3126df2237
We were using LICENSE.qede_pmd to reference inclusion of SPDX licensing tag from all the source file. Remove the LICENSE.qede_pmd file and directly include SPDX tags in source files. Signed-off-by: Rasesh Mody <rasesh.mody@cavium.com> Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
811 lines
21 KiB
C
811 lines
21 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright (c) 2016 - 2018 Cavium Inc.
|
|
* All rights reserved.
|
|
* www.cavium.com
|
|
*/
|
|
|
|
#ifndef __ECORE_CHAIN_H__
|
|
#define __ECORE_CHAIN_H__
|
|
|
|
#include <assert.h> /* @DPDK */
|
|
|
|
#include "common_hsi.h"
|
|
#include "ecore_utils.h"
|
|
|
|
enum ecore_chain_mode {
|
|
/* Each Page contains a next pointer at its end */
|
|
ECORE_CHAIN_MODE_NEXT_PTR,
|
|
|
|
/* Chain is a single page (next ptr) is unrequired */
|
|
ECORE_CHAIN_MODE_SINGLE,
|
|
|
|
/* Page pointers are located in a side list */
|
|
ECORE_CHAIN_MODE_PBL,
|
|
};
|
|
|
|
enum ecore_chain_use_mode {
|
|
ECORE_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
|
|
ECORE_CHAIN_USE_TO_CONSUME, /* Chain starts full */
|
|
ECORE_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
|
|
};
|
|
|
|
enum ecore_chain_cnt_type {
|
|
/* The chain's size/prod/cons are kept in 16-bit variables */
|
|
ECORE_CHAIN_CNT_TYPE_U16,
|
|
|
|
/* The chain's size/prod/cons are kept in 32-bit variables */
|
|
ECORE_CHAIN_CNT_TYPE_U32,
|
|
};
|
|
|
|
struct ecore_chain_next {
|
|
struct regpair next_phys;
|
|
void *next_virt;
|
|
};
|
|
|
|
struct ecore_chain_pbl_u16 {
|
|
u16 prod_page_idx;
|
|
u16 cons_page_idx;
|
|
};
|
|
|
|
struct ecore_chain_pbl_u32 {
|
|
u32 prod_page_idx;
|
|
u32 cons_page_idx;
|
|
};
|
|
|
|
struct ecore_chain_ext_pbl {
|
|
dma_addr_t p_pbl_phys;
|
|
void *p_pbl_virt;
|
|
};
|
|
|
|
struct ecore_chain_u16 {
|
|
/* Cyclic index of next element to produce/consme */
|
|
u16 prod_idx;
|
|
u16 cons_idx;
|
|
};
|
|
|
|
struct ecore_chain_u32 {
|
|
/* Cyclic index of next element to produce/consme */
|
|
u32 prod_idx;
|
|
u32 cons_idx;
|
|
};
|
|
|
|
struct ecore_chain {
|
|
/* fastpath portion of the chain - required for commands such
|
|
* as produce / consume.
|
|
*/
|
|
/* Point to next element to produce/consume */
|
|
void *p_prod_elem;
|
|
void *p_cons_elem;
|
|
|
|
/* Fastpath portions of the PBL [if exists] */
|
|
|
|
struct {
|
|
/* Table for keeping the virtual addresses of the chain pages,
|
|
* respectively to the physical addresses in the pbl table.
|
|
*/
|
|
void **pp_virt_addr_tbl;
|
|
|
|
union {
|
|
struct ecore_chain_pbl_u16 u16;
|
|
struct ecore_chain_pbl_u32 u32;
|
|
} c;
|
|
} pbl;
|
|
|
|
union {
|
|
struct ecore_chain_u16 chain16;
|
|
struct ecore_chain_u32 chain32;
|
|
} u;
|
|
|
|
/* Capacity counts only usable elements */
|
|
u32 capacity;
|
|
u32 page_cnt;
|
|
|
|
/* A u8 would suffice for mode, but it would save as a lot of headaches
|
|
* on castings & defaults.
