9dbd28df2d
Min limit is not common for all NIC families. Use the variable from NIC configuration instead of deprecated define. Signed-off-by: Igor Romanov <igor.romanov@oktetlabs.ru> Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
1032 lines
27 KiB
C
1032 lines
27 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2016-2018 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_io.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
|
|
#include "efx.h"
|
|
#include "efx_types.h"
|
|
#include "efx_regs.h"
|
|
#include "efx_regs_ef10.h"
|
|
|
|
#include "sfc_dp_tx.h"
|
|
#include "sfc_tweak.h"
|
|
#include "sfc_kvargs.h"
|
|
#include "sfc_ef10.h"
|
|
#include "sfc_tso.h"
|
|
|
|
#define sfc_ef10_tx_err(dpq, ...) \
|
|
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
|
|
|
|
/** Maximum length of the DMA descriptor data */
|
|
#define SFC_EF10_TX_DMA_DESC_LEN_MAX \
|
|
((1u << ESF_DZ_TX_KER_BYTE_CNT_WIDTH) - 1)
|
|
|
|
/**
|
|
* Maximum number of descriptors/buffers in the Tx ring.
|
|
* It should guarantee that corresponding event queue never overfill.
|
|
* EF10 native datapath uses event queue of the same size as Tx queue.
|
|
* Maximum number of events on datapath can be estimated as number of
|
|
* Tx queue entries (one event per Tx buffer in the worst case) plus
|
|
* Tx error and flush events.
|
|
*/
|
|
#define SFC_EF10_TXQ_LIMIT(_ndesc) \
|
|
((_ndesc) - 1 /* head must not step on tail */ - \
|
|
(SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
|
|
1 /* Rx error */ - 1 /* flush */)
|
|
|
|
struct sfc_ef10_tx_sw_desc {
|
|
struct rte_mbuf *mbuf;
|
|
};
|
|
|
|
struct sfc_ef10_txq {
|
|
unsigned int flags;
|
|
#define SFC_EF10_TXQ_STARTED 0x1
|
|
#define SFC_EF10_TXQ_NOT_RUNNING 0x2
|
|
#define SFC_EF10_TXQ_EXCEPTION 0x4
|
|
|
|
unsigned int ptr_mask;
|
|
unsigned int added;
|
|
unsigned int completed;
|
|
unsigned int max_fill_level;
|
|
unsigned int free_thresh;
|
|
unsigned int evq_read_ptr;
|
|
struct sfc_ef10_tx_sw_desc *sw_ring;
|
|
efx_qword_t *txq_hw_ring;
|
|
volatile void *doorbell;
|
|
efx_qword_t *evq_hw_ring;
|
|
uint8_t *tsoh;
|
|
rte_iova_t tsoh_iova;
|
|
uint16_t tso_tcp_header_offset_limit;
|
|
|
|
/* Datapath transmit queue anchor */
|
|
struct sfc_dp_txq dp;
|
|
};
|
|
|
|
static inline struct sfc_ef10_txq *
|
|
sfc_ef10_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
return container_of(dp_txq, struct sfc_ef10_txq, dp);
|
|
}
|
|
|
|
static bool
|
|
sfc_ef10_tx_get_event(struct sfc_ef10_txq *txq, efx_qword_t *tx_ev)
|
|
{
|
|
volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;
|
|
|
|
/*
|
|
* Exception flag is set when reap is done.
|
|
* It is never done twice per packet burst get and absence of
|
|
* the flag is checked on burst get entry.
|
|
*/
|
|
SFC_ASSERT((txq->flags & SFC_EF10_TXQ_EXCEPTION) == 0);
|
|
|
|
*tx_ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];
|
|
|
|
if (!sfc_ef10_ev_present(*tx_ev))
|
|
return false;
|
|
|
|
if (unlikely(EFX_QWORD_FIELD(*tx_ev, FSF_AZ_EV_CODE) !=
|
|
FSE_AZ_EV_CODE_TX_EV)) {
|
|
/*
|
|
* Do not move read_ptr to keep the event for exception
|
|
* handling by the control path.
|
|
*/
|
|
txq->flags |= SFC_EF10_TXQ_EXCEPTION;
|
|
sfc_ef10_tx_err(&txq->dp.dpq,
|
|
"TxQ exception at EvQ read ptr %#x",
|
|
txq->evq_read_ptr);
|
|
return false;
|
|
}
|
|
|
|
txq->evq_read_ptr++;
|
|
return true;
|
|
}
|
|
|
|
static unsigned int
|
|
sfc_ef10_tx_process_events(struct sfc_ef10_txq *txq)
|
|
{
|
|
const unsigned int curr_done = txq->completed - 1;
|
|
unsigned int anew_done = curr_done;
|
|
efx_qword_t tx_ev;
|
|
|
|
while (sfc_ef10_tx_get_event(txq, &tx_ev)) {
|
|
/*
|
|
* DROP_EVENT is an internal to the NIC, software should
|
|
* never see it and, therefore, may ignore it.
