numam-dpdk/app/test/test_malloc.c
David Marchand ff708facfc tailq: remove unneeded inclusions
Only keep inclusion where really needed.

Signed-off-by: David Marchand <david.marchand@6wind.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2015-03-10 11:47:46 +01:00

1053 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdarg.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_random.h>
#include <rte_string_fns.h>
#include "test.h"
#define N 10000
#define QUOTE_(x) #x
#define QUOTE(x) QUOTE_(x)
#define MALLOC_MEMZONE_SIZE QUOTE(RTE_MALLOC_MEMZONE_SIZE)
/*
* Malloc
* ======
*
* Allocate some dynamic memory from heap (3 areas). Check that areas
* don't overlap and that alignment constraints match. This test is
* done many times on different lcores simultaneously.
*/
/* Test if memory overlaps: return 1 if true, or 0 if false. */
static int
is_memory_overlap(void *p1, size_t len1, void *p2, size_t len2)
{
unsigned long ptr1 = (unsigned long)p1;
unsigned long ptr2 = (unsigned long)p2;
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
return 1;
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
return 1;
return 0;
}
static int
is_aligned(void *p, int align)
{
unsigned long addr = (unsigned long)p;
unsigned mask = align - 1;
if (addr & mask)
return 0;
return 1;
}
static int
test_align_overlap_per_lcore(__attribute__((unused)) void *arg)
{
const unsigned align1 = 8,
align2 = 64,
align3 = 2048;
unsigned i,j;
void *p1 = NULL, *p2 = NULL, *p3 = NULL;
int ret = 0;
for (i = 0; i < N; i++) {
p1 = rte_zmalloc("dummy", 1000, align1);
if (!p1){
printf("rte_zmalloc returned NULL (i=%u)\n", i);
ret = -1;
break;
}
for(j = 0; j < 1000 ; j++) {
if( *(char *)p1 != 0) {
printf("rte_zmalloc didn't zero"
"the allocated memory\n");
ret = -1;
}
}
p2 = rte_malloc("dummy", 1000, align2);
if (!p2){
printf("rte_malloc returned NULL (i=%u)\n", i);
ret = -1;
rte_free(p1);
break;
}
p3 = rte_malloc("dummy", 1000, align3);
if (!p3){
printf("rte_malloc returned NULL (i=%u)\n", i);
ret = -1;
rte_free(p1);
rte_free(p2);
break;
}
if (is_memory_overlap(p1, 1000, p2, 1000)) {
printf("p1 and p2 overlaps\n");
ret = -1;
}
if (is_memory_overlap(p2, 1000, p3, 1000)) {
printf("p2 and p3 overlaps\n");
ret = -1;
}
if (is_memory_overlap(p1, 1000, p3, 1000)) {
printf("p1 and p3 overlaps\n");
ret = -1;
}
if (!is_aligned(p1, align1)) {
printf("p1 is not aligned\n");
ret = -1;
}
if (!is_aligned(p2, align2)) {
printf("p2 is not aligned\n");
ret = -1;
}
if (!is_aligned(p3, align3)) {
printf("p3 is not aligned\n");
ret = -1;
}
rte_free(p1);
rte_free(p2);
rte_free(p3);
}
rte_malloc_dump_stats(stdout, "dummy");
return ret;
}
static int
test_reordered_free_per_lcore(__attribute__((unused)) void *arg)
{
const unsigned align1 = 8,
align2 = 64,
align3 = 2048;
unsigned i,j;
void *p1, *p2, *p3;
int ret = 0;
for (i = 0; i < 30; i++) {
p1 = rte_zmalloc("dummy", 1000, align1);
if (!p1){
printf("rte_zmalloc returned NULL (i=%u)\n", i);
ret = -1;
break;
}
for(j = 0; j < 1000 ; j++) {
if( *(char *)p1 != 0) {
printf("rte_zmalloc didn't zero"
"the allocated memory\n");
ret = -1;
}
}
/* use calloc to allocate 1000 16-byte items this time */
p2 = rte_calloc("dummy", 1000, 16, align2);
/* for third request use regular malloc again */
p3 = rte_malloc("dummy", 1000, align3);
if (!p2 || !p3){
printf("rte_malloc returned NULL (i=%u)\n", i);
ret = -1;
break;
}
if (is_memory_overlap(p1, 1000, p2, 1000)) {