|
|
*/
|
|
enum ecore_chain_mode mode;
|
|
|
|
/* Elements information for fast calculations */
|
|
u16 elem_per_page;
|
|
u16 elem_per_page_mask;
|
|
u16 elem_size;
|
|
u16 next_page_mask;
|
|
u16 usable_per_page;
|
|
u8 elem_unusable;
|
|
|
|
u8 cnt_type;
|
|
|
|
/* Slowpath of the chain - required for initialization and destruction,
|
|
* but isn't involved in regular functionality.
|
|
*/
|
|
|
|
/* Base address of a pre-allocated buffer for pbl */
|
|
struct {
|
|
dma_addr_t p_phys_table;
|
|
void *p_virt_table;
|
|
} pbl_sp;
|
|
|
|
/* Address of first page of the chain - the address is required
|
|
* for fastpath operation [consume/produce] but only for the SINGLE
|
|
* flavour which isn't considered fastpath [== SPQ].
|
|
*/
|
|
void *p_virt_addr;
|
|
dma_addr_t p_phys_addr;
|
|
|
|
/* Total number of elements [for entire chain] */
|
|
u32 size;
|
|
|
|
u8 intended_use;
|
|
|
|
/* TBD - do we really need this? Couldn't find usage for it */
|
|
bool b_external_pbl;
|
|
|
|
void *dp_ctx;
|
|
};
|
|
|
|
#define ECORE_CHAIN_PBL_ENTRY_SIZE (8)
|
|
#define ECORE_CHAIN_PAGE_SIZE (0x1000)
|
|
#define ELEMS_PER_PAGE(elem_size) (ECORE_CHAIN_PAGE_SIZE / (elem_size))
|
|
|
|
#define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((mode == ECORE_CHAIN_MODE_NEXT_PTR) ? \
|
|
(u8)(1 + ((sizeof(struct ecore_chain_next) - 1) / \
|
|
(elem_size))) : 0)
|
|
|
|
#define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((u32)(ELEMS_PER_PAGE(elem_size) - \
|
|
UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
|
|
|
|
#define ECORE_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
|
|
DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
|
|
|
|
#define is_chain_u16(p) ((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U16)
|
|
#define is_chain_u32(p) ((p)->cnt_type == ECORE_CHAIN_CNT_TYPE_U32)
|
|
|
|
/* Accessors */
|
|
static OSAL_INLINE u16 ecore_chain_get_prod_idx(struct ecore_chain *p_chain)
|
|
{
|
|
OSAL_ASSERT(is_chain_u16(p_chain));
|
|
return p_chain->u.chain16.prod_idx;
|
|
}
|
|
|
|
static OSAL_INLINE u32 ecore_chain_get_prod_idx_u32(struct ecore_chain *p_chain)
|
|
{
|
|
OSAL_ASSERT(is_chain_u32(p_chain));
|
|
return p_chain->u.chain32.prod_idx;
|
|
}
|
|
|
|
static OSAL_INLINE u16 ecore_chain_get_cons_idx(struct ecore_chain *p_chain)
|
|
{
|
|
OSAL_ASSERT(is_chain_u16(p_chain));
|
|
return p_chain->u.chain16.cons_idx;
|
|
}
|
|
|
|
static OSAL_INLINE u32 ecore_chain_get_cons_idx_u32(struct ecore_chain *p_chain)
|
|
{
|
|
OSAL_ASSERT(is_chain_u32(p_chain));
|
|
return p_chain->u.chain32.cons_idx;
|
|
}
|
|
|
|
/* FIXME:
|
|
* Should create OSALs for the below definitions.
|
|
* For Linux, replace them with the existing U16_MAX and U32_MAX, and handle
|
|
* kernel versions that lack them.