|
|
*/
|
|
|
|
/* Update the latest done descriptor */
|
|
anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
|
|
}
|
|
return (anew_done - curr_done) & txq->ptr_mask;
|
|
}
|
|
|
|
static void
|
|
sfc_ef10_tx_reap(struct sfc_ef10_txq *txq)
|
|
{
|
|
const unsigned int old_read_ptr = txq->evq_read_ptr;
|
|
const unsigned int ptr_mask = txq->ptr_mask;
|
|
unsigned int completed = txq->completed;
|
|
unsigned int pending = completed;
|
|
|
|
pending += sfc_ef10_tx_process_events(txq);
|
|
|
|
if (pending != completed) {
|
|
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
|
|
unsigned int nb = 0;
|
|
|
|
do {
|
|
struct sfc_ef10_tx_sw_desc *txd;
|
|
struct rte_mbuf *m;
|
|
|
|
txd = &txq->sw_ring[completed & ptr_mask];
|
|
if (txd->mbuf == NULL)
|
|
continue;
|
|
|
|
m = rte_pktmbuf_prefree_seg(txd->mbuf);
|
|
txd->mbuf = NULL;
|
|
if (m == NULL)
|
|
continue;
|
|
|
|
if ((nb == RTE_DIM(bulk)) ||
|
|
((nb != 0) && (m->pool != bulk[0]->pool))) {
|
|
rte_mempool_put_bulk(bulk[0]->pool,
|
|
(void *)bulk, nb);
|
|
nb = 0;
|
|
}
|
|
|
|
bulk[nb++] = m;
|
|
} while (++completed != pending);
|
|
|
|
if (nb != 0)
|
|
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
|
|
|
|
txq->completed = completed;
|
|
}
|
|
|
|
sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
|
|
txq->evq_read_ptr);
|
|
}
|
|
|
|
static void
|
|
sfc_ef10_tx_qdesc_dma_create(rte_iova_t addr, uint16_t size, bool eop,
|
|
efx_qword_t *edp)
|
|
{
|
|
EFX_POPULATE_QWORD_4(*edp,
|
|
ESF_DZ_TX_KER_TYPE, 0,
|
|
ESF_DZ_TX_KER_CONT, !eop,
|
|
ESF_DZ_TX_KER_BYTE_CNT, size,
|
|
ESF_DZ_TX_KER_BUF_ADDR, addr);
|
|
}
|
|
|
|
static void
|
|
sfc_ef10_tx_qdesc_tso2_create(struct sfc_ef10_txq * const txq,
|
|
unsigned int added, uint16_t ipv4_id,
|
|
uint16_t outer_ipv4_id, uint32_t tcp_seq,
|
|
uint16_t tcp_mss)
|
|
{
|
|
EFX_POPULATE_QWORD_5(txq->txq_hw_ring[added & txq->ptr_mask],
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_OPTION_TYPE,
|
|
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
|
|
ESF_DZ_TX_TSO_IP_ID, ipv4_id,
|
|
ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq);
|
|
EFX_POPULATE_QWORD_5(txq->txq_hw_ring[(added + 1) & txq->ptr_mask],
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_OPTION_TYPE,
|
|
ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
|
|
ESF_DZ_TX_TSO_TCP_MSS, tcp_mss,
|
|
ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id);
|
|
}
|
|
|
|
static inline void
|
|
sfc_ef10_tx_qpush(struct sfc_ef10_txq *txq, unsigned int added,
|
|
unsigned int pushed)
|
|
{
|
|
efx_qword_t desc;
|
|
efx_oword_t oword;
|
|
|
|
/*
|
|
* This improves performance by pushing a TX descriptor at the same
|
|
* time as the doorbell. The descriptor must be added to the TXQ,
|
|
* so that can be used if the hardware decides not to use the pushed
|
|
* descriptor.
|
|
*/
|
|
desc.eq_u64[0] = txq->txq_hw_ring[pushed & txq->ptr_mask].eq_u64[0];
|
|
EFX_POPULATE_OWORD_3(oword,
|
|
ERF_DZ_TX_DESC_WPTR, added & txq->ptr_mask,
|
|
ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1),
|
|
ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0));
|
|
|
|
/* DMA sync to device is not required */
|
|
|
|
/*
|
|
* rte_io_wmb() which guarantees that the STORE operations
|
|
* (i.e. Tx and event descriptor updates) that precede
|
|
* the rte_io_wmb() call are visible to NIC before the STORE
|
|
* operations that follow it (i.e. doorbell write).
|
|
*/
|
|
rte_io_wmb();
|
|
|
|
*(volatile __m128i *)txq->doorbell = oword.eo_u128[0];
|
|
}
|
|
|
|
static unsigned int
|
|
sfc_ef10_tx_pkt_descs_max(const struct rte_mbuf *m)
|
|
{
|
|
unsigned int extra_descs_per_seg;
|
|
unsigned int extra_descs_per_pkt;
|
|
|
|
/*
|
|
* VLAN offload is not supported yet, so no extra descriptors
|
|
* are required for VLAN option descriptor.
|
|
*/
|
|
|
|
/** Maximum length of the mbuf segment data */
|
|
#define SFC_MBUF_SEG_LEN_MAX UINT16_MAX
|
|
RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);
|
|
|
|
/*
|
|
* Each segment is already counted once below. So, calculate
|
|
* how many extra DMA descriptors may be required per segment in
|
|
* the worst case because of maximum DMA descriptor length limit.