printf("p1 and p2 overlaps\n");
ret = -1;
}
if (is_memory_overlap(p2, 1000, p3, 1000)) {
printf("p2 and p3 overlaps\n");
ret = -1;
}
if (is_memory_overlap(p1, 1000, p3, 1000)) {
printf("p1 and p3 overlaps\n");
ret = -1;
}
if (!is_aligned(p1, align1)) {
printf("p1 is not aligned\n");
ret = -1;
}
if (!is_aligned(p2, align2)) {
printf("p2 is not aligned\n");
ret = -1;
}
if (!is_aligned(p3, align3)) {
printf("p3 is not aligned\n");
ret = -1;
}
/* try freeing in every possible order */
switch (i%6){
case 0:
rte_free(p1);
rte_free(p2);
rte_free(p3);
break;
case 1:
rte_free(p1);
rte_free(p3);
rte_free(p2);
break;
case 2:
rte_free(p2);
rte_free(p1);
rte_free(p3);
break;
case 3:
rte_free(p2);
rte_free(p3);
rte_free(p1);
break;
case 4:
rte_free(p3);
rte_free(p1);
rte_free(p2);
break;
case 5:
rte_free(p3);
rte_free(p2);
rte_free(p1);
break;
}
}
rte_malloc_dump_stats(stdout, "dummy");
return ret;
}
/* test function inside the malloc lib*/
static int
test_str_to_size(void)
{
struct {
const char *str;
uint64_t value;
} test_values[] =
{{ "5G", (uint64_t)5 * 1024 * 1024 *1024 },
{"0x20g", (uint64_t)0x20 * 1024 * 1024 *1024},
{"10M", 10 * 1024 * 1024},
{"050m", 050 * 1024 * 1024},
{"8K", 8 * 1024},
{"15k", 15 * 1024},
{"0200", 0200},
{"0x103", 0x103},
{"432", 432},
{"-1", 0}, /* negative values return 0 */
{" -2", 0},
{" -3MB", 0},
{"18446744073709551616", 0} /* ULLONG_MAX + 1 == out of range*/
};
unsigned i;
for (i = 0; i < sizeof(test_values)/sizeof(test_values[0]); i++)
if (rte_str_to_size(test_values[i].str) != test_values[i].value)
return -1;
return 0;
}
static int
test_big_alloc(void)
{
int socket = 0;
struct rte_malloc_socket_stats pre_stats, post_stats;
size_t size =rte_str_to_size(MALLOC_MEMZONE_SIZE)*2;
int align = 0;
#ifndef RTE_LIBRTE_MALLOC_DEBUG
int overhead = RTE_CACHE_LINE_SIZE + RTE_CACHE_LINE_SIZE;
#else
int overhead = RTE_CACHE_LINE_SIZE + RTE_CACHE_LINE_SIZE + RTE_CACHE_LINE_SIZE;
#endif
rte_malloc_get_socket_stats(socket, &pre_stats);
void *p1 = rte_malloc_socket("BIG", size , align, socket);
if (!p1)
return -1;
rte_malloc_get_socket_stats(socket,&post_stats);
/* Check statistics reported are correct */
/* Allocation may increase, or may be the same as before big allocation */
if (post_stats.heap_totalsz_bytes < pre_stats.heap_totalsz_bytes) {
printf("Malloc statistics are incorrect - heap_totalsz_bytes\n");
return -1;
}
/* Check that allocated size adds up correctly */
if (post_stats.heap_allocsz_bytes !=
pre_stats.heap_allocsz_bytes + size + align + overhead) {
printf("Malloc statistics are incorrect - alloc_size\n");
return -1;
}
/* Check free size against tested allocated size */
if (post_stats.heap_freesz_bytes !=
post_stats.heap_totalsz_bytes - post_stats.heap_allocsz_bytes) {
printf("Malloc statistics are incorrect - heap_freesz_bytes\n");
return -1;
}
/* Number of allocated blocks must increase after allocation */
if (post_stats.alloc_count != pre_stats.alloc_count + 1) {
printf("Malloc statistics are incorrect - alloc_count\n");
return -1;
}
/* New blocks now available - just allocated 1 but also 1 new free */
if (post_stats.free_count != pre_stats.free_count &&
post_stats.free_count != pre_stats.free_count - 1) {
printf("Malloc statistics are incorrect - free_count\n");
return -1;
}
rte_free(p1);
return 0;
}
static int
test_multi_alloc_statistics(void)
{
int socket = 0;
struct rte_malloc_socket_stats pre_stats, post_stats ,first_stats, second_stats;
