numam-dpdk/drivers/net/liquidio/lio_rxtx.c
Shijith Thotton a2186b91b9 net/liquidio: add API to close device
Signed-off-by: Shijith Thotton <shijith.thotton@caviumnetworks.com>
Signed-off-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
Signed-off-by: Derek Chickles <derek.chickles@caviumnetworks.com>
Signed-off-by: Venkat Koppula <venkat.koppula@caviumnetworks.com>
Signed-off-by: Srisivasubramanian S <ssrinivasan@caviumnetworks.com>
Signed-off-by: Mallesham Jatharakonda <mjatharakonda@oneconvergence.com>
2017-04-04 18:59:50 +02:00

1886 lines
46 KiB
C

/*
* BSD LICENSE
*
* Copyright(c) 2017 Cavium, Inc.. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Cavium, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include "lio_logs.h"
#include "lio_struct.h"
#include "lio_ethdev.h"
#include "lio_rxtx.h"
#define LIO_MAX_SG 12
/* Flush iq if available tx_desc fall below LIO_FLUSH_WM */
#define LIO_FLUSH_WM(_iq) ((_iq)->max_count / 2)
#define LIO_PKT_IN_DONE_CNT_MASK 0x00000000FFFFFFFFULL
static void
lio_droq_compute_max_packet_bufs(struct lio_droq *droq)
{
uint32_t count = 0;
do {
count += droq->buffer_size;
} while (count < LIO_MAX_RX_PKTLEN);
}
static void
lio_droq_reset_indices(struct lio_droq *droq)
{
droq->read_idx = 0;
droq->write_idx = 0;
droq->refill_idx = 0;
droq->refill_count = 0;
rte_atomic64_set(&droq->pkts_pending, 0);
}
static void
lio_droq_destroy_ring_buffers(struct lio_droq *droq)
{
uint32_t i;
for (i = 0; i < droq->max_count; i++) {
if (droq->recv_buf_list[i].buffer) {
rte_pktmbuf_free((struct rte_mbuf *)
droq->recv_buf_list[i].buffer);
droq->recv_buf_list[i].buffer = NULL;
}
}
lio_droq_reset_indices(droq);
}
static void *
lio_recv_buffer_alloc(struct lio_device *lio_dev, int q_no)
{
struct lio_droq *droq = lio_dev->droq[q_no];
struct rte_mempool *mpool = droq->mpool;
struct rte_mbuf *m;
m = rte_pktmbuf_alloc(mpool);
if (m == NULL) {
lio_dev_err(lio_dev, "Cannot allocate\n");
return NULL;
}
rte_mbuf_refcnt_set(m, 1);
m->next = NULL;
m->data_off = RTE_PKTMBUF_HEADROOM;
m->nb_segs = 1;
m->pool = mpool;
return m;
}
static int
lio_droq_setup_ring_buffers(struct lio_device *lio_dev,
struct lio_droq *droq)
{
struct lio_droq_desc *desc_ring = droq->desc_ring;
uint32_t i;
void *buf;
for (i = 0; i < droq->max_count; i++) {
buf = lio_recv_buffer_alloc(lio_dev, droq->q_no);
if (buf == NULL) {
lio_dev_err(lio_dev, "buffer alloc failed\n");
droq->stats.rx_alloc_failure++;
lio_droq_destroy_ring_buffers(droq);
return -ENOMEM;
}
droq->recv_buf_list[i].buffer = buf;
droq->info_list[i].length = 0;
/* map ring buffers into memory */
desc_ring[i].info_ptr = lio_map_ring_info(droq, i);
desc_ring[i].buffer_ptr =
lio_map_ring(droq->recv_buf_list[i].buffer);
}
lio_droq_reset_indices(droq);
lio_droq_compute_max_packet_bufs(droq);
return 0;
}
static void
lio_dma_zone_free(struct lio_device *lio_dev, const struct rte_memzone *mz)
{
const struct rte_memzone *mz_tmp;
int ret = 0;
if (mz == NULL) {
lio_dev_err(lio_dev, "Memzone NULL\n");
return;
}
mz_tmp = rte_memzone_lookup(mz->name);
if (mz_tmp == NULL) {
lio_dev_err(lio_dev, "Memzone %s Not Found\n", mz->name);
return;
}
ret = rte_memzone_free(mz);
if (ret)
lio_dev_err(lio_dev, "Memzone free Failed ret %d\n", ret);
}
/**
* Frees the space for descriptor ring for the droq.
*
* @param lio_dev - pointer to the lio device structure
* @param q_no - droq no.
*/
static void
lio_delete_droq(struct lio_device *lio_dev, uint32_t q_no)
{
struct lio_droq *droq = lio_dev->droq[q_no];
lio_dev_dbg(lio_dev, "OQ[%d]\n", q_no);
lio_droq_destroy_ring_buffers(droq);
rte_free(droq->recv_buf_list);
droq->recv_buf_list = NULL;
lio_dma_zone_free(lio_dev, droq->info_mz);
lio_dma_zone_free(lio_dev, droq->desc_ring_mz);
memset(droq, 0, LIO_DROQ_SIZE);
}
static void *
lio_alloc_info_buffer(struct lio_device *lio_dev,
struct lio_droq *droq, unsigned int socket_id)
{
droq->info_mz = rte_eth_dma_zone_reserve(lio_dev->eth_dev,
"info_list", droq->q_no,
(droq->max_count *
LIO_DROQ_INFO_SIZE),
RTE_CACHE_LINE_SIZE,
socket_id);
if (droq->info_mz == NULL)
return NULL;
droq->info_list_dma = droq->info_mz->phys_addr;
droq->info_alloc_size = droq->info_mz->len;
droq->info_base_addr = (size_t)droq->info_mz->addr;
return droq->info_mz->addr;
}
/**
* Allocates space for the descriptor ring for the droq and
* sets the base addr, num desc etc in Octeon registers.
*
* @param lio_dev - pointer to the lio device structure
* @param q_no - droq no.
* @param app_ctx - pointer to application context
* @return Success: 0 Failure: -1
*/
static int
lio_init_droq(struct lio_device *lio_dev, uint32_t q_no,
uint32_t num_descs, uint32_t desc_size,
struct rte_mempool *mpool, unsigned int socket_id)
{
uint32_t c_refill_threshold;
uint32_t desc_ring_size;
struct lio_droq *droq;
lio_dev_dbg(lio_dev, "OQ[%d]\n", q_no);
droq = lio_dev->droq[q_no];
droq->lio_dev = lio_dev;
droq->q_no = q_no;
droq->mpool = mpool;
c_refill_threshold = LIO_OQ_REFILL_THRESHOLD_CFG(lio_dev);
droq->max_count = num_descs;
droq->buffer_size = desc_size;
desc_ring_size = droq->max_count * LIO_DROQ_DESC_SIZE;
droq->desc_ring_mz = rte_eth_dma_zone_reserve(lio_dev->eth_dev,
"droq", q_no,
desc_ring_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (droq->desc_ring_mz == NULL) {
lio_dev_err(lio_dev,
"Output queue %d ring alloc failed\n", q_no);
return -1;
}
droq->desc_ring_dma = droq->desc_ring_mz->phys_addr;
droq->desc_ring = (struct lio_droq_desc *)droq->desc_ring_mz->addr;
lio_dev_dbg(lio_dev, "droq[%d]: desc_ring: virt: 0x%p, dma: %lx\n",
q_no, droq->desc_ring, (unsigned long)droq->desc_ring_dma);
lio_dev_dbg(lio_dev, "droq[%d]: num_desc: %d\n", q_no,
droq->max_count);
droq->info_list = lio_alloc_info_buffer(lio_dev, droq, socket_id);
if (droq->info_list == NULL) {
lio_dev_err(lio_dev, "Cannot allocate memory for info list.\n");
goto init_droq_fail;
}
droq->recv_buf_list = rte_zmalloc_socket("recv_buf_list",
(droq->max_count *
LIO_DROQ_RECVBUF_SIZE),
RTE_CACHE_LINE_SIZE,
socket_id);
if (droq->recv_buf_list == NULL) {
lio_dev_err(lio_dev,
"Output queue recv buf list alloc failed\n");
goto init_droq_fail;
}
if (lio_droq_setup_ring_buffers(lio_dev, droq))
goto init_droq_fail;
droq->refill_threshold = c_refill_threshold;
rte_spinlock_init(&droq->lock);
lio_dev->fn_list.setup_oq_regs(lio_dev, q_no);
lio_dev->io_qmask.oq |= (1ULL << q_no);
return 0;
init_droq_fail:
lio_delete_droq(lio_dev, q_no);
return -1;
}
int
lio_setup_droq(struct lio_device *lio_dev, int oq_no, int num_descs,
int desc_size, struct rte_mempool *mpool, unsigned int socket_id)
{
struct lio_droq *droq;
PMD_INIT_FUNC_TRACE();
if (lio_dev->droq[oq_no]) {
lio_dev_dbg(lio_dev, "Droq %d in use\n", oq_no);
return 0;
}
/* Allocate the DS for the new droq. */
droq = rte_zmalloc_socket("ethdev RX queue", sizeof(*droq),
RTE_CACHE_LINE_SIZE, socket_id);
if (droq == NULL)
return -ENOMEM;
lio_dev->droq[oq_no] = droq;
/* Initialize the Droq */
if (lio_init_droq(lio_dev, oq_no, num_descs, desc_size, mpool,
socket_id)) {
lio_dev_err(lio_dev, "Droq[%u] Initialization Failed\n", oq_no);
rte_free(lio_dev->droq[oq_no]);
lio_dev->droq[oq_no] = NULL;
return -ENOMEM;
}
lio_dev->num_oqs++;
lio_dev_dbg(lio_dev, "Total number of OQ: %d\n", lio_dev->num_oqs);
/* Send credit for octeon output queues. credits are always
* sent after the output queue is enabled.
*/
rte_write32(lio_dev->droq[oq_no]->max_count,
lio_dev->droq[oq_no]->pkts_credit_reg);
rte_wmb();
return 0;
}
static inline uint32_t
lio_droq_get_bufcount(uint32_t buf_size, uint32_t total_len)
{
uint32_t buf_cnt = 0;
while (total_len > (buf_size * buf_cnt))
buf_cnt++;
return buf_cnt;
}
/* If we were not able to refill all buffers, try to move around
* the buffers that were not dispatched.
*/
static inline uint32_t
lio_droq_refill_pullup_descs(struct lio_droq *droq,
struct lio_droq_desc *desc_ring)
{
uint32_t refill_index = droq->refill_idx;
uint32_t desc_refilled = 0;
while (refill_index != droq->read_idx) {
if (droq->recv_buf_list[refill_index].buffer) {
droq->recv_buf_list[droq->refill_idx].buffer =
droq->recv_buf_list[refill_index].buffer;
desc_ring[droq->refill_idx].buffer_ptr =
desc_ring[refill_index].buffer_ptr;
droq->recv_buf_list[refill_index].buffer = NULL;
desc_ring[refill_index].buffer_ptr = 0;
do {
droq->refill_idx = lio_incr_index(
droq->refill_idx, 1,
droq->max_count);
desc_refilled++;
droq->refill_count--;
} while (droq->recv_buf_list[droq->refill_idx].buffer);
}
refill_index = lio_incr_index(refill_index, 1,
droq->max_count);
} /* while */
return desc_refilled;
}
/* lio_droq_refill
*
* @param lio_dev - pointer to the lio device structure
* @param droq - droq in which descriptors require new buffers.
*
* Description:
* Called during normal DROQ processing in interrupt mode or by the poll
* thread to refill the descriptors from which buffers were dispatched
* to upper layers. Attempts to allocate new buffers. If that fails, moves
* up buffers (that were not dispatched) to form a contiguous ring.
*
* Returns:
* No of descriptors refilled.
*
* Locks:
* This routine is called with droq->lock held.
*/
static uint32_t
lio_droq_refill(struct lio_device *lio_dev, struct lio_droq *droq)
{
struct lio_droq_desc *desc_ring;
uint32_t desc_refilled = 0;
void *buf = NULL;
desc_ring = droq->desc_ring;
while (droq->refill_count && (desc_refilled < droq->max_count)) {
/* If a valid buffer exists (happens if there is no dispatch),
* reuse the buffer, else allocate.
*/
if (droq->recv_buf_list[droq->refill_idx].buffer == NULL) {
buf = lio_recv_buffer_alloc(lio_dev, droq->q_no);
/* If a buffer could not be allocated, no point in
* continuing
*/
if (buf == NULL) {
droq->stats.rx_alloc_failure++;
break;
}
droq->recv_buf_list[droq->refill_idx].buffer = buf;
}
desc_ring[droq->refill_idx].buffer_ptr =
lio_map_ring(droq->recv_buf_list[droq->refill_idx].buffer);
/* Reset any previous values in the length field. */
droq->info_list[droq->refill_idx].length = 0;
droq->refill_idx = lio_incr_index(droq->refill_idx, 1,
droq->max_count);
desc_refilled++;
droq->refill_count--;
}
if (droq->refill_count)
desc_refilled += lio_droq_refill_pullup_descs(droq, desc_ring);
/* if droq->refill_count
* The refill count would not change in pass two. We only moved buffers
* to close the gap in the ring, but we would still have the same no. of
* buffers to refill.
*/
return desc_refilled;
}
static int
lio_droq_fast_process_packet(struct lio_device *lio_dev,
struct lio_droq *droq,
struct rte_mbuf **rx_pkts)
{
struct rte_mbuf *nicbuf = NULL;
struct lio_droq_info *info;
uint32_t total_len = 0;
int data_total_len = 0;
uint32_t pkt_len = 0;
union octeon_rh *rh;
int data_pkts = 0;
info = &droq->info_list[droq->read_idx];
lio_swap_8B_data((uint64_t *)info, 2);
if (!info->length)
return -1;
/* Len of resp hdr in included in the received data len. */
info->length -= OCTEON_RH_SIZE;
rh = &info->rh;
total_len += (uint32_t)info->length;
if (lio_opcode_slow_path(rh)) {
uint32_t buf_cnt;
buf_cnt = lio_droq_get_bufcount(droq->buffer_size,
(uint32_t)info->length);
droq->read_idx = lio_incr_index(droq->read_idx, buf_cnt,
droq->max_count);
droq->refill_count += buf_cnt;
} else {
if (info->length <= droq->buffer_size) {
if (rh->r_dh.has_hash)
pkt_len = (uint32_t)(info->length - 8);
else
pkt_len = (uint32_t)info->length;
nicbuf = droq->recv_buf_list[droq->read_idx].buffer;
droq->recv_buf_list[droq->read_idx].buffer = NULL;
droq->read_idx = lio_incr_index(
droq->read_idx, 1,
droq->max_count);
droq->refill_count++;
if (likely(nicbuf != NULL)) {
nicbuf->data_off = RTE_PKTMBUF_HEADROOM;
nicbuf->nb_segs = 1;
nicbuf->next = NULL;
/* We don't have a way to pass flags yet */
nicbuf->ol_flags = 0;
if (rh->r_dh.has_hash) {
uint64_t *hash_ptr;
nicbuf->ol_flags |= PKT_RX_RSS_HASH;
hash_ptr = rte_pktmbuf_mtod(nicbuf,
uint64_t *);
lio_swap_8B_data(hash_ptr, 1);
nicbuf->hash.rss = (uint32_t)*hash_ptr;
nicbuf->data_off += 8;
}
nicbuf->pkt_len = pkt_len;
nicbuf->data_len = pkt_len;
nicbuf->port = lio_dev->port_id;
/* Store the mbuf */
rx_pkts[data_pkts++] = nicbuf;
data_total_len += pkt_len;
}
/* Prefetch buffer pointers when on a cache line
* boundary
*/
if ((droq->read_idx & 3) == 0) {
rte_prefetch0(
&droq->recv_buf_list[droq->read_idx]);
rte_prefetch0(
&droq->info_list[droq->read_idx]);
}
} else {
struct rte_mbuf *first_buf = NULL;
struct rte_mbuf *last_buf = NULL;
while (pkt_len < info->length) {
int cpy_len = 0;
cpy_len = ((pkt_len + droq->buffer_size) >
info->length)
? ((uint32_t)info->length -
pkt_len)
: droq->buffer_size;
nicbuf =
droq->recv_buf_list[droq->read_idx].buffer;
droq->recv_buf_list[droq->read_idx].buffer =
NULL;
if (likely(nicbuf != NULL)) {
/* Note the first seg */
if (!pkt_len)
first_buf = nicbuf;
nicbuf->data_off = RTE_PKTMBUF_HEADROOM;
nicbuf->nb_segs = 1;
nicbuf->next = NULL;
nicbuf->port = lio_dev->port_id;
/* We don't have a way to pass
* flags yet
*/
nicbuf->ol_flags = 0;
if ((!pkt_len) && (rh->r_dh.has_hash)) {
uint64_t *hash_ptr;
nicbuf->ol_flags |=
PKT_RX_RSS_HASH;
hash_ptr = rte_pktmbuf_mtod(
nicbuf, uint64_t *);
lio_swap_8B_data(hash_ptr, 1);
nicbuf->hash.rss =
(uint32_t)*hash_ptr;
nicbuf->data_off += 8;
nicbuf->pkt_len = cpy_len - 8;
nicbuf->data_len = cpy_len - 8;
} else {
nicbuf->pkt_len = cpy_len;
nicbuf->data_len = cpy_len;
}
if (pkt_len)
first_buf->nb_segs++;
if (last_buf)
last_buf->next = nicbuf;
last_buf = nicbuf;
} else {
PMD_RX_LOG(lio_dev, ERR, "no buf\n");
}
pkt_len += cpy_len;
droq->read_idx = lio_incr_index(
droq->read_idx,
1, droq->max_count);
droq->refill_count++;
/* Prefetch buffer pointers when on a
* cache line boundary
*/
if ((droq->read_idx & 3) == 0) {
rte_prefetch0(&droq->recv_buf_list
[droq->read_idx]);
rte_prefetch0(
&droq->info_list[droq->read_idx]);
}
}
rx_pkts[data_pkts++] = first_buf;
if (rh->r_dh.has_hash)
data_total_len += (pkt_len - 8);
else
data_total_len += pkt_len;
}
/* Inform upper layer about packet checksum verification */
struct rte_mbuf *m = rx_pkts[data_pkts - 1];
if (rh->r_dh.csum_verified & LIO_IP_CSUM_VERIFIED)
m->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
if (rh->r_dh.csum_verified & LIO_L4_CSUM_VERIFIED)
m->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
}
if (droq->refill_count >= droq->refill_threshold) {
int desc_refilled = lio_droq_refill(lio_dev, droq);
/* Flush the droq descriptor data to memory to be sure
* that when we update the credits the data in memory is
* accurate.
*/
rte_wmb();
rte_write32(desc_refilled, droq->pkts_credit_reg);
/* make sure mmio write completes */
rte_wmb();
}
info->length = 0;
info->rh.rh64 = 0;
droq->stats.pkts_received++;
droq->stats.rx_pkts_received += data_pkts;
droq->stats.rx_bytes_received += data_total_len;
droq->stats.bytes_received += total_len;
return data_pkts;
}
static uint32_t
lio_droq_fast_process_packets(struct lio_device *lio_dev,
struct lio_droq *droq,
struct rte_mbuf **rx_pkts,
uint32_t pkts_to_process)
{
int ret, data_pkts = 0;
uint32_t pkt;
for (pkt = 0; pkt < pkts_to_process; pkt++) {
ret = lio_droq_fast_process_packet(lio_dev, droq,
&rx_pkts[data_pkts]);
if (ret < 0) {
lio_dev_err(lio_dev, "Port[%d] DROQ[%d] idx: %d len:0, pkt_cnt: %d\n",
lio_dev->port_id, droq->q_no,
droq->read_idx, pkts_to_process);
break;
}
data_pkts += ret;
}
rte_atomic64_sub(&droq->pkts_pending, pkt);
return data_pkts;
}
static inline uint32_t
lio_droq_check_hw_for_pkts(struct lio_droq *droq)
{
uint32_t last_count;
uint32_t pkt_count;
pkt_count = rte_read32(droq->pkts_sent_reg);
last_count = pkt_count - droq->pkt_count;
droq->pkt_count = pkt_count;
if (last_count)
rte_atomic64_add(&droq->pkts_pending, last_count);
return last_count;
}
uint16_t
lio_dev_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t budget)
{
struct lio_droq *droq = rx_queue;
struct lio_device *lio_dev = droq->lio_dev;
uint32_t pkts_processed = 0;
uint32_t pkt_count = 0;
lio_droq_check_hw_for_pkts(droq);
pkt_count = rte_atomic64_read(&droq->pkts_pending);
if (!pkt_count)
return 0;
if (pkt_count > budget)
pkt_count = budget;
/* Grab the lock */
rte_spinlock_lock(&droq->lock);
pkts_processed = lio_droq_fast_process_packets(lio_dev,
droq, rx_pkts,
pkt_count);
if (droq->pkt_count) {
rte_write32(droq->pkt_count, droq->pkts_sent_reg);
droq->pkt_count = 0;
}
/* Release the spin lock */
rte_spinlock_unlock(&droq->lock);
return pkts_processed;
}
void
lio_delete_droq_queue(struct lio_device *lio_dev,
int oq_no)
{
lio_delete_droq(lio_dev, oq_no);
lio_dev->num_oqs--;
rte_free(lio_dev->droq[oq_no]);
lio_dev->droq[oq_no] = NULL;
}
/**
* lio_init_instr_queue()
* @param lio_dev - pointer to the lio device structure.
* @param txpciq - queue to be initialized.
*
* Called at driver init time for each input queue. iq_conf has the
* configuration parameters for the queue.
*
* @return Success: 0 Failure: -1
*/
static int
lio_init_instr_queue(struct lio_device *lio_dev,
union octeon_txpciq txpciq,
uint32_t num_descs, unsigned int socket_id)
{
uint32_t iq_no = (uint32_t)txpciq.s.q_no;
struct lio_instr_queue *iq;
uint32_t instr_type;
uint32_t q_size;
instr_type = LIO_IQ_INSTR_TYPE(lio_dev);
q_size = instr_type * num_descs;
iq = lio_dev->instr_queue[iq_no];
iq->iq_mz = rte_eth_dma_zone_reserve(lio_dev->eth_dev,
"instr_queue", iq_no, q_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (iq->iq_mz == NULL) {
lio_dev_err(lio_dev, "Cannot allocate memory for instr queue %d\n",
iq_no);
return -1;
}
iq->base_addr_dma = iq->iq_mz->phys_addr;
iq->base_addr = (uint8_t *)iq->iq_mz->addr;
iq->max_count = num_descs;
/* Initialize a list to holds requests that have been posted to Octeon
* but has yet to be fetched by octeon
*/
iq->request_list = rte_zmalloc_socket("request_list",
sizeof(*iq->request_list) *
num_descs,
RTE_CACHE_LINE_SIZE,
socket_id);
if (iq->request_list == NULL) {
lio_dev_err(lio_dev, "Alloc failed for IQ[%d] nr free list\n",
iq_no);
lio_dma_zone_free(lio_dev, iq->iq_mz);
return -1;
}
lio_dev_dbg(lio_dev, "IQ[%d]: base: %p basedma: %lx count: %d\n",
iq_no, iq->base_addr, (unsigned long)iq->base_addr_dma,
iq->max_count);
iq->lio_dev = lio_dev;
iq->txpciq.txpciq64 = txpciq.txpciq64;
iq->fill_cnt = 0;
iq->host_write_index = 0;
iq->lio_read_index = 0;
iq->flush_index = 0;
rte_atomic64_set(&iq->instr_pending, 0);
/* Initialize the spinlock for this instruction queue */
rte_spinlock_init(&iq->lock);
rte_spinlock_init(&iq->post_lock);
rte_atomic64_clear(&iq->iq_flush_running);
lio_dev->io_qmask.iq |= (1ULL << iq_no);
/* Set the 32B/64B mode for each input queue */
lio_dev->io_qmask.iq64B |= ((instr_type == 64) << iq_no);
iq->iqcmd_64B = (instr_type == 64);
lio_dev->fn_list.setup_iq_regs(lio_dev, iq_no);
return 0;
}
int
lio_setup_instr_queue0(struct lio_device *lio_dev)
{
union octeon_txpciq txpciq;
uint32_t num_descs = 0;
uint32_t iq_no = 0;
num_descs = LIO_NUM_DEF_TX_DESCS_CFG(lio_dev);
lio_dev->num_iqs = 0;
lio_dev->instr_queue[0] = rte_zmalloc(NULL,
sizeof(struct lio_instr_queue), 0);
if (lio_dev->instr_queue[0] == NULL)
return -ENOMEM;
lio_dev->instr_queue[0]->q_index = 0;
lio_dev->instr_queue[0]->app_ctx = (void *)(size_t)0;
txpciq.txpciq64 = 0;
txpciq.s.q_no = iq_no;
txpciq.s.pkind = lio_dev->pfvf_hsword.pkind;
txpciq.s.use_qpg = 0;
txpciq.s.qpg = 0;
if (lio_init_instr_queue(lio_dev, txpciq, num_descs, SOCKET_ID_ANY)) {
rte_free(lio_dev->instr_queue[0]);
lio_dev->instr_queue[0] = NULL;
return -1;
}
lio_dev->num_iqs++;
return 0;
}
/**
* lio_delete_instr_queue()
* @param lio_dev - pointer to the lio device structure.
* @param iq_no - queue to be deleted.
*
* Called at driver unload time for each input queue. Deletes all
* allocated resources for the input queue.
*/
static void
lio_delete_instr_queue(struct lio_device *lio_dev, uint32_t iq_no)
{
struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no];
rte_free(iq->request_list);
iq->request_list = NULL;
lio_dma_zone_free(lio_dev, iq->iq_mz);
}
void
lio_free_instr_queue0(struct lio_device *lio_dev)
{
lio_delete_instr_queue(lio_dev, 0);
rte_free(lio_dev->instr_queue[0]);
lio_dev->instr_queue[0] = NULL;
lio_dev->num_iqs--;
}
/* Return 0 on success, -1 on failure */
int
lio_setup_iq(struct lio_device *lio_dev, int q_index,
union octeon_txpciq txpciq, uint32_t num_descs, void *app_ctx,
unsigned int socket_id)
{
uint32_t iq_no = (uint32_t)txpciq.s.q_no;
if (lio_dev->instr_queue[iq_no]) {
lio_dev_dbg(lio_dev, "IQ is in use. Cannot create the IQ: %d again\n",
iq_no);
lio_dev->instr_queue[iq_no]->txpciq.txpciq64 = txpciq.txpciq64;
lio_dev->instr_queue[iq_no]->app_ctx = app_ctx;
return 0;
}
lio_dev->instr_queue[iq_no] = rte_zmalloc_socket("ethdev TX queue",
sizeof(struct lio_instr_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (lio_dev->instr_queue[iq_no] == NULL)
return -1;
lio_dev->instr_queue[iq_no]->q_index = q_index;
lio_dev->instr_queue[iq_no]->app_ctx = app_ctx;
if (lio_init_instr_queue(lio_dev, txpciq, num_descs, socket_id))
goto release_lio_iq;
lio_dev->num_iqs++;
if (lio_dev->fn_list.enable_io_queues(lio_dev))
goto delete_lio_iq;
return 0;
delete_lio_iq:
lio_delete_instr_queue(lio_dev, iq_no);
lio_dev->num_iqs--;
release_lio_iq:
rte_free(lio_dev->instr_queue[iq_no]);
lio_dev->instr_queue[iq_no] = NULL;
return -1;
}
int
lio_wait_for_instr_fetch(struct lio_device *lio_dev)
{
int pending, instr_cnt;
int i, retry = 1000;
do {
instr_cnt = 0;
for (i = 0; i < LIO_MAX_INSTR_QUEUES(lio_dev); i++) {
if (!(lio_dev->io_qmask.iq & (1ULL << i)))
continue;
if (lio_dev->instr_queue[i] == NULL)
break;
pending = rte_atomic64_read(
&lio_dev->instr_queue[i]->instr_pending);
if (pending)
lio_flush_iq(lio_dev, lio_dev->instr_queue[i]);
instr_cnt += pending;
}
if (instr_cnt == 0)
break;
rte_delay_ms(1);
} while (retry-- && instr_cnt);
return instr_cnt;
}
static inline void
lio_ring_doorbell(struct lio_device *lio_dev,
struct lio_instr_queue *iq)
{
if (rte_atomic64_read(&lio_dev->status) == LIO_DEV_RUNNING) {
rte_write32(iq->fill_cnt, iq->doorbell_reg);
/* make sure doorbell write goes through */
rte_wmb();
iq->fill_cnt = 0;
}
}
static inline void
copy_cmd_into_iq(struct lio_instr_queue *iq, uint8_t *cmd)
{
uint8_t *iqptr, cmdsize;
cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
rte_memcpy(iqptr, cmd, cmdsize);
}
static inline struct lio_iq_post_status
post_command2(struct lio_instr_queue *iq, uint8_t *cmd)
{
struct lio_iq_post_status st;
st.status = LIO_IQ_SEND_OK;
/* This ensures that the read index does not wrap around to the same
* position if queue gets full before Octeon could fetch any instr.
*/
if (rte_atomic64_read(&iq->instr_pending) >=
(int32_t)(iq->max_count - 1)) {
st.status = LIO_IQ_SEND_FAILED;
st.index = -1;
return st;
}
if (rte_atomic64_read(&iq->instr_pending) >=
(int32_t)(iq->max_count - 2))
st.status = LIO_IQ_SEND_STOP;
copy_cmd_into_iq(iq, cmd);
/* "index" is returned, host_write_index is modified. */
st.index = iq->host_write_index;
iq->host_write_index = lio_incr_index(iq->host_write_index, 1,
iq->max_count);
iq->fill_cnt++;
/* Flush the command into memory. We need to be sure the data is in
* memory before indicating that the instruction is pending.
*/
rte_wmb();
rte_atomic64_inc(&iq->instr_pending);
return st;
}
static inline void
lio_add_to_request_list(struct lio_instr_queue *iq,
int idx, void *buf, int reqtype)
{
iq->request_list[idx].buf = buf;
iq->request_list[idx].reqtype = reqtype;
}
static inline void
lio_free_netsgbuf(void *buf)
{
struct lio_buf_free_info *finfo = buf;
struct lio_device *lio_dev = finfo->lio_dev;
struct rte_mbuf *m = finfo->mbuf;
struct lio_gather *g = finfo->g;
uint8_t iq = finfo->iq_no;
/* This will take care of multiple segments also */
rte_pktmbuf_free(m);
rte_spinlock_lock(&lio_dev->glist_lock[iq]);
STAILQ_INSERT_TAIL(&lio_dev->glist_head[iq], &g->list, entries);
rte_spinlock_unlock(&lio_dev->glist_lock[iq]);
rte_free(finfo);
}
/* Can only run in process context */
static int
lio_process_iq_request_list(struct lio_device *lio_dev,
struct lio_instr_queue *iq)
{
struct octeon_instr_irh *irh = NULL;
uint32_t old = iq->flush_index;
struct lio_soft_command *sc;
uint32_t inst_count = 0;
int reqtype;
void *buf;
while (old != iq->lio_read_index) {
reqtype = iq->request_list[old].reqtype;
buf = iq->request_list[old].buf;
if (reqtype == LIO_REQTYPE_NONE)
goto skip_this;
switch (reqtype) {
case LIO_REQTYPE_NORESP_NET:
rte_pktmbuf_free((struct rte_mbuf *)buf);
break;
case LIO_REQTYPE_NORESP_NET_SG:
lio_free_netsgbuf(buf);
break;
case LIO_REQTYPE_SOFT_COMMAND:
sc = buf;
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
if (irh->rflag) {
/* We're expecting a response from Octeon.
* It's up to lio_process_ordered_list() to
* process sc. Add sc to the ordered soft
* command response list because we expect
* a response from Octeon.
*/
rte_spinlock_lock(&lio_dev->response_list.lock);
rte_atomic64_inc(
&lio_dev->response_list.pending_req_count);
STAILQ_INSERT_TAIL(
&lio_dev->response_list.head,
&sc->node, entries);
rte_spinlock_unlock(
&lio_dev->response_list.lock);
} else {
if (sc->callback) {
/* This callback must not sleep */
sc->callback(LIO_REQUEST_DONE,
sc->callback_arg);
}
}
break;
default:
lio_dev_err(lio_dev,
"Unknown reqtype: %d buf: %p at idx %d\n",
reqtype, buf, old);
}
iq->request_list[old].buf = NULL;
iq->request_list[old].reqtype = 0;
skip_this:
inst_count++;
old = lio_incr_index(old, 1, iq->max_count);
}
iq->flush_index = old;
return inst_count;
}
static void
lio_update_read_index(struct lio_instr_queue *iq)
{
uint32_t pkt_in_done = rte_read32(iq->inst_cnt_reg);
uint32_t last_done;
last_done = pkt_in_done - iq->pkt_in_done;
iq->pkt_in_done = pkt_in_done;
/* Add last_done and modulo with the IQ size to get new index */
iq->lio_read_index = (iq->lio_read_index +
(uint32_t)(last_done & LIO_PKT_IN_DONE_CNT_MASK)) %
iq->max_count;
}
int
lio_flush_iq(struct lio_device *lio_dev, struct lio_instr_queue *iq)
{
uint32_t tot_inst_processed = 0;
uint32_t inst_processed = 0;
int tx_done = 1;
if (rte_atomic64_test_and_set(&iq->iq_flush_running) == 0)
return tx_done;
rte_spinlock_lock(&iq->lock);
lio_update_read_index(iq);
do {
/* Process any outstanding IQ packets. */
if (iq->flush_index == iq->lio_read_index)
break;
inst_processed = lio_process_iq_request_list(lio_dev, iq);
if (inst_processed) {
rte_atomic64_sub(&iq->instr_pending, inst_processed);
iq->stats.instr_processed += inst_processed;
}
tot_inst_processed += inst_processed;
inst_processed = 0;
} while (1);
rte_spinlock_unlock(&iq->lock);
rte_atomic64_clear(&iq->iq_flush_running);
return tx_done;
}
static int
lio_send_command(struct lio_device *lio_dev, uint32_t iq_no, void *cmd,
void *buf, uint32_t datasize, uint32_t reqtype)
{
struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no];
struct lio_iq_post_status st;
rte_spinlock_lock(&iq->post_lock);
st = post_command2(iq, cmd);
if (st.status != LIO_IQ_SEND_FAILED) {
lio_add_to_request_list(iq, st.index, buf, reqtype);
LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, bytes_sent,
datasize);
LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, instr_posted, 1);
lio_ring_doorbell(lio_dev, iq);
} else {
LIO_INCR_INSTRQUEUE_PKT_COUNT(lio_dev, iq_no, instr_dropped, 1);
}
rte_spinlock_unlock(&iq->post_lock);
return st.status;
}
void
lio_prepare_soft_command(struct lio_device *lio_dev,
struct lio_soft_command *sc, uint8_t opcode,
uint8_t subcode, uint32_t irh_ossp, uint64_t ossp0,
uint64_t ossp1)
{
struct octeon_instr_pki_ih3 *pki_ih3;
struct octeon_instr_ih3 *ih3;
struct octeon_instr_irh *irh;
struct octeon_instr_rdp *rdp;
RTE_ASSERT(opcode <= 15);
RTE_ASSERT(subcode <= 127);
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
ih3->pkind = lio_dev->instr_queue[sc->iq_no]->txpciq.s.pkind;
pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
pki_ih3->w = 1;
pki_ih3->raw = 1;
pki_ih3->utag = 1;
pki_ih3->uqpg = lio_dev->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
pki_ih3->utt = 1;
pki_ih3->tag = LIO_CONTROL;
pki_ih3->tagtype = OCTEON_ATOMIC_TAG;
pki_ih3->qpg = lio_dev->instr_queue[sc->iq_no]->txpciq.s.qpg;
pki_ih3->pm = 0x7;
pki_ih3->sl = 8;
if (sc->datasize)
ih3->dlengsz = sc->datasize;
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
irh->opcode = opcode;
irh->subcode = subcode;
/* opcode/subcode specific parameters (ossp) */
irh->ossp = irh_ossp;
sc->cmd.cmd3.ossp[0] = ossp0;
sc->cmd.cmd3.ossp[1] = ossp1;
if (sc->rdatasize) {
rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
rdp->pcie_port = lio_dev->pcie_port;
rdp->rlen = sc->rdatasize;
irh->rflag = 1;
/* PKI IH3 */
ih3->fsz = OCTEON_SOFT_CMD_RESP_IH3;
} else {
irh->rflag = 0;
/* PKI IH3 */
ih3->fsz = OCTEON_PCI_CMD_O3;
}
}
int
lio_send_soft_command(struct lio_device *lio_dev,
struct lio_soft_command *sc)
{
struct octeon_instr_ih3 *ih3;
struct octeon_instr_irh *irh;
uint32_t len = 0;
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
if (ih3->dlengsz) {
RTE_ASSERT(sc->dmadptr);
sc->cmd.cmd3.dptr = sc->dmadptr;
}
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
if (irh->rflag) {
RTE_ASSERT(sc->dmarptr);
RTE_ASSERT(sc->status_word != NULL);
*sc->status_word = LIO_COMPLETION_WORD_INIT;
sc->cmd.cmd3.rptr = sc->dmarptr;
}
len = (uint32_t)ih3->dlengsz;
if (sc->wait_time)
sc->timeout = lio_uptime + sc->wait_time;
return lio_send_command(lio_dev, sc->iq_no, &sc->cmd, sc, len,
LIO_REQTYPE_SOFT_COMMAND);
}
int
lio_setup_sc_buffer_pool(struct lio_device *lio_dev)
{
char sc_pool_name[RTE_MEMPOOL_NAMESIZE];
uint16_t buf_size;
buf_size = LIO_SOFT_COMMAND_BUFFER_SIZE + RTE_PKTMBUF_HEADROOM;
snprintf(sc_pool_name, sizeof(sc_pool_name),
"lio_sc_pool_%u", lio_dev->port_id);
lio_dev->sc_buf_pool = rte_pktmbuf_pool_create(sc_pool_name,
LIO_MAX_SOFT_COMMAND_BUFFERS,
0, 0, buf_size, SOCKET_ID_ANY);
return 0;
}
void
lio_free_sc_buffer_pool(struct lio_device *lio_dev)
{
rte_mempool_free(lio_dev->sc_buf_pool);
}
struct lio_soft_command *
lio_alloc_soft_command(struct lio_device *lio_dev, uint32_t datasize,
uint32_t rdatasize, uint32_t ctxsize)
{
uint32_t offset = sizeof(struct lio_soft_command);
struct lio_soft_command *sc;
struct rte_mbuf *m;
uint64_t dma_addr;
RTE_ASSERT((offset + datasize + rdatasize + ctxsize) <=
LIO_SOFT_COMMAND_BUFFER_SIZE);
m = rte_pktmbuf_alloc(lio_dev->sc_buf_pool);
if (m == NULL) {
lio_dev_err(lio_dev, "Cannot allocate mbuf for sc\n");
return NULL;
}
/* set rte_mbuf data size and there is only 1 segment */
m->pkt_len = LIO_SOFT_COMMAND_BUFFER_SIZE;
m->data_len = LIO_SOFT_COMMAND_BUFFER_SIZE;
/* use rte_mbuf buffer for soft command */
sc = rte_pktmbuf_mtod(m, struct lio_soft_command *);
memset(sc, 0, LIO_SOFT_COMMAND_BUFFER_SIZE);
sc->size = LIO_SOFT_COMMAND_BUFFER_SIZE;
sc->dma_addr = rte_mbuf_data_dma_addr(m);
sc->mbuf = m;
dma_addr = sc->dma_addr;
if (ctxsize) {
sc->ctxptr = (uint8_t *)sc + offset;
sc->ctxsize = ctxsize;
}
/* Start data at 128 byte boundary */
offset = (offset + ctxsize + 127) & 0xffffff80;
if (datasize) {
sc->virtdptr = (uint8_t *)sc + offset;
sc->dmadptr = dma_addr + offset;
sc->datasize = datasize;
}
/* Start rdata at 128 byte boundary */
offset = (offset + datasize + 127) & 0xffffff80;
if (rdatasize) {
RTE_ASSERT(rdatasize >= 16);
sc->virtrptr = (uint8_t *)sc + offset;
sc->dmarptr = dma_addr + offset;
sc->rdatasize = rdatasize;
sc->status_word = (uint64_t *)((uint8_t *)(sc->virtrptr) +
rdatasize - 8);
}
return sc;
}
void
lio_free_soft_command(struct lio_soft_command *sc)
{
rte_pktmbuf_free(sc->mbuf);
}
void
lio_setup_response_list(struct lio_device *lio_dev)
{
STAILQ_INIT(&lio_dev->response_list.head);
rte_spinlock_init(&lio_dev->response_list.lock);
rte_atomic64_set(&lio_dev->response_list.pending_req_count, 0);
}
int
lio_process_ordered_list(struct lio_device *lio_dev)
{
int resp_to_process = LIO_MAX_ORD_REQS_TO_PROCESS;
struct lio_response_list *ordered_sc_list;
struct lio_soft_command *sc;
int request_complete = 0;
uint64_t status64;
uint32_t status;
ordered_sc_list = &lio_dev->response_list;
do {
rte_spinlock_lock(&ordered_sc_list->lock);
if (STAILQ_EMPTY(&ordered_sc_list->head)) {
/* ordered_sc_list is empty; there is
* nothing to process
*/
rte_spinlock_unlock(&ordered_sc_list->lock);
return -1;
}
sc = LIO_STQUEUE_FIRST_ENTRY(&ordered_sc_list->head,
struct lio_soft_command, node);
status = LIO_REQUEST_PENDING;
/* check if octeon has finished DMA'ing a response
* to where rptr is pointing to
*/
status64 = *sc->status_word;
if (status64 != LIO_COMPLETION_WORD_INIT) {
/* This logic ensures that all 64b have been written.
* 1. check byte 0 for non-FF
* 2. if non-FF, then swap result from BE to host order
* 3. check byte 7 (swapped to 0) for non-FF
* 4. if non-FF, use the low 32-bit status code
* 5. if either byte 0 or byte 7 is FF, don't use status
*/
if ((status64 & 0xff) != 0xff) {
lio_swap_8B_data(&status64, 1);
if (((status64 & 0xff) != 0xff)) {
/* retrieve 16-bit firmware status */
status = (uint32_t)(status64 &
0xffffULL);
if (status) {
status =
LIO_FIRMWARE_STATUS_CODE(
status);
} else {
/* i.e. no error */
status = LIO_REQUEST_DONE;
}
}
}
} else if ((sc->timeout && lio_check_timeout(lio_uptime,
sc->timeout))) {
lio_dev_err(lio_dev,
"cmd failed, timeout (%ld, %ld)\n",
(long)lio_uptime, (long)sc->timeout);
status = LIO_REQUEST_TIMEOUT;
}
if (status != LIO_REQUEST_PENDING) {
/* we have received a response or we have timed out.
* remove node from linked list
*/
STAILQ_REMOVE(&ordered_sc_list->head,
&sc->node, lio_stailq_node, entries);
rte_atomic64_dec(
&lio_dev->response_list.pending_req_count);
rte_spinlock_unlock(&ordered_sc_list->lock);
if (sc->callback)
sc->callback(status, sc->callback_arg);
request_complete++;
} else {
/* no response yet */
request_complete = 0;
rte_spinlock_unlock(&ordered_sc_list->lock);
}
/* If we hit the Max Ordered requests to process every loop,
* we quit and let this function be invoked the next time
* the poll thread runs to process the remaining requests.
* This function can take up the entire CPU if there is
* no upper limit to the requests processed.
*/
if (request_complete >= resp_to_process)
break;
} while (request_complete);
return 0;
}
static inline struct lio_stailq_node *
list_delete_first_node(struct lio_stailq_head *head)
{
struct lio_stailq_node *node;
if (STAILQ_EMPTY(head))
node = NULL;
else
node = STAILQ_FIRST(head);
if (node)
STAILQ_REMOVE(head, node, lio_stailq_node, entries);
return node;
}
void
lio_delete_sglist(struct lio_instr_queue *txq)
{
struct lio_device *lio_dev = txq->lio_dev;
int iq_no = txq->q_index;
struct lio_gather *g;
if (lio_dev->glist_head == NULL)
return;
do {
g = (struct lio_gather *)list_delete_first_node(
&lio_dev->glist_head[iq_no]);
if (g) {
if (g->sg)
rte_free(
(void *)((unsigned long)g->sg - g->adjust));
rte_free(g);
}
} while (g);
}
/**
* \brief Setup gather lists
* @param lio per-network private data
*/
int
lio_setup_sglists(struct lio_device *lio_dev, int iq_no,
int fw_mapped_iq, int num_descs, unsigned int socket_id)
{
struct lio_gather *g;
int i;
rte_spinlock_init(&lio_dev->glist_lock[iq_no]);
STAILQ_INIT(&lio_dev->glist_head[iq_no]);
for (i = 0; i < num_descs; i++) {
g = rte_zmalloc_socket(NULL, sizeof(*g), RTE_CACHE_LINE_SIZE,
socket_id);
if (g == NULL) {
lio_dev_err(lio_dev,
"lio_gather memory allocation failed for qno %d\n",
iq_no);
break;
}
g->sg_size =
((ROUNDUP4(LIO_MAX_SG) >> 2) * LIO_SG_ENTRY_SIZE);
g->sg = rte_zmalloc_socket(NULL, g->sg_size + 8,
RTE_CACHE_LINE_SIZE, socket_id);
if (g->sg == NULL) {
lio_dev_err(lio_dev,
"sg list memory allocation failed for qno %d\n",
iq_no);
rte_free(g);
break;
}
/* The gather component should be aligned on 64-bit boundary */
if (((unsigned long)g->sg) & 7) {
g->adjust = 8 - (((unsigned long)g->sg) & 7);
g->sg =
(struct lio_sg_entry *)((unsigned long)g->sg +
g->adjust);
}
STAILQ_INSERT_TAIL(&lio_dev->glist_head[iq_no], &g->list,
entries);
}
if (i != num_descs) {
lio_delete_sglist(lio_dev->instr_queue[fw_mapped_iq]);
return -ENOMEM;
}
return 0;
}
void
lio_delete_instruction_queue(struct lio_device *lio_dev, int iq_no)
{
lio_delete_instr_queue(lio_dev, iq_no);
rte_free(lio_dev->instr_queue[iq_no]);
lio_dev->instr_queue[iq_no] = NULL;
lio_dev->num_iqs--;
}
static inline uint32_t
lio_iq_get_available(struct lio_device *lio_dev, uint32_t q_no)
{
return ((lio_dev->instr_queue[q_no]->max_count - 1) -
(uint32_t)rte_atomic64_read(
&lio_dev->instr_queue[q_no]->instr_pending));
}
static inline int
lio_iq_is_full(struct lio_device *lio_dev, uint32_t q_no)
{
return ((uint32_t)rte_atomic64_read(
&lio_dev->instr_queue[q_no]->instr_pending) >=
(lio_dev->instr_queue[q_no]->max_count - 2));
}
static int
lio_dev_cleanup_iq(struct lio_device *lio_dev, int iq_no)
{
struct lio_instr_queue *iq = lio_dev->instr_queue[iq_no];
uint32_t count = 10000;
while ((lio_iq_get_available(lio_dev, iq_no) < LIO_FLUSH_WM(iq)) &&
--count)
lio_flush_iq(lio_dev, iq);
return count ? 0 : 1;
}
static void
lio_ctrl_cmd_callback(uint32_t status __rte_unused, void *sc_ptr)
{
struct lio_soft_command *sc = sc_ptr;
struct lio_dev_ctrl_cmd *ctrl_cmd;
struct lio_ctrl_pkt *ctrl_pkt;
ctrl_pkt = (struct lio_ctrl_pkt *)sc->ctxptr;
ctrl_cmd = ctrl_pkt->ctrl_cmd;
ctrl_cmd->cond = 1;
lio_free_soft_command(sc);
}
static inline struct lio_soft_command *
lio_alloc_ctrl_pkt_sc(struct lio_device *lio_dev,
struct lio_ctrl_pkt *ctrl_pkt)
{
struct lio_soft_command *sc = NULL;
uint32_t uddsize, datasize;
uint32_t rdatasize;
uint8_t *data;
uddsize = (uint32_t)(ctrl_pkt->ncmd.s.more * 8);
datasize = OCTEON_CMD_SIZE + uddsize;
rdatasize = (ctrl_pkt->wait_time) ? 16 : 0;
sc = lio_alloc_soft_command(lio_dev, datasize,
rdatasize, sizeof(struct lio_ctrl_pkt));
if (sc == NULL)
return NULL;
rte_memcpy(sc->ctxptr, ctrl_pkt, sizeof(struct lio_ctrl_pkt));
data = (uint8_t *)sc->virtdptr;
rte_memcpy(data, &ctrl_pkt->ncmd, OCTEON_CMD_SIZE);
lio_swap_8B_data((uint64_t *)data, OCTEON_CMD_SIZE >> 3);
if (uddsize) {
/* Endian-Swap for UDD should have been done by caller. */
rte_memcpy(data + OCTEON_CMD_SIZE, ctrl_pkt->udd, uddsize);
}
sc->iq_no = (uint32_t)ctrl_pkt->iq_no;
lio_prepare_soft_command(lio_dev, sc,
LIO_OPCODE, LIO_OPCODE_CMD,
0, 0, 0);
sc->callback = lio_ctrl_cmd_callback;
sc->callback_arg = sc;
sc->wait_time = ctrl_pkt->wait_time;
return sc;
}
int
lio_send_ctrl_pkt(struct lio_device *lio_dev, struct lio_ctrl_pkt *ctrl_pkt)
{
struct lio_soft_command *sc = NULL;
int retval;
sc = lio_alloc_ctrl_pkt_sc(lio_dev, ctrl_pkt);
if (sc == NULL) {
lio_dev_err(lio_dev, "soft command allocation failed\n");
return -1;
}
retval = lio_send_soft_command(lio_dev, sc);
if (retval == LIO_IQ_SEND_FAILED) {
lio_free_soft_command(sc);
lio_dev_err(lio_dev, "Port: %d soft command: %d send failed status: %x\n",
lio_dev->port_id, ctrl_pkt->ncmd.s.cmd, retval);
return -1;
}
return retval;
}
/** Send data packet to the device
* @param lio_dev - lio device pointer
* @param ndata - control structure with queueing, and buffer information
*
* @returns IQ_FAILED if it failed to add to the input queue. IQ_STOP if it the
* queue should be stopped, and LIO_IQ_SEND_OK if it sent okay.
*/
static inline int
lio_send_data_pkt(struct lio_device *lio_dev, struct lio_data_pkt *ndata)
{
return lio_send_command(lio_dev, ndata->q_no, &ndata->cmd,
ndata->buf, ndata->datasize, ndata->reqtype);
}
uint16_t
lio_dev_xmit_pkts(void *tx_queue, struct rte_mbuf **pkts, uint16_t nb_pkts)
{
struct lio_instr_queue *txq = tx_queue;
union lio_cmd_setup cmdsetup;
struct lio_device *lio_dev;
struct lio_iq_stats *stats;
struct lio_data_pkt ndata;
int i, processed = 0;
struct rte_mbuf *m;
uint32_t tag = 0;
int status = 0;
int iq_no;
lio_dev = txq->lio_dev;
iq_no = txq->txpciq.s.q_no;
stats = &lio_dev->instr_queue[iq_no]->stats;
if (!lio_dev->intf_open || !lio_dev->linfo.link.s.link_up) {
PMD_TX_LOG(lio_dev, ERR, "Transmit failed link_status : %d\n",
lio_dev->linfo.link.s.link_up);
goto xmit_failed;
}
lio_dev_cleanup_iq(lio_dev, iq_no);
for (i = 0; i < nb_pkts; i++) {
uint32_t pkt_len = 0;
m = pkts[i];
/* Prepare the attributes for the data to be passed to BASE. */
memset(&ndata, 0, sizeof(struct lio_data_pkt));
ndata.buf = m;
ndata.q_no = iq_no;
if (lio_iq_is_full(lio_dev, ndata.q_no)) {
stats->tx_iq_busy++;
if (lio_dev_cleanup_iq(lio_dev, iq_no)) {
PMD_TX_LOG(lio_dev, ERR,
"Transmit failed iq:%d full\n",
ndata.q_no);
break;
}
}
cmdsetup.cmd_setup64 = 0;
cmdsetup.s.iq_no = iq_no;
/* check checksum offload flags to form cmd */
if (m->ol_flags & PKT_TX_IP_CKSUM)
cmdsetup.s.ip_csum = 1;
if (m->ol_flags & PKT_TX_OUTER_IP_CKSUM)
cmdsetup.s.tnl_csum = 1;
else if ((m->ol_flags & PKT_TX_TCP_CKSUM) ||
(m->ol_flags & PKT_TX_UDP_CKSUM))
cmdsetup.s.transport_csum = 1;
if (m->nb_segs == 1) {
pkt_len = rte_pktmbuf_data_len(m);
cmdsetup.s.u.datasize = pkt_len;
lio_prepare_pci_cmd(lio_dev, &ndata.cmd,
&cmdsetup, tag);
ndata.cmd.cmd3.dptr = rte_mbuf_data_dma_addr(m);
ndata.reqtype = LIO_REQTYPE_NORESP_NET;
} else {
struct lio_buf_free_info *finfo;
struct lio_gather *g;
phys_addr_t phyaddr;
int i, frags;
finfo = (struct lio_buf_free_info *)rte_malloc(NULL,
sizeof(*finfo), 0);
if (finfo == NULL) {
PMD_TX_LOG(lio_dev, ERR,
"free buffer alloc failed\n");
goto xmit_failed;
}
rte_spinlock_lock(&lio_dev->glist_lock[iq_no]);
g = (struct lio_gather *)list_delete_first_node(
&lio_dev->glist_head[iq_no]);
rte_spinlock_unlock(&lio_dev->glist_lock[iq_no]);
if (g == NULL) {
PMD_TX_LOG(lio_dev, ERR,
"Transmit scatter gather: glist null!\n");
goto xmit_failed;
}
cmdsetup.s.gather = 1;
cmdsetup.s.u.gatherptrs = m->nb_segs;
lio_prepare_pci_cmd(lio_dev, &ndata.cmd,
&cmdsetup, tag);
memset(g->sg, 0, g->sg_size);
g->sg[0].ptr[0] = rte_mbuf_data_dma_addr(m);
lio_add_sg_size(&g->sg[0], m->data_len, 0);
pkt_len = m->data_len;
finfo->mbuf = m;
/* First seg taken care above */
frags = m->nb_segs - 1;
i = 1;
m = m->next;
while (frags--) {
g->sg[(i >> 2)].ptr[(i & 3)] =
rte_mbuf_data_dma_addr(m);
lio_add_sg_size(&g->sg[(i >> 2)],
m->data_len, (i & 3));
pkt_len += m->data_len;
i++;
m = m->next;
}
phyaddr = rte_mem_virt2phy(g->sg);
if (phyaddr == RTE_BAD_PHYS_ADDR) {
PMD_TX_LOG(lio_dev, ERR, "bad phys addr\n");
goto xmit_failed;
}
ndata.cmd.cmd3.dptr = phyaddr;
ndata.reqtype = LIO_REQTYPE_NORESP_NET_SG;
finfo->g = g;
finfo->lio_dev = lio_dev;
finfo->iq_no = (uint64_t)iq_no;
ndata.buf = finfo;
}
ndata.datasize = pkt_len;
status = lio_send_data_pkt(lio_dev, &ndata);
if (unlikely(status == LIO_IQ_SEND_FAILED)) {
PMD_TX_LOG(lio_dev, ERR, "send failed\n");
break;
}
if (unlikely(status == LIO_IQ_SEND_STOP)) {
PMD_TX_LOG(lio_dev, DEBUG, "iq full\n");
/* create space as iq is full */
lio_dev_cleanup_iq(lio_dev, iq_no);
}
stats->tx_done++;
stats->tx_tot_bytes += pkt_len;
processed++;
}
xmit_failed:
stats->tx_dropped += (nb_pkts - processed);
return processed;
}
void
lio_dev_clear_queues(struct rte_eth_dev *eth_dev)
{
struct lio_instr_queue *txq;
struct lio_droq *rxq;
uint16_t i;
for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
txq = eth_dev->data->tx_queues[i];
if (txq != NULL) {
lio_dev_tx_queue_release(txq);
eth_dev->data->tx_queues[i] = NULL;
}
}
for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
rxq = eth_dev->data->rx_queues[i];
if (rxq != NULL) {
lio_dev_rx_queue_release(rxq);
eth_dev->data->rx_queues[i] = NULL;
}
}
}