|
|
* If maximum segment length is less or equal to maximum DMA
|
|
* descriptor length, no extra DMA descriptors are required.
|
|
*/
|
|
extra_descs_per_seg =
|
|
(SFC_MBUF_SEG_LEN_MAX - 1) / SFC_EF10_TX_DMA_DESC_LEN_MAX;
|
|
|
|
/** Maximum length of the packet */
|
|
#define SFC_MBUF_PKT_LEN_MAX UINT32_MAX
|
|
RTE_BUILD_BUG_ON(sizeof(m->pkt_len) != 4);
|
|
|
|
/*
|
|
* One more limitation on maximum number of extra DMA descriptors
|
|
* comes from slicing entire packet because of DMA descriptor length
|
|
* limit taking into account that there is at least one segment
|
|
* which is already counted below (so division of the maximum
|
|
* packet length minus one with round down).
|
|
* TSO is not supported yet, so packet length is limited by
|
|
* maximum PDU size.
|
|
*/
|
|
extra_descs_per_pkt =
|
|
(RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
|
|
SFC_MBUF_PKT_LEN_MAX) - 1) /
|
|
SFC_EF10_TX_DMA_DESC_LEN_MAX;
|
|
|
|
return m->nb_segs + RTE_MIN(m->nb_segs * extra_descs_per_seg,
|
|
extra_descs_per_pkt);
|
|
}
|
|
|
|
static bool
|
|
sfc_ef10_try_reap(struct sfc_ef10_txq * const txq, unsigned int added,
|
|
unsigned int needed_desc, unsigned int *dma_desc_space,
|
|
bool *reap_done)
|
|
{
|
|
if (*reap_done)
|
|
return false;
|
|
|
|
if (added != txq->added) {
|
|
sfc_ef10_tx_qpush(txq, added, txq->added);
|
|
txq->added = added;
|
|
}
|
|
|
|
sfc_ef10_tx_reap(txq);
|
|
*reap_done = true;
|
|
|
|
/*
|
|
* Recalculate DMA descriptor space since Tx reap may change
|
|
* the number of completed descriptors
|
|
*/
|
|
*dma_desc_space = txq->max_fill_level -
|
|
(added - txq->completed);
|
|
|
|
return (needed_desc <= *dma_desc_space);
|
|
}
|
|
|
|
static int
|
|
sfc_ef10_xmit_tso_pkt(struct sfc_ef10_txq * const txq, struct rte_mbuf *m_seg,
|
|
unsigned int *added, unsigned int *dma_desc_space,
|
|
bool *reap_done)
|
|
{
|
|
size_t iph_off = m_seg->l2_len;
|
|
size_t tcph_off = m_seg->l2_len + m_seg->l3_len;
|
|
size_t header_len = m_seg->l2_len + m_seg->l3_len + m_seg->l4_len;
|
|
/* Offset of the payload in the last segment that contains the header */
|
|
size_t in_off = 0;
|
|
const struct tcp_hdr *th;
|
|
uint16_t packet_id;
|
|
uint32_t sent_seq;
|
|
uint8_t *hdr_addr;
|
|
rte_iova_t hdr_iova;
|
|
struct rte_mbuf *first_m_seg = m_seg;
|
|
unsigned int pkt_start = *added;
|
|
unsigned int needed_desc;
|
|
struct rte_mbuf *m_seg_to_free_up_to = first_m_seg;
|
|
bool eop;
|
|
|
|
/* Both checks may be done, so use bit OR to have only one branching */
|
|
if (unlikely((header_len > SFC_TSOH_STD_LEN) |
|
|
(tcph_off > txq->tso_tcp_header_offset_limit)))
|
|
return EMSGSIZE;
|
|
|
|
/*
|
|
* Preliminary estimation of required DMA descriptors, including extra
|
|
* descriptor for TSO header that is needed when the header is
|
|
* separated from payload in one segment. It does not include
|
|
* extra descriptors that may appear when a big segment is split across
|
|
* several descriptors.
|
|
*/
|
|
needed_desc = m_seg->nb_segs +
|
|
(unsigned int)SFC_TSO_OPT_DESCS_NUM +
|
|
(unsigned int)SFC_TSO_HDR_DESCS_NUM;
|
|
|
|
if (needed_desc > *dma_desc_space &&
|
|
!sfc_ef10_try_reap(txq, pkt_start, needed_desc,
|
|
dma_desc_space, reap_done)) {
|
|
/*
|
|
* If a future Tx reap may increase available DMA descriptor
|
|
* space, do not try to send the packet.
|
|
*/
|
|
if (txq->completed != pkt_start)
|
|
return ENOSPC;
|
|
/*
|
|
* Do not allow to send packet if the maximum DMA
|
|
* descriptor space is not sufficient to hold TSO
|
|
* descriptors, header descriptor and at least 1
|
|
* segment descriptor.