size_t size = 2048;
int align = 1024;
#ifndef RTE_LIBRTE_MALLOC_DEBUG
int trailer_size = 0;
#else
int trailer_size = RTE_CACHE_LINE_SIZE;
#endif
int overhead = RTE_CACHE_LINE_SIZE + trailer_size;
rte_malloc_get_socket_stats(socket, &pre_stats);
void *p1 = rte_malloc_socket("stats", size , align, socket);
if (!p1)
return -1;
rte_free(p1);
rte_malloc_dump_stats(stdout, "stats");
rte_malloc_get_socket_stats(socket,&post_stats);
/* Check statistics reported are correct */
/* All post stats should be equal to pre stats after alloc freed */
if ((post_stats.heap_totalsz_bytes != pre_stats.heap_totalsz_bytes) &&
(post_stats.heap_freesz_bytes!=pre_stats.heap_freesz_bytes) &&
(post_stats.heap_allocsz_bytes!=pre_stats.heap_allocsz_bytes)&&
(post_stats.alloc_count!=pre_stats.alloc_count)&&
(post_stats.free_count!=pre_stats.free_count)) {
printf("Malloc statistics are incorrect - freed alloc\n");
return -1;
}
/* Check two consecutive allocations */
size = 1024;
align = 0;
rte_malloc_get_socket_stats(socket,&pre_stats);
void *p2 = rte_malloc_socket("add", size ,align, socket);
if (!p2)
return -1;
rte_malloc_get_socket_stats(socket,&first_stats);
void *p3 = rte_malloc_socket("add2", size,align, socket);
if (!p3)
return -1;
rte_malloc_get_socket_stats(socket,&second_stats);
rte_free(p2);
rte_free(p3);
/* After freeing both allocations check stats return to original */
rte_malloc_get_socket_stats(socket, &post_stats);
/*
* Check that no new blocks added after small allocations
* i.e. < RTE_MALLOC_MEMZONE_SIZE
*/
if(second_stats.heap_totalsz_bytes != first_stats.heap_totalsz_bytes) {
printf("Incorrect heap statistics: Total size \n");
return -1;
}
/* Check allocated size is equal to two additions plus overhead */
if(second_stats.heap_allocsz_bytes !=
size + overhead + first_stats.heap_allocsz_bytes) {
printf("Incorrect heap statistics: Allocated size \n");
return -1;
}
/* Check that allocation count increments correctly i.e. +1 */
if (second_stats.alloc_count != first_stats.alloc_count + 1) {
printf("Incorrect heap statistics: Allocated count \n");
return -1;
}
if (second_stats.free_count != first_stats.free_count){
printf("Incorrect heap statistics: Free count \n");
return -1;
}
/* Make sure that we didn't touch our greatest chunk: 2 * 11M) */
if (post_stats.greatest_free_size != pre_stats.greatest_free_size) {
printf("Incorrect heap statistics: Greatest free size \n");
return -1;
}
/* Free size must equal the original free size minus the new allocation*/
if (first_stats.heap_freesz_bytes <= second_stats.heap_freesz_bytes) {
printf("Incorrect heap statistics: Free size \n");
return -1;
}
if ((post_stats.heap_totalsz_bytes != pre_stats.heap_totalsz_bytes) &&
(post_stats.heap_freesz_bytes!=pre_stats.heap_freesz_bytes) &&
(post_stats.heap_allocsz_bytes!=pre_stats.heap_allocsz_bytes)&&
(post_stats.alloc_count!=pre_stats.alloc_count)&&
(post_stats.free_count!=pre_stats.free_count)) {
printf("Malloc statistics are incorrect - freed alloc\n");
return -1;
}
return 0;
}
static int
test_memzone_size_alloc(void)
{
void *p1 = rte_malloc("BIG", (size_t)(rte_str_to_size(MALLOC_MEMZONE_SIZE) - 128), 64);
if (!p1)
return -1;
rte_free(p1);
/* one extra check - check no crashes if free(NULL) */
rte_free(NULL);
return 0;
}
static int
test_rte_malloc_type_limits(void)
{
/* The type-limits functionality is not yet implemented,
* so always return 0 no matter what the retval.