|
|
*/
|
|
#define ECORE_U16_MAX ((u16)~0U)
|
|
#define ECORE_U32_MAX ((u32)~0U)
|
|
|
|
static OSAL_INLINE u16 ecore_chain_get_elem_left(struct ecore_chain *p_chain)
|
|
{
|
|
u16 used;
|
|
|
|
OSAL_ASSERT(is_chain_u16(p_chain));
|
|
|
|
used = (u16)(((u32)ECORE_U16_MAX + 1 +
|
|
(u32)(p_chain->u.chain16.prod_idx)) -
|
|
(u32)p_chain->u.chain16.cons_idx);
|
|
if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
|
|
used -= p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
|
|
p_chain->u.chain16.cons_idx / p_chain->elem_per_page;
|
|
|
|
return (u16)(p_chain->capacity - used);
|
|
}
|
|
|
|
static OSAL_INLINE u32
|
|
ecore_chain_get_elem_left_u32(struct ecore_chain *p_chain)
|
|
{
|
|
u32 used;
|
|
|
|
OSAL_ASSERT(is_chain_u32(p_chain));
|
|
|
|
used = (u32)(((u64)ECORE_U32_MAX + 1 +
|
|
(u64)(p_chain->u.chain32.prod_idx)) -
|
|
(u64)p_chain->u.chain32.cons_idx);
|
|
if (p_chain->mode == ECORE_CHAIN_MODE_NEXT_PTR)
|
|
used -= p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
|
|
p_chain->u.chain32.cons_idx / p_chain->elem_per_page;
|
|
|
|
return p_chain->capacity - used;
|
|
}
|
|
|
|
static OSAL_INLINE u8 ecore_chain_is_full(struct ecore_chain *p_chain)
|
|
{
|
|
if (is_chain_u16(p_chain))
|
|
return (ecore_chain_get_elem_left(p_chain) ==
|
|
p_chain->capacity);
|
|
else
|
|
return (ecore_chain_get_elem_left_u32(p_chain) ==
|
|
p_chain->capacity);
|
|
}
|
|
|
|
static OSAL_INLINE u8 ecore_chain_is_empty(struct ecore_chain *p_chain)
|
|
{
|
|
if (is_chain_u16(p_chain))
|
|
return (ecore_chain_get_elem_left(p_chain) == 0);
|
|
else
|
|
return (ecore_chain_get_elem_left_u32(p_chain) == 0);
|
|
}
|
|
|
|
static OSAL_INLINE
|
|
u16 ecore_chain_get_elem_per_page(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->elem_per_page;
|
|
}
|
|
|
|
static OSAL_INLINE
|
|
u16 ecore_chain_get_usable_per_page(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->usable_per_page;
|
|
}
|
|
|
|
static OSAL_INLINE
|
|
u8 ecore_chain_get_unusable_per_page(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->elem_unusable;
|
|
}
|
|
|
|
static OSAL_INLINE u32 ecore_chain_get_size(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->size;
|
|
}
|
|
|
|
static OSAL_INLINE u32 ecore_chain_get_page_cnt(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->page_cnt;
|
|
}
|
|
|
|
static OSAL_INLINE
|
|
dma_addr_t ecore_chain_get_pbl_phys(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->pbl_sp.p_phys_table;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_advance_page -
|
|
*
|
|
* Advance the next element accros pages for a linked chain
|
|
*
|
|
* @param p_chain
|
|
* @param p_next_elem
|
|
* @param idx_to_inc
|
|
* @param page_to_inc
|
|
*/
|
|
static OSAL_INLINE void
|
|
ecore_chain_advance_page(struct ecore_chain *p_chain, void **p_next_elem,
|
|
void *idx_to_inc, void *page_to_inc)
|
|
{
|
|
struct ecore_chain_next *p_next = OSAL_NULL;
|
|
u32 page_index = 0;
|
|
|
|
switch (p_chain->mode) {
|
|
case ECORE_CHAIN_MODE_NEXT_PTR:
|
|
p_next = (struct ecore_chain_next *)(*p_next_elem);
|
|
*p_next_elem = p_next->next_virt;
|
|
if (is_chain_u16(p_chain))
|
|
*(u16 *)idx_to_inc += (u16)p_chain->elem_unusable;
|
|
else
|
|
*(u32 *)idx_to_inc += (u16)p_chain->elem_unusable;
|
|
break;
|
|
case ECORE_CHAIN_MODE_SINGLE:
|
|
*p_next_elem = p_chain->p_virt_addr;
|
|
break;
|
|
case ECORE_CHAIN_MODE_PBL:
|
|
if (is_chain_u16(p_chain)) {
|
|
if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
|
|
*(u16 *)page_to_inc = 0;
|
|
page_index = *(u16 *)page_to_inc;
|
|
} else {
|
|
if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
|
|
*(u32 *)page_to_inc = 0;
|
|
page_index = *(u32 *)page_to_inc;
|
|
}
|
|
*p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
|
|
}
|
|
}
|
|
|
|
#define is_unusable_idx(p, idx) \
|
|
(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define is_unusable_idx_u32(p, idx) \
|
|
(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define is_unusable_next_idx(p, idx) \
|
|
((((p)->u.chain16.idx + 1) & \
|
|
(p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define is_unusable_next_idx_u32(p, idx) \
|
|
((((p)->u.chain32.idx + 1) & \
|
|
(p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define test_and_skip(p, idx) \
|
|
do { \
|
|
if (is_chain_u16(p)) { \
|
|
if (is_unusable_idx(p, idx)) \
|
|
(p)->u.chain16.idx += \
|
|
(p)->elem_unusable; \
|
|
} else { \
|
|
if (is_unusable_idx_u32(p, idx)) \
|
|
(p)->u.chain32.idx += \
|
|
(p)->elem_unusable; \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* @brief ecore_chain_return_multi_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*/
|
|
static OSAL_INLINE
|
|
void ecore_chain_return_multi_produced(struct ecore_chain *p_chain, u32 num)
|
|
{
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.cons_idx += (u16)num;
|
|
else
|
|
p_chain->u.chain32.cons_idx += num;
|
|
test_and_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_return_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_return_produced(struct ecore_chain *p_chain)
|
|
{
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.cons_idx++;
|
|
else
|
|
p_chain->u.chain32.cons_idx++;
|
|
test_and_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_produce -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this to get
|
|
* a pointer to the next element which can be "Produced". It's driver
|
|
* responsibility to validate that the chain has room for new element.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to next element
|
|
*/
|
|
static OSAL_INLINE void *ecore_chain_produce(struct ecore_chain *p_chain)
|
|
{
|
|
void *p_ret = OSAL_NULL, *p_prod_idx, *p_prod_page_idx;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
if ((p_chain->u.chain16.prod_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_prod_idx = &p_chain->u.chain16.prod_idx;
|
|
p_prod_page_idx = &p_chain->pbl.c.u16.prod_page_idx;
|
|
ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
|
|
p_prod_idx, p_prod_page_idx);
|
|
}
|
|
p_chain->u.chain16.prod_idx++;
|
|
} else {
|
|
if ((p_chain->u.chain32.prod_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_prod_idx = &p_chain->u.chain32.prod_idx;
|
|
p_prod_page_idx = &p_chain->pbl.c.u32.prod_page_idx;
|
|
ecore_chain_advance_page(p_chain, &p_chain->p_prod_elem,
|
|
p_prod_idx, p_prod_page_idx);
|
|
}
|
|
p_chain->u.chain32.prod_idx++;
|
|
}
|
|
|
|
p_ret = p_chain->p_prod_elem;
|
|
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return p_ret;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_get_capacity -
|
|
*
|
|
* Get the maximum number of BDs in chain
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*
|
|
* @return number of unusable BDs
|
|
*/
|
|
static OSAL_INLINE u32 ecore_chain_get_capacity(struct ecore_chain *p_chain)
|
|
{
|
|
return p_chain->capacity;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_recycle_consumed -
|
|
*
|
|
* Returns an element which was previously consumed;
|
|
* Increments producers so they could be written to FW.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static OSAL_INLINE
|
|
void ecore_chain_recycle_consumed(struct ecore_chain *p_chain)
|
|
{
|
|
test_and_skip(p_chain, prod_idx);
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.prod_idx++;
|
|
else
|
|
p_chain->u.chain32.prod_idx++;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_consume -
|
|
*
|
|
* A Chain in which the driver utilizes data written by a different source
|
|
* (i.e., FW) should use this to access passed buffers.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to the next buffer written
|
|
*/
|
|
static OSAL_INLINE void *ecore_chain_consume(struct ecore_chain *p_chain)
|
|
{
|
|
void *p_ret = OSAL_NULL, *p_cons_idx, *p_cons_page_idx;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
if ((p_chain->u.chain16.cons_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_cons_idx = &p_chain->u.chain16.cons_idx;
|
|
p_cons_page_idx = &p_chain->pbl.c.u16.cons_page_idx;
|
|
ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
|
|
p_cons_idx, p_cons_page_idx);
|
|
}
|
|
p_chain->u.chain16.cons_idx++;
|
|
} else {
|
|
if ((p_chain->u.chain32.cons_idx &
|
|
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
|
|
p_cons_idx = &p_chain->u.chain32.cons_idx;
|
|
p_cons_page_idx = &p_chain->pbl.c.u32.cons_page_idx;
|
|
ecore_chain_advance_page(p_chain, &p_chain->p_cons_elem,
|
|
p_cons_idx, p_cons_page_idx);
|
|
}
|
|
p_chain->u.chain32.cons_idx++;
|
|
}
|
|
|
|
p_ret = p_chain->p_cons_elem;
|
|
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return p_ret;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_reset -
|
|
*
|
|
* Resets the chain to its start state
|
|
*
|
|
* @param p_chain pointer to a previously allocted chain
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_reset(struct ecore_chain *p_chain)
|
|
{
|
|
u32 i;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
p_chain->u.chain16.prod_idx = 0;
|
|
p_chain->u.chain16.cons_idx = 0;
|
|
} else {
|
|
p_chain->u.chain32.prod_idx = 0;
|
|
p_chain->u.chain32.cons_idx = 0;
|
|
}
|
|
p_chain->p_cons_elem = p_chain->p_virt_addr;
|
|
p_chain->p_prod_elem = p_chain->p_virt_addr;
|
|
|
|
if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
|
|
/* Use "page_cnt-1" as a reset value for the prod/cons page's
|
|
* indices, to avoid unnecessary page advancing on the first
|
|
* call to ecore_chain_produce/consume. Instead, the indices
|
|
* will be advanced to page_cnt and then will be wrapped to 0.
|
|
*/
|
|
u32 reset_val = p_chain->page_cnt - 1;
|
|
|
|
if (is_chain_u16(p_chain)) {
|
|
p_chain->pbl.c.u16.prod_page_idx = (u16)reset_val;
|
|
p_chain->pbl.c.u16.cons_page_idx = (u16)reset_val;
|
|
} else {
|
|
p_chain->pbl.c.u32.prod_page_idx = reset_val;
|
|
p_chain->pbl.c.u32.cons_page_idx = reset_val;
|
|
}
|
|
}
|
|
|
|
switch (p_chain->intended_use) {
|
|
case ECORE_CHAIN_USE_TO_CONSUME:
|
|
/* produce empty elements */
|
|
for (i = 0; i < p_chain->capacity; i++)
|
|
ecore_chain_recycle_consumed(p_chain);
|
|
break;
|
|
|
|
case ECORE_CHAIN_USE_TO_CONSUME_PRODUCE:
|
|
case ECORE_CHAIN_USE_TO_PRODUCE:
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_init_params -
|
|
*
|
|
* Initalizes a basic chain struct
|
|
*
|
|
* @param p_chain
|
|
* @param page_cnt number of pages in the allocated buffer
|
|
* @param elem_size size of each element in the chain
|
|
* @param intended_use
|
|
* @param mode
|
|
* @param cnt_type
|
|
* @param dp_ctx
|
|
*/
|
|
static OSAL_INLINE void
|
|
ecore_chain_init_params(struct ecore_chain *p_chain, u32 page_cnt, u8 elem_size,
|
|
enum ecore_chain_use_mode intended_use,
|
|
enum ecore_chain_mode mode,
|
|
enum ecore_chain_cnt_type cnt_type, void *dp_ctx)
|
|
{
|
|
/* chain fixed parameters */
|
|
p_chain->p_virt_addr = OSAL_NULL;
|
|
p_chain->p_phys_addr = 0;
|
|
p_chain->elem_size = elem_size;
|
|
p_chain->intended_use = (u8)intended_use;
|
|
p_chain->mode = mode;
|
|
p_chain->cnt_type = (u8)cnt_type;
|
|
|
|
p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
|
|
p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
|
|
p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
p_chain->next_page_mask = (p_chain->usable_per_page &
|
|
p_chain->elem_per_page_mask);
|
|
|
|
p_chain->page_cnt = page_cnt;
|
|
p_chain->capacity = p_chain->usable_per_page * page_cnt;
|
|
p_chain->size = p_chain->elem_per_page * page_cnt;
|
|
p_chain->b_external_pbl = false;
|
|
p_chain->pbl_sp.p_phys_table = 0;
|
|
p_chain->pbl_sp.p_virt_table = OSAL_NULL;
|
|
p_chain->pbl.pp_virt_addr_tbl = OSAL_NULL;
|
|
|
|
p_chain->dp_ctx = dp_ctx;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_init_mem -
|
|
*
|
|
* Initalizes a basic chain struct with its chain buffers
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_addr virtual address of allocated buffer's beginning
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
*
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_init_mem(struct ecore_chain *p_chain,
|
|
void *p_virt_addr,
|
|
dma_addr_t p_phys_addr)
|
|
{
|
|
p_chain->p_virt_addr = p_virt_addr;
|
|
p_chain->p_phys_addr = p_phys_addr;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_init_pbl_mem -
|
|
*
|
|
* Initalizes a basic chain struct with its pbl buffers
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_pbl pointer to a pre allocated side table which will hold
|
|
* virtual page addresses.
|
|
* @param p_phys_pbl pointer to a pre-allocated side table which will hold
|
|
* physical page addresses.
|
|
* @param pp_virt_addr_tbl
|
|
* pointer to a pre-allocated side table which will hold
|
|
* the virtual addresses of the chain pages.
|
|
*
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_init_pbl_mem(struct ecore_chain *p_chain,
|
|
void *p_virt_pbl,
|
|
dma_addr_t p_phys_pbl,
|
|
void **pp_virt_addr_tbl)
|
|
{
|
|
p_chain->pbl_sp.p_phys_table = p_phys_pbl;
|
|
p_chain->pbl_sp.p_virt_table = p_virt_pbl;
|
|
p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_init_next_ptr_elem -
|
|
*
|
|
* Initalizes a next pointer element
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_curr virtual address of a chain page of which the next
|
|
* pointer element is initialized
|
|
* @param p_virt_next virtual address of the next chain page
|
|
* @param p_phys_next physical address of the next chain page
|
|
*
|
|
*/
|
|
static OSAL_INLINE void
|
|
ecore_chain_init_next_ptr_elem(struct ecore_chain *p_chain, void *p_virt_curr,
|
|
void *p_virt_next, dma_addr_t p_phys_next)
|
|
{
|
|
struct ecore_chain_next *p_next;
|
|
u32 size;
|
|
|
|
size = p_chain->elem_size * p_chain->usable_per_page;
|
|
p_next = (struct ecore_chain_next *)((u8 *)p_virt_curr + size);
|
|
|
|
DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
|
|
|
|
p_next->next_virt = p_virt_next;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_get_last_elem -
|
|
*
|
|
* Returns a pointer to the last element of the chain
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*
|
|
*/
|
|
static OSAL_INLINE void *ecore_chain_get_last_elem(struct ecore_chain *p_chain)
|
|
{
|
|
struct ecore_chain_next *p_next = OSAL_NULL;
|
|
void *p_virt_addr = OSAL_NULL;
|
|
u32 size, last_page_idx;
|
|
|
|
if (!p_chain->p_virt_addr)
|
|
goto out;
|
|
|
|
switch (p_chain->mode) {
|
|
case ECORE_CHAIN_MODE_NEXT_PTR:
|
|
size = p_chain->elem_size * p_chain->usable_per_page;
|
|
p_virt_addr = p_chain->p_virt_addr;
|
|
p_next = (struct ecore_chain_next *)((u8 *)p_virt_addr + size);
|
|
while (p_next->next_virt != p_chain->p_virt_addr) {
|
|
p_virt_addr = p_next->next_virt;
|
|
p_next =
|
|
(struct ecore_chain_next *)((u8 *)p_virt_addr +
|
|
size);
|
|
}
|
|
break;
|
|
case ECORE_CHAIN_MODE_SINGLE:
|
|
p_virt_addr = p_chain->p_virt_addr;
|
|
break;
|
|
case ECORE_CHAIN_MODE_PBL:
|
|
last_page_idx = p_chain->page_cnt - 1;
|
|
p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
|
|
break;
|
|
}
|
|
/* p_virt_addr points at this stage to the last page of the chain */
|
|
size = p_chain->elem_size * (p_chain->usable_per_page - 1);
|
|
p_virt_addr = ((u8 *)p_virt_addr + size);
|
|
out:
|
|
return p_virt_addr;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_set_prod - sets the prod to the given value
|
|
*
|
|
* @param prod_idx
|
|
* @param p_prod_elem
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_set_prod(struct ecore_chain *p_chain,
|
|
u32 prod_idx, void *p_prod_elem)
|
|
{
|
|
if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
|
|
/* Use "prod_idx-1" since ecore_chain_produce() advances the
|
|
* page index before the producer index when getting to
|
|
* "next_page_mask".
|
|
*/
|
|
u32 elem_idx =
|
|
(prod_idx - 1 + p_chain->capacity) % p_chain->capacity;
|
|
u32 page_idx = elem_idx / p_chain->elem_per_page;
|
|
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->pbl.c.u16.prod_page_idx = (u16)page_idx;
|
|
else
|
|
p_chain->pbl.c.u32.prod_page_idx = page_idx;
|
|
}
|
|
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.prod_idx = (u16)prod_idx;
|
|
else
|
|
p_chain->u.chain32.prod_idx = prod_idx;
|
|
p_chain->p_prod_elem = p_prod_elem;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_set_cons - sets the cons to the given value
|
|
*
|
|
* @param cons_idx
|
|
* @param p_cons_elem
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_set_cons(struct ecore_chain *p_chain,
|
|
u32 cons_idx, void *p_cons_elem)
|
|
{
|
|
if (p_chain->mode == ECORE_CHAIN_MODE_PBL) {
|
|
/* Use "cons_idx-1" since ecore_chain_consume() advances the
|
|
* page index before the consumer index when getting to
|
|
* "next_page_mask".
|
|
*/
|
|
u32 elem_idx =
|
|
(cons_idx - 1 + p_chain->capacity) % p_chain->capacity;
|
|
u32 page_idx = elem_idx / p_chain->elem_per_page;
|
|
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->pbl.c.u16.cons_page_idx = (u16)page_idx;
|
|
else
|
|
p_chain->pbl.c.u32.cons_page_idx = page_idx;
|
|
}
|
|
|
|
if (is_chain_u16(p_chain))
|
|
p_chain->u.chain16.cons_idx = (u16)cons_idx;
|
|
else
|
|
p_chain->u.chain32.cons_idx = cons_idx;
|
|
|
|
p_chain->p_cons_elem = p_cons_elem;
|
|
}
|
|
|
|
/**
|
|
* @brief ecore_chain_pbl_zero_mem - set chain memory to 0
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static OSAL_INLINE void ecore_chain_pbl_zero_mem(struct ecore_chain *p_chain)
|
|
{
|
|
u32 i, page_cnt;
|
|
|
|
if (p_chain->mode != ECORE_CHAIN_MODE_PBL)
|
|
return;
|
|
|
|
page_cnt = ecore_chain_get_page_cnt(p_chain);
|
|
|
|
for (i = 0; i < page_cnt; i++)
|
|
OSAL_MEM_ZERO(p_chain->pbl.pp_virt_addr_tbl[i],
|
|
ECORE_CHAIN_PAGE_SIZE);
|
|
}
|
|
|
|
int ecore_chain_print(struct ecore_chain *p_chain, char *buffer,
|
|
u32 buffer_size, u32 *element_indx, u32 stop_indx,
|
|
bool print_metadata,
|
|
int (*func_ptr_print_element)(struct ecore_chain *p_chain,
|
|
void *p_element,
|
|
char *buffer),
|
|
int (*func_ptr_print_metadata)(struct ecore_chain
|
|
*p_chain,
|
|
char *buffer));
|
|
|
|
#endif /* __ECORE_CHAIN_H__ */
|