|
|
*/
|
|
if (*dma_desc_space < SFC_TSO_OPT_DESCS_NUM +
|
|
SFC_TSO_HDR_DESCS_NUM + 1)
|
|
return EMSGSIZE;
|
|
}
|
|
|
|
/* Check if the header is not fragmented */
|
|
if (rte_pktmbuf_data_len(m_seg) >= header_len) {
|
|
hdr_addr = rte_pktmbuf_mtod(m_seg, uint8_t *);
|
|
hdr_iova = rte_mbuf_data_iova(m_seg);
|
|
if (rte_pktmbuf_data_len(m_seg) == header_len) {
|
|
/* Cannot send a packet that consists only of header */
|
|
if (unlikely(m_seg->next == NULL))
|
|
return EMSGSIZE;
|
|
/*
|
|
* Associate header mbuf with header descriptor
|
|
* which is located after TSO descriptors.
|
|
*/
|
|
txq->sw_ring[(pkt_start + SFC_TSO_OPT_DESCS_NUM) &
|
|
txq->ptr_mask].mbuf = m_seg;
|
|
m_seg = m_seg->next;
|
|
in_off = 0;
|
|
|
|
/*
|
|
* If there is no payload offset (payload starts at the
|
|
* beginning of a segment) then an extra descriptor for
|
|
* separated header is not needed.
|
|
*/
|
|
needed_desc--;
|
|
} else {
|
|
in_off = header_len;
|
|
}
|
|
} else {
|
|
unsigned int copied_segs;
|
|
unsigned int hdr_addr_off = (*added & txq->ptr_mask) *
|
|
SFC_TSOH_STD_LEN;
|
|
|
|
hdr_addr = txq->tsoh + hdr_addr_off;
|
|
hdr_iova = txq->tsoh_iova + hdr_addr_off;
|
|
copied_segs = sfc_tso_prepare_header(hdr_addr, header_len,
|
|
&m_seg, &in_off);
|
|
|
|
/* Cannot send a packet that consists only of header */
|
|
if (unlikely(m_seg == NULL))
|
|
return EMSGSIZE;
|
|
|
|
m_seg_to_free_up_to = m_seg;
|
|
/*
|
|
* Reduce the number of needed descriptors by the number of
|
|
* segments that entirely consist of header data.
|
|
*/
|
|
needed_desc -= copied_segs;
|
|
|
|
/* Extra descriptor for separated header is not needed */
|
|
if (in_off == 0)
|
|
needed_desc--;
|
|
}
|
|
|
|
switch (first_m_seg->ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) {
|
|
case PKT_TX_IPV4: {
|
|
const struct ipv4_hdr *iphe4;
|
|
|
|
iphe4 = (const struct ipv4_hdr *)(hdr_addr + iph_off);
|
|
rte_memcpy(&packet_id, &iphe4->packet_id, sizeof(uint16_t));
|
|
packet_id = rte_be_to_cpu_16(packet_id);
|
|
break;
|
|
}
|
|
case PKT_TX_IPV6:
|
|
packet_id = 0;
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
th = (const struct tcp_hdr *)(hdr_addr + tcph_off);
|
|
rte_memcpy(&sent_seq, &th->sent_seq, sizeof(uint32_t));
|
|
sent_seq = rte_be_to_cpu_32(sent_seq);
|
|
|
|
sfc_ef10_tx_qdesc_tso2_create(txq, *added, packet_id, 0, sent_seq,
|
|
first_m_seg->tso_segsz);
|
|
(*added) += SFC_TSO_OPT_DESCS_NUM;
|
|
|
|
sfc_ef10_tx_qdesc_dma_create(hdr_iova, header_len, false,
|
|
&txq->txq_hw_ring[(*added) & txq->ptr_mask]);
|
|
(*added)++;
|
|
|
|
do {
|
|
rte_iova_t next_frag = rte_mbuf_data_iova(m_seg);
|
|
unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
|
|
unsigned int id;
|
|
|
|
next_frag += in_off;
|
|
seg_len -= in_off;
|
|
in_off = 0;
|
|
|
|
do {
|
|
rte_iova_t frag_addr = next_frag;
|
|
size_t frag_len;
|
|
|
|
frag_len = RTE_MIN(seg_len,
|
|
SFC_EF10_TX_DMA_DESC_LEN_MAX);
|
|
|
|
next_frag += frag_len;
|
|
seg_len -= frag_len;
|
|
|
|
eop = (seg_len == 0 && m_seg->next == NULL);
|
|
|
|
id = (*added) & txq->ptr_mask;
|
|
(*added)++;
|
|
|
|
/*
|
|
* Initially we assume that one DMA descriptor is needed
|
|
* for every segment. When the segment is split across
|
|
* several DMA descriptors, increase the estimation.
|
|
*/
|
|
needed_desc += (seg_len != 0);
|
|
|
|
/*
|
|
* When no more descriptors can be added, but not all
|
|
* segments are processed.
|
|
*/
|
|
if (*added - pkt_start == *dma_desc_space &&
|
|
!eop &&
|
|
!sfc_ef10_try_reap(txq, pkt_start, needed_desc,
|
|
dma_desc_space, reap_done)) {
|
|
struct rte_mbuf *m;
|
|
struct rte_mbuf *m_next;
|
|
|
|
if (txq->completed != pkt_start) {
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Reset mbuf associations with added
|
|
* descriptors.
|
|
*/
|
|
for (i = pkt_start; i != *added; i++) {
|
|
id = i & txq->ptr_mask;
|
|
txq->sw_ring[id].mbuf = NULL;
|
|
}
|
|
return ENOSPC;
|
|
}
|
|
|
|
/* Free the segments that cannot be sent */
|
|
for (m = m_seg->next; m != NULL; m = m_next) {
|
|
m_next = m->next;
|
|
rte_pktmbuf_free_seg(m);
|
|
}
|
|
eop = true;
|
|
/* Ignore the rest of the segment */
|
|
seg_len = 0;
|
|
}
|
|
|
|
sfc_ef10_tx_qdesc_dma_create(frag_addr, frag_len,
|
|
eop, &txq->txq_hw_ring[id]);
|
|
|
|
} while (seg_len != 0);
|
|
|
|
txq->sw_ring[id].mbuf = m_seg;
|
|
|
|
m_seg = m_seg->next;
|
|
} while (!eop);
|
|
|
|
/*
|
|
* Free segments which content was entirely copied to the TSO header
|
|
* memory space of Tx queue
|
|
*/
|
|
for (m_seg = first_m_seg; m_seg != m_seg_to_free_up_to;) {
|
|
struct rte_mbuf *seg_to_free = m_seg;
|
|
|
|
m_seg = m_seg->next;
|
|
rte_pktmbuf_free_seg(seg_to_free);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint16_t
|
|
sfc_ef10_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
|
|
unsigned int added;
|
|
unsigned int dma_desc_space;
|
|
bool reap_done;
|
|
struct rte_mbuf **pktp;
|
|
struct rte_mbuf **pktp_end;
|
|
|
|
if (unlikely(txq->flags &
|
|
(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
|
|
return 0;
|
|
|
|
added = txq->added;
|
|
dma_desc_space = txq->max_fill_level - (added - txq->completed);
|
|
|
|
reap_done = (dma_desc_space < txq->free_thresh);
|
|
if (reap_done) {
|
|
sfc_ef10_tx_reap(txq);
|
|
dma_desc_space = txq->max_fill_level - (added - txq->completed);
|
|
}
|
|
|
|
for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
|
|
pktp != pktp_end;
|
|
++pktp) {
|
|
struct rte_mbuf *m_seg = *pktp;
|
|
unsigned int pkt_start = added;
|
|
uint32_t pkt_len;
|
|
|
|
if (likely(pktp + 1 != pktp_end))
|
|
rte_mbuf_prefetch_part1(pktp[1]);
|
|
|
|
if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
|
|
int rc;
|
|
|
|
rc = sfc_ef10_xmit_tso_pkt(txq, m_seg, &added,
|
|
&dma_desc_space, &reap_done);
|
|
if (rc != 0) {
|
|
added = pkt_start;
|
|
|
|
/* Packet can be sent in following xmit calls */
|
|
if (likely(rc == ENOSPC))
|
|
break;
|
|
|
|
/*
|
|
* Packet cannot be sent, tell RTE that
|
|
* it is sent, but actually drop it and
|
|
* continue with another packet
|
|
*/
|
|
rte_pktmbuf_free(*pktp);
|
|
continue;
|
|
}
|
|
|
|
goto dma_desc_space_update;
|
|
}
|
|
|
|
if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space) {
|
|
if (reap_done)
|
|
break;
|
|
|
|
/* Push already prepared descriptors before polling */
|
|
if (added != txq->added) {
|
|
sfc_ef10_tx_qpush(txq, added, txq->added);
|
|
txq->added = added;
|
|
}
|
|
|
|
sfc_ef10_tx_reap(txq);
|
|
reap_done = true;
|
|
dma_desc_space = txq->max_fill_level -
|
|
(added - txq->completed);
|
|
if (sfc_ef10_tx_pkt_descs_max(m_seg) > dma_desc_space)
|
|
break;
|
|
}
|
|
|
|
pkt_len = m_seg->pkt_len;
|
|
do {
|
|
rte_iova_t seg_addr = rte_mbuf_data_iova(m_seg);
|
|
unsigned int seg_len = rte_pktmbuf_data_len(m_seg);
|
|
unsigned int id = added & txq->ptr_mask;
|
|
|
|
SFC_ASSERT(seg_len <= SFC_EF10_TX_DMA_DESC_LEN_MAX);
|
|
|
|
pkt_len -= seg_len;
|
|
|
|
sfc_ef10_tx_qdesc_dma_create(seg_addr,
|
|
seg_len, (pkt_len == 0),
|
|
&txq->txq_hw_ring[id]);
|
|
|
|
/*
|
|
* rte_pktmbuf_free() is commonly used in DPDK for
|
|
* recycling packets - the function checks every
|
|
* segment's reference counter and returns the
|
|
* buffer to its pool whenever possible;
|
|
* nevertheless, freeing mbuf segments one by one
|
|
* may entail some performance decline;
|
|
* from this point, sfc_efx_tx_reap() does the same job
|
|
* on its own and frees buffers in bulks (all mbufs
|
|
* within a bulk belong to the same pool);
|
|
* from this perspective, individual segment pointers
|
|
* must be associated with the corresponding SW
|
|
* descriptors independently so that only one loop
|
|
* is sufficient on reap to inspect all the buffers
|
|
*/
|
|
txq->sw_ring[id].mbuf = m_seg;
|
|
|
|
++added;
|
|
|
|
} while ((m_seg = m_seg->next) != 0);
|
|
|
|
dma_desc_space_update:
|
|
dma_desc_space -= (added - pkt_start);
|
|
}
|
|
|
|
if (likely(added != txq->added)) {
|
|
sfc_ef10_tx_qpush(txq, added, txq->added);
|
|
txq->added = added;
|
|
}
|
|
|
|
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
|
|
if (!reap_done)
|
|
sfc_ef10_tx_reap(txq);
|
|
#endif
|
|
|
|
return pktp - &tx_pkts[0];
|
|
}
|
|
|
|
static void
|
|
sfc_ef10_simple_tx_reap(struct sfc_ef10_txq *txq)
|
|
{
|
|
const unsigned int old_read_ptr = txq->evq_read_ptr;
|
|
const unsigned int ptr_mask = txq->ptr_mask;
|
|
unsigned int completed = txq->completed;
|
|
unsigned int pending = completed;
|
|
|
|
pending += sfc_ef10_tx_process_events(txq);
|
|
|
|
if (pending != completed) {
|
|
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
|
|
unsigned int nb = 0;
|
|
|
|
do {
|
|
struct sfc_ef10_tx_sw_desc *txd;
|
|
|
|
txd = &txq->sw_ring[completed & ptr_mask];
|
|
|
|
if (nb == RTE_DIM(bulk)) {
|
|
rte_mempool_put_bulk(bulk[0]->pool,
|
|
(void *)bulk, nb);
|
|
nb = 0;
|
|
}
|
|
|
|
bulk[nb++] = txd->mbuf;
|
|
} while (++completed != pending);
|
|
|
|
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
|
|
|
|
txq->completed = completed;
|
|
}
|
|
|
|
sfc_ef10_ev_qclear(txq->evq_hw_ring, ptr_mask, old_read_ptr,
|
|
txq->evq_read_ptr);
|
|
}
|
|
|
|
|
|
static uint16_t
|
|
sfc_ef10_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct sfc_ef10_txq * const txq = sfc_ef10_txq_by_dp_txq(tx_queue);
|
|
unsigned int ptr_mask;
|
|
unsigned int added;
|
|
unsigned int dma_desc_space;
|
|
bool reap_done;
|
|
struct rte_mbuf **pktp;
|
|
struct rte_mbuf **pktp_end;
|
|
|
|
if (unlikely(txq->flags &
|
|
(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
|
|
return 0;
|
|
|
|
ptr_mask = txq->ptr_mask;
|
|
added = txq->added;
|
|
dma_desc_space = txq->max_fill_level - (added - txq->completed);
|
|
|
|
reap_done = (dma_desc_space < RTE_MAX(txq->free_thresh, nb_pkts));
|
|
if (reap_done) {
|
|
sfc_ef10_simple_tx_reap(txq);
|
|
dma_desc_space = txq->max_fill_level - (added - txq->completed);
|
|
}
|
|
|
|
pktp_end = &tx_pkts[MIN(nb_pkts, dma_desc_space)];
|
|
for (pktp = &tx_pkts[0]; pktp != pktp_end; ++pktp) {
|
|
struct rte_mbuf *pkt = *pktp;
|
|
unsigned int id = added & ptr_mask;
|
|
|
|
SFC_ASSERT(rte_pktmbuf_data_len(pkt) <=
|
|
SFC_EF10_TX_DMA_DESC_LEN_MAX);
|
|
|
|
sfc_ef10_tx_qdesc_dma_create(rte_mbuf_data_iova(pkt),
|
|
rte_pktmbuf_data_len(pkt),
|
|
true, &txq->txq_hw_ring[id]);
|
|
|
|
txq->sw_ring[id].mbuf = pkt;
|
|
|
|
++added;
|
|
}
|
|
|
|
if (likely(added != txq->added)) {
|
|
sfc_ef10_tx_qpush(txq, added, txq->added);
|
|
txq->added = added;
|
|
}
|
|
|
|
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
|
|
if (!reap_done)
|
|
sfc_ef10_simple_tx_reap(txq);
|
|
#endif
|
|
|
|
return pktp - &tx_pkts[0];
|
|
}
|
|
|
|
static sfc_dp_tx_get_dev_info_t sfc_ef10_get_dev_info;
|
|
static void
|
|
sfc_ef10_get_dev_info(struct rte_eth_dev_info *dev_info)
|
|
{
|
|
/*
|
|
* Number of descriptors just defines maximum number of pushed
|
|
* descriptors (fill level).
|
|
*/
|
|
dev_info->tx_desc_lim.nb_min = 1;
|
|
dev_info->tx_desc_lim.nb_align = 1;
|
|
}
|
|
|
|
static sfc_dp_tx_qsize_up_rings_t sfc_ef10_tx_qsize_up_rings;
|
|
static int
|
|
sfc_ef10_tx_qsize_up_rings(uint16_t nb_tx_desc,
|
|
struct sfc_dp_tx_hw_limits *limits,
|
|
unsigned int *txq_entries,
|
|
unsigned int *evq_entries,
|
|
unsigned int *txq_max_fill_level)
|
|
{
|
|
/*
|
|
* rte_ethdev API guarantees that the number meets min, max and
|
|
* alignment requirements.
|
|
*/
|
|
if (nb_tx_desc <= limits->txq_min_entries)
|
|
*txq_entries = limits->txq_min_entries;
|
|
else
|
|
*txq_entries = rte_align32pow2(nb_tx_desc);
|
|
|
|
*evq_entries = *txq_entries;
|
|
|
|
*txq_max_fill_level = RTE_MIN(nb_tx_desc,
|
|
SFC_EF10_TXQ_LIMIT(*evq_entries));
|
|
return 0;
|
|
}
|
|
|
|
static sfc_dp_tx_qcreate_t sfc_ef10_tx_qcreate;
|
|
static int
|
|
sfc_ef10_tx_qcreate(uint16_t port_id, uint16_t queue_id,
|
|
const struct rte_pci_addr *pci_addr, int socket_id,
|
|
const struct sfc_dp_tx_qcreate_info *info,
|
|
struct sfc_dp_txq **dp_txqp)
|
|
{
|
|
struct sfc_ef10_txq *txq;
|
|
int rc;
|
|
|
|
rc = EINVAL;
|
|
if (info->txq_entries != info->evq_entries)
|
|
goto fail_bad_args;
|
|
|
|
rc = ENOMEM;
|
|
txq = rte_zmalloc_socket("sfc-ef10-txq", sizeof(*txq),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL)
|
|
goto fail_txq_alloc;
|
|
|
|
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
|
|
|
|
rc = ENOMEM;
|
|
txq->sw_ring = rte_calloc_socket("sfc-ef10-txq-sw_ring",
|
|
info->txq_entries,
|
|
sizeof(*txq->sw_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL)
|
|
goto fail_sw_ring_alloc;
|
|
|
|
if (info->offloads & DEV_TX_OFFLOAD_TCP_TSO) {
|
|
txq->tsoh = rte_calloc_socket("sfc-ef10-txq-tsoh",
|
|
info->txq_entries,
|
|
SFC_TSOH_STD_LEN,
|
|
RTE_CACHE_LINE_SIZE,
|
|
socket_id);
|
|
if (txq->tsoh == NULL)
|
|
goto fail_tsoh_alloc;
|
|
|
|
txq->tsoh_iova = rte_malloc_virt2iova(txq->tsoh);
|
|
}
|
|
|
|
txq->flags = SFC_EF10_TXQ_NOT_RUNNING;
|
|
txq->ptr_mask = info->txq_entries - 1;
|
|
txq->max_fill_level = info->max_fill_level;
|
|
txq->free_thresh = info->free_thresh;
|
|
txq->txq_hw_ring = info->txq_hw_ring;
|
|
txq->doorbell = (volatile uint8_t *)info->mem_bar +
|
|
ER_DZ_TX_DESC_UPD_REG_OFST +
|
|
(info->hw_index << info->vi_window_shift);
|
|
txq->evq_hw_ring = info->evq_hw_ring;
|
|
txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
|
|
|
|
*dp_txqp = &txq->dp;
|
|
return 0;
|
|
|
|
fail_tsoh_alloc:
|
|
rte_free(txq->sw_ring);
|
|
|
|
fail_sw_ring_alloc:
|
|
rte_free(txq);
|
|
|
|
fail_txq_alloc:
|
|
fail_bad_args:
|
|
return rc;
|
|
}
|
|
|
|
static sfc_dp_tx_qdestroy_t sfc_ef10_tx_qdestroy;
|
|
static void
|
|
sfc_ef10_tx_qdestroy(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
|
|
|
|
rte_free(txq->tsoh);
|
|
rte_free(txq->sw_ring);
|
|
rte_free(txq);
|
|
}
|
|
|
|
static sfc_dp_tx_qstart_t sfc_ef10_tx_qstart;
|
|
static int
|
|
sfc_ef10_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
|
|
unsigned int txq_desc_index)
|
|
{
|
|
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
|
|
|
|
txq->evq_read_ptr = evq_read_ptr;
|
|
txq->added = txq->completed = txq_desc_index;
|
|
|
|
txq->flags |= SFC_EF10_TXQ_STARTED;
|
|
txq->flags &= ~(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static sfc_dp_tx_qstop_t sfc_ef10_tx_qstop;
|
|
static void
|
|
sfc_ef10_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
|
|
{
|
|
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
|
|
|
|
txq->flags |= SFC_EF10_TXQ_NOT_RUNNING;
|
|
|
|
*evq_read_ptr = txq->evq_read_ptr;
|
|
}
|
|
|
|
static sfc_dp_tx_qtx_ev_t sfc_ef10_tx_qtx_ev;
|
|
static bool
|
|
sfc_ef10_tx_qtx_ev(struct sfc_dp_txq *dp_txq, __rte_unused unsigned int id)
|
|
{
|
|
__rte_unused struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
|
|
|
|
SFC_ASSERT(txq->flags & SFC_EF10_TXQ_NOT_RUNNING);
|
|
|
|
/*
|
|
* It is safe to ignore Tx event since we reap all mbufs on
|
|
* queue purge anyway.