*/
const char *typename = "limit_test";
rte_malloc_set_limit(typename, 64 * 1024);
rte_malloc_dump_stats(stdout, typename);
return 0;
}
static int
test_realloc(void)
{
const char hello_str[] = "Hello, world!";
const unsigned size1 = 1024;
const unsigned size2 = size1 + 1024;
const unsigned size3 = size2;
const unsigned size4 = size3 + 1024;
/* test data is the same even if element is moved*/
char *ptr1 = rte_zmalloc(NULL, size1, RTE_CACHE_LINE_SIZE);
if (!ptr1){
printf("NULL pointer returned from rte_zmalloc\n");
return -1;
}
snprintf(ptr1, size1, "%s" ,hello_str);
char *ptr2 = rte_realloc(ptr1, size2, RTE_CACHE_LINE_SIZE);
if (!ptr2){
rte_free(ptr1);
printf("NULL pointer returned from rte_realloc\n");
return -1;
}
if (ptr1 == ptr2){
printf("unexpected - ptr1 == ptr2\n");
}
if (strcmp(ptr2, hello_str) != 0){
printf("Error - lost data from pointed area\n");
rte_free(ptr2);
return -1;
}
unsigned i;
for (i = strnlen(hello_str, sizeof(hello_str)); i < size1; i++)
if (ptr2[i] != 0){
printf("Bad data in realloc\n");
rte_free(ptr2);
return -1;
}
/* now allocate third element, free the second
* and resize third. It should not move. (ptr1 is now invalid)
*/
char *ptr3 = rte_zmalloc(NULL, size3, RTE_CACHE_LINE_SIZE);
if (!ptr3){
printf("NULL pointer returned from rte_zmalloc\n");
rte_free(ptr2);
return -1;
}
for (i = 0; i < size3; i++)
if (ptr3[i] != 0){
printf("Bad data in zmalloc\n");
rte_free(ptr3);
rte_free(ptr2);
return -1;
}
rte_free(ptr2);
/* first resize to half the size of the freed block */
char *ptr4 = rte_realloc(ptr3, size4, RTE_CACHE_LINE_SIZE);
if (!ptr4){
printf("NULL pointer returned from rte_realloc\n");
rte_free(ptr3);
return -1;
}
if (ptr3 != ptr4){
printf("Unexpected - ptr4 != ptr3\n");
rte_free(ptr4);
return -1;
}
/* now resize again to the full size of the freed block */
ptr4 = rte_realloc(ptr3, size3 + size2 + size1, RTE_CACHE_LINE_SIZE);
if (ptr3 != ptr4){
printf("Unexpected - ptr4 != ptr3 on second resize\n");
rte_free(ptr4);
return -1;
}
rte_free(ptr4);
/* now try a resize to a smaller size, see if it works */
const unsigned size5 = 1024;
const unsigned size6 = size5 / 2;
char *ptr5 = rte_malloc(NULL, size5, RTE_CACHE_LINE_SIZE);
if (!ptr5){
printf("NULL pointer returned from rte_malloc\n");
return -1;
}
char *ptr6 = rte_realloc(ptr5, size6, RTE_CACHE_LINE_SIZE);
if (!ptr6){
printf("NULL pointer returned from rte_realloc\n");
rte_free(ptr5);
return -1;
}
if (ptr5 != ptr6){
printf("Error, resizing to a smaller size moved data\n");
rte_free(ptr6);
return -1;
}
rte_free(ptr6);
/* check for behaviour changing alignment */
const unsigned size7 = 1024;
const unsigned orig_align = RTE_CACHE_LINE_SIZE;
unsigned new_align = RTE_CACHE_LINE_SIZE * 2;
char *ptr7 = rte_malloc(NULL, size7, orig_align);
if (!ptr7){
printf("NULL pointer returned from rte_malloc\n");
return -1;
}
/* calc an alignment we don't already have */
while(RTE_PTR_ALIGN(ptr7, new_align) == ptr7)
new_align *= 2;
char *ptr8 = rte_realloc(ptr7, size7, new_align);
if (!ptr8){
printf("NULL pointer returned from rte_realloc\n");
rte_free(ptr7);
return -1;
}
if (RTE_PTR_ALIGN(ptr8, new_align) != ptr8){
printf("Failure to re-align data\n");
rte_free(ptr8);
return -1;
}
rte_free(ptr8);
/* test behaviour when there is a free block after current one,
* but its not big enough
*/
unsigned size9 = 1024, size10 = 1024;
unsigned size11 = size9 + size10 + 256;
char *ptr9 = rte_malloc(NULL, size9, RTE_CACHE_LINE_SIZE);
if (!ptr9){
printf("NULL pointer returned from rte_malloc\n");
return -1;
}
char *ptr10 = rte_malloc(NULL, size10, RTE_CACHE_LINE_SIZE);
if (!ptr10){
printf("NULL pointer returned from rte_malloc\n");
return -1;
}
rte_free(ptr9);
char *ptr11 = rte_realloc(ptr10, size11, RTE_CACHE_LINE_SIZE);
if (!ptr11){
printf("NULL pointer returned from rte_realloc\n");
rte_free(ptr10);
return -1;
}
if (ptr11 == ptr10){
printf("Error, unexpected that realloc has not created new buffer\n");
rte_free(ptr11);
return -1;
}
rte_free(ptr11);
/* check we don't crash if we pass null to realloc
* We should get a malloc of the size requested*/
const size_t size12 = 1024;
size_t size12_check;
char *ptr12 = rte_realloc(NULL, size12, RTE_CACHE_LINE_SIZE);
if (!ptr12){
printf("NULL pointer returned from rte_realloc\n");
return -1;
}
if (rte_malloc_validate(ptr12, &size12_check) < 0 ||
size12_check != size12){
rte_free(ptr12);
return -1;
}
rte_free(ptr12);
return 0;
}
static int
test_random_alloc_free(void *_ __attribute__((unused)))
{
struct mem_list {
struct mem_list *next;
char data[0];
} *list_head = NULL;
unsigned i;
unsigned count = 0;
rte_srand((unsigned)rte_rdtsc());
for (i = 0; i < N; i++){
unsigned free_mem = 0;
size_t allocated_size;
while (!free_mem){
const unsigned mem_size = sizeof(struct mem_list) + \
rte_rand() % (64 * 1024);
const unsigned align = 1 << (rte_rand() % 12); /* up to 4k alignment */
struct mem_list *entry = rte_malloc(NULL,
mem_size, align);
if (entry == NULL)
return -1;
if (RTE_PTR_ALIGN(entry, align)!= entry)
return -1;
if (rte_malloc_validate(entry, &allocated_size) == -1
|| allocated_size < mem_size)
return -1;
memset(entry->data, rte_lcore_id(),
mem_size - sizeof(*entry));
entry->next = list_head;
if (rte_malloc_validate(entry, NULL) == -1)
return -1;
list_head = entry;
count++;
/* switch to freeing the memory with a 20% probability */
free_mem = ((rte_rand() % 10) >= 8);
}
while (list_head){
struct mem_list *entry = list_head;
list_head = list_head->next;
rte_free(entry);
}
}
printf("Lcore %u allocated/freed %u blocks\n", rte_lcore_id(), count);
return 0;
}
#define err_return() do { \
printf("%s: %d - Error\n", __func__, __LINE__); \
goto err_return; \
} while (0)
static int
test_rte_malloc_validate(void)
{
const size_t request_size = 1024;
size_t allocated_size;
char *data_ptr = rte_malloc(NULL, request_size, RTE_CACHE_LINE_SIZE);
#ifdef RTE_LIBRTE_MALLOC_DEBUG
int retval;
char *over_write_vals = NULL;
#endif
if (data_ptr == NULL) {
printf("%s: %d - Allocation error\n", __func__, __LINE__);
return -1;
}
/* check that a null input returns -1 */
if (rte_malloc_validate(NULL, NULL) != -1)
err_return();
/* check that we get ok on a valid pointer */
if (rte_malloc_validate(data_ptr, &allocated_size) < 0)
err_return();
/* check that the returned size is ok */
if (allocated_size < request_size)
err_return();
#ifdef RTE_LIBRTE_MALLOC_DEBUG
/****** change the header to be bad */
char save_buf[64];
over_write_vals = (char *)((uintptr_t)data_ptr - sizeof(save_buf));
/* first save the data as a backup before overwriting it */
memcpy(save_buf, over_write_vals, sizeof(save_buf));
memset(over_write_vals, 1, sizeof(save_buf));
/* then run validate */
retval = rte_malloc_validate(data_ptr, NULL);
/* finally restore the data again */
memcpy(over_write_vals, save_buf, sizeof(save_buf));
/* check we previously had an error */
if (retval != -1)
err_return();
/* check all ok again */
if (rte_malloc_validate(data_ptr, &allocated_size) < 0)
err_return();
/**** change the trailer to be bad */
over_write_vals = (char *)((uintptr_t)data_ptr + allocated_size);
/* first save the data as a backup before overwriting it */
memcpy(save_buf, over_write_vals, sizeof(save_buf));
memset(over_write_vals, 1, sizeof(save_buf));
/* then run validate */
retval = rte_malloc_validate(data_ptr, NULL);
/* finally restore the data again */
memcpy(over_write_vals, save_buf, sizeof(save_buf));
if (retval != -1)
err_return();
/* check all ok again */
if (rte_malloc_validate(data_ptr, &allocated_size) < 0)
err_return();
#endif
rte_free(data_ptr);
return 0;
err_return:
/*clean up */
rte_free(data_ptr);
return -1;
}
static int
test_zero_aligned_alloc(void)
{
char *p1 = rte_malloc(NULL,1024, 0);
if (!p1)
goto err_return;
if (!rte_is_aligned(p1, RTE_CACHE_LINE_SIZE))
goto err_return;
rte_free(p1);
return 0;
err_return:
/*clean up */
if (p1) rte_free(p1);
return -1;
}
static int
test_malloc_bad_params(void)
{
const char *type = NULL;
size_t size = 0;
unsigned align = RTE_CACHE_LINE_SIZE;
/* rte_malloc expected to return null with inappropriate size */
char *bad_ptr = rte_malloc(type, size, align);
if (bad_ptr != NULL)
goto err_return;
/* rte_malloc expected to return null with inappropriate alignment */
align = 17;
size = 1024;
bad_ptr = rte_malloc(type, size, align);
if (bad_ptr != NULL)
goto err_return;
return 0;
err_return:
/* clean up pointer */
if (bad_ptr)
rte_free(bad_ptr);
return -1;
}
/* Check if memory is avilable on a specific socket */
static int
is_mem_on_socket(int32_t socket)
{
const struct rte_memseg *ms = rte_eal_get_physmem_layout();
unsigned i;
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if (socket == ms[i].socket_id)
return 1;
}
return 0;
}
/*
* Find what socket a memory address is on. Only works for addresses within
* memsegs, not heap or stack...
*/
static int32_t
addr_to_socket(void * addr)
{
const struct rte_memseg *ms = rte_eal_get_physmem_layout();
unsigned i;
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if ((ms[i].addr <= addr) &&
((uintptr_t)addr <
((uintptr_t)ms[i].addr + (uintptr_t)ms[i].len)))
return ms[i].socket_id;
}
return -1;
}
/* Test using rte_[c|m|zm]alloc_socket() on a specific socket */
static int
test_alloc_single_socket(int32_t socket)
{
const char *type = NULL;
const size_t size = 10;
const unsigned align = 0;
char *mem = NULL;
int32_t desired_socket = (socket == SOCKET_ID_ANY) ?
(int32_t)rte_socket_id() : socket;
/* Test rte_calloc_socket() */
mem = rte_calloc_socket(type, size, sizeof(char), align, socket);
if (mem == NULL)
return -1;
if (addr_to_socket(mem) != desired_socket) {
rte_free(mem);
return -1;
}
rte_free(mem);
/* Test rte_malloc_socket() */
mem = rte_malloc_socket(type, size, align, socket);
if (mem == NULL)
return -1;
if (addr_to_socket(mem) != desired_socket) {
return -1;
}
rte_free(mem);
/* Test rte_zmalloc_socket() */
mem = rte_zmalloc_socket(type, size, align, socket);
if (mem == NULL)
return -1;
if (addr_to_socket(mem) != desired_socket) {
rte_free(mem);
return -1;
}
rte_free(mem);
return 0;
}
static int
test_alloc_socket(void)
{
unsigned socket_count = 0;
unsigned i;
if (test_alloc_single_socket(SOCKET_ID_ANY) < 0)
return -1;
for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
if (is_mem_on_socket(i)) {
socket_count++;
if (test_alloc_single_socket(i) < 0) {
printf("Fail: rte_malloc_socket(..., %u) did not succeed\n",
i);
return -1;
}
}
else {
if (test_alloc_single_socket(i) == 0) {
printf("Fail: rte_malloc_socