/* stop the started queues if failed to start all queues */
rx_err:
for (i = 0; i < nb_rxq; i++)
ice_dcf_rx_queue_stop(dev, i);
tx_err:
for (i = 0; i < nb_txq; i++)
ice_dcf_tx_queue_stop(dev, i);
return -1;
}
static int
ice_dcf_dev_start(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
struct ice_adapter *ad = &dcf_ad->parent;
struct ice_dcf_hw *hw = &dcf_ad->real_hw;
int ret;
ad->pf.adapter_stopped = 0;
hw->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
ret = ice_dcf_init_rx_queues(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to init queues");
return ret;
}
if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
ret = ice_dcf_init_rss(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to configure RSS");
return ret;
}
}
ret = ice_dcf_configure_queues(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to config queues");
return ret;
}
ret = ice_dcf_config_rx_queues_irqs(dev, intr_handle);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to config rx queues' irqs");
return ret;
}
if (dev->data->dev_conf.intr_conf.rxq != 0) {
rte_intr_disable(intr_handle);
rte_intr_enable(intr_handle);
}
ret = ice_dcf_start_queues(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to enable queues");
return ret;
}
ret = ice_dcf_add_del_all_mac_addr(hw, true);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to add mac addr");
return ret;
}
dev->data->dev_link.link_status = ETH_LINK_UP;
return 0;
}
static void
ice_dcf_stop_queues(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
int ret, i;
/* Stop All queues */
ret = ice_dcf_disable_queues(hw);
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
txq->tx_rel_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
rxq->rx_rel_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
static void
ice_dcf_dev_stop(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
struct ice_adapter *ad = &dcf_ad->parent;
if (ad->pf.adapter_stopped == 1) {
PMD_DRV_LOG(DEBUG, "Port is already stopped");
return;
}
ice_dcf_stop_queues(dev);
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
ice_dcf_add_del_all_mac_addr(&dcf_ad->real_hw, false);
dev->data->dev_link.link_status = ETH_LINK_DOWN;
ad->pf.adapter_stopped = 1;
}
static int
ice_dcf_dev_configure(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct ice_adapter *ad = &dcf_ad->parent;
ad->rx_bulk_alloc_allowed = true;
ad->tx_simple_allowed = true;
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
return 0;
}
static int
ice_dcf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_queues = hw->vsi_res->num_queue_pairs;
dev_info->max_tx_queues = hw->vsi_res->num_queue_pairs;
dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX;
dev_info->hash_key_size = hw->vf_res->rss_key_size;
dev_info->reta_size = hw->vf_res->rss_lut_size;
dev_info->flow_type_rss_offloads = ICE_RSS_OFFLOAD_ALL;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_RSS_HASH;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IPIP_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_MULTI_SEGS;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = ICE_DEFAULT_RX_PTHRESH,
.hthresh = ICE_DEFAULT_RX_HTHRESH,
.wthresh = ICE_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = ICE_DEFAULT_TX_PTHRESH,
.hthresh = ICE_DEFAULT_TX_HTHRESH,
.wthresh = ICE_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
return 0;
}
static int
ice_dcf_dev_promiscuous_enable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_promiscuous_disable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_allmulticast_enable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_allmulticast_disable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
int ret = 0;
if (!dev)
return -EINVAL;
switch (filter_type) {
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &ice_flow_ops;
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
ret = -EINVAL;
break;
}
return ret;
}
#define ICE_DCF_32_BIT_WIDTH (CHAR_BIT * 4)
#define ICE_DCF_48_BIT_WIDTH (CHAR_BIT * 6)
#define ICE_DCF_48_BIT_MASK RTE_LEN2MASK(ICE_DCF_48_BIT_WIDTH, uint64_t)
static void
ice_dcf_stat_update_48(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = *stat - *offset;
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << ICE_DCF_48_BIT_WIDTH)) - *offset);
*stat &= ICE_DCF_48_BIT_MASK;
}
static void
ice_dcf_stat_update_32(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = (uint64_t)(*stat - *offset);
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << ICE_DCF_32_BIT_WIDTH)) - *offset);
}
static void
ice_dcf_update_stats(struct virtchnl_eth_stats *oes,
struct virtchnl_eth_stats *nes)
{
ice_dcf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
ice_dcf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
ice_dcf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
ice_dcf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
ice_dcf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
ice_dcf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
ice_dcf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
ice_dcf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
ice_dcf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
ice_dcf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
ice_dcf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
}
static int
ice_dcf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct virtchnl_eth_stats pstats;
int ret;
ret = ice_dcf_query_stats(hw, &pstats);
if (ret == 0) {
ice_dcf_update_stats(&hw->eth_stats_offset, &pstats);
stats->ipackets = pstats.rx_unicast + pstats.rx_multicast +
pstats.rx_broadcast - pstats.rx_discards;
stats->opackets = pstats.tx_broadcast + pstats.tx_multicast +
pstats.tx_unicast;
stats->imissed = pstats.rx_discards;
stats->oerrors = pstats.tx_errors + pstats.tx_discards;
stats->ibytes = pstats.rx_bytes;
stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
stats->obytes = pstats.tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return ret;
}
static int
ice_dcf_stats_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct virtchnl_eth_stats pstats;
int ret;
/* read stat values to clear hardware registers */
ret = ice_dcf_query_stats(hw, &pstats);
if (ret != 0)
return ret;
/* set stats offset base on current values */
hw->eth_stats_offset = pstats;
return 0;
}
static int
ice_dcf_dev_close(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
ice_dcf_uninit_parent_adapter(dev);
ice_dcf_uninit_hw(dev, &adapter->real_hw);
return 0;
}
static int
ice_dcf_link_update(__rte_unused struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
return 0;
}
static const struct eth_dev_ops ice_dcf_eth_dev_ops = {
.dev_start = ice_dcf_dev_start,
.dev_stop = ice_dcf_dev_stop,
.dev_close = ice_dcf_dev_close,
.dev_configure = ice_dcf_dev_configure,
.dev_infos_get = ice_dcf_dev_info_get,
.rx_queue_setup = ice_rx_queue_setup,
.tx_queue_setup = ice_tx_queue_setup,
.rx_queue_release = ice_rx_queue_release,
.tx_queue_release = ice_tx_queue_release,
.rx_queue_start = ice_dcf_rx_queue_start,
.tx_queue_start = ice_dcf_tx_queue_start,
.rx_queue_stop = ice_dcf_rx_queue_stop,
.tx_queue_stop = ice_dcf_tx_queue_stop,
.link_update = ice_dcf_link_update,
.stats_get = ice_dcf_stats_get,
.stats_reset = ice_dcf_stats_reset,
.promiscuous_enable = ice_dcf_dev_promiscuous_enable,
.promiscuous_disable = ice_dcf_dev_promiscuous_disable,
.allmulticast_enable = ice_dcf_dev_allmulticast_enable,
.allmulticast_disable = ice_dcf_dev_allmulticast_disable,
.filter_ctrl = ice_dcf_dev_filter_ctrl,
};
static int
ice_dcf_dev_init(struct rte_eth_dev *eth_dev)
{
struct ice_dcf_adapter *adapter = eth_dev->data->dev_private;
eth_dev->dev_ops = &ice_dcf_eth_dev_ops;
eth_dev->rx_pkt_burst = ice_dcf_recv_pkts;
eth_dev->tx_pkt_burst = ice_dcf_xmit_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
adapter->real_hw.vc_event_msg_cb = ice_dcf_handle_pf_event_msg;
if (ice_dcf_init_hw(eth_dev, &adapter->real_hw) != 0) {
PMD_INIT_LOG(ERR, "Failed to init DCF hardware");
return -1;
}
if (ice_dcf_init_parent_adapter(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Failed to init DCF parent adapter");
ice_dcf_uninit_hw(eth_dev, &adapter->real_hw);
return -1;
}
return 0;
}
static int
ice_dcf_dev_uninit(struct rte_eth_dev *eth_dev)
{
ice_dcf_dev_close(eth_dev);
return 0;
}
static int
ice_dcf_cap_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "dcf"))
return -1;
return 0;
}
static int
ice_dcf_cap_selected(struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
const char *key = "cap";
int ret = 0;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, key))
goto exit;
/* dcf capability selected when there's a key-value pair: cap=dcf */
if (rte_kvargs_process(kvlist, key,
ice_dcf_cap_check_handler, NULL) < 0)
goto exit;
ret = 1;
exit:
rte_kvargs_free(kvlist);
return ret;
}
static int eth_ice_dcf_pci_probe(__rte_unused struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
if (!ice_dcf_cap_selected(pci_dev->device.devargs))
return 1;
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct ice_dcf_adapter),
ice_dcf_dev_init);
}
static int eth_ice_dcf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, ice_dcf_dev_uninit);
}
static const struct rte_pci_id pci_id_ice_dcf_map[] = {
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static struct rte_pci_driver rte_ice_dcf_pmd = {
.id_table = pci_id_ice_dcf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_ice_dcf_pci_probe,
.remove = eth_ice_dcf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_ice_dcf, rte_ice_dcf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_ice_dcf, pci_id_ice_dcf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_ice_dcf, "* igb_uio | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_ice_dcf, "cap=dcf");