|
|
*/
|
|
|
|
return false;
|
|
}
|
|
|
|
static sfc_dp_tx_qreap_t sfc_ef10_tx_qreap;
|
|
static void
|
|
sfc_ef10_tx_qreap(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
|
|
unsigned int completed;
|
|
|
|
for (completed = txq->completed; completed != txq->added; ++completed) {
|
|
struct sfc_ef10_tx_sw_desc *txd;
|
|
|
|
txd = &txq->sw_ring[completed & txq->ptr_mask];
|
|
if (txd->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txd->mbuf);
|
|
txd->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
txq->flags &= ~SFC_EF10_TXQ_STARTED;
|
|
}
|
|
|
|
static unsigned int
|
|
sfc_ef10_tx_qdesc_npending(struct sfc_ef10_txq *txq)
|
|
{
|
|
const unsigned int curr_done = txq->completed - 1;
|
|
unsigned int anew_done = curr_done;
|
|
efx_qword_t tx_ev;
|
|
const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
|
|
|
|
if (unlikely(txq->flags &
|
|
(SFC_EF10_TXQ_NOT_RUNNING | SFC_EF10_TXQ_EXCEPTION)))
|
|
return 0;
|
|
|
|
while (sfc_ef10_tx_get_event(txq, &tx_ev))
|
|
anew_done = EFX_QWORD_FIELD(tx_ev, ESF_DZ_TX_DESCR_INDX);
|
|
|
|
/*
|
|
* The function does not process events, so return event queue read
|
|
* pointer to the original position to allow the events that were
|
|
* read to be processed later
|
|
*/
|
|
txq->evq_read_ptr = evq_old_read_ptr;
|
|
|
|
return (anew_done - curr_done) & txq->ptr_mask;
|
|
}
|
|
|
|
static sfc_dp_tx_qdesc_status_t sfc_ef10_tx_qdesc_status;
|
|
static int
|
|
sfc_ef10_tx_qdesc_status(struct sfc_dp_txq *dp_txq,
|
|
uint16_t offset)
|
|
{
|
|
struct sfc_ef10_txq *txq = sfc_ef10_txq_by_dp_txq(dp_txq);
|
|
unsigned int npending = sfc_ef10_tx_qdesc_npending(txq);
|
|
|
|
if (unlikely(offset > txq->ptr_mask))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(offset >= txq->max_fill_level))
|
|
return RTE_ETH_TX_DESC_UNAVAIL;
|
|
|
|
if (unlikely(offset < npending))
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
}
|
|
|
|
struct sfc_dp_tx sfc_ef10_tx = {
|
|
.dp = {
|
|
.name = SFC_KVARG_DATAPATH_EF10,
|
|
.type = SFC_DP_TX,
|
|
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF10,
|
|
},
|
|
.features = SFC_DP_TX_FEAT_TSO |
|
|
SFC_DP_TX_FEAT_MULTI_SEG |
|
|
SFC_DP_TX_FEAT_MULTI_POOL |
|
|
SFC_DP_TX_FEAT_REFCNT |
|
|
SFC_DP_TX_FEAT_MULTI_PROCESS,
|
|
.get_dev_info = sfc_ef10_get_dev_info,
|
|
.qsize_up_rings = sfc_ef10_tx_qsize_up_rings,
|
|
.qcreate = sfc_ef10_tx_qcreate,
|
|
.qdestroy = sfc_ef10_tx_qdestroy,
|
|
.qstart = sfc_ef10_tx_qstart,
|
|
.qtx_ev = sfc_ef10_tx_qtx_ev,
|
|
.qstop = sfc_ef10_tx_qstop,
|
|
.qreap = sfc_ef10_tx_qreap,
|
|
.qdesc_status = sfc_ef10_tx_qdesc_status,
|
|
.pkt_burst = sfc_ef10_xmit_pkts,
|
|
};
|
|
|
|
struct sfc_dp_tx sfc_ef10_simple_tx = {
|
|
.dp = {
|
|
.name = SFC_KVARG_DATAPATH_EF10_SIMPLE,
|
|
.type = SFC_DP_TX,
|
|
},
|
|
.features = SFC_DP_TX_FEAT_MULTI_PROCESS,
|
|
.get_dev_info = sfc_ef10_get_dev_info,
|
|
.qsize_up_rings = sfc_ef10_tx_qsize_up_rings,
|
|
.qcreate = sfc_ef10_tx_qcreate,
|
|
.qdestroy = sfc_ef10_tx_qdestroy,
|
|
.qstart = sfc_ef10_tx_qstart,
|
|
.qtx_ev = sfc_ef10_tx_qtx_ev,
|
|
.qstop = sfc_ef10_tx_qstop,
|
|
.qreap = sfc_ef10_tx_qreap,
|
|
.qdesc_status = sfc_ef10_tx_qdesc_status,
|
|
.pkt_burst = sfc_ef10_simple_xmit_pkts,
|
|
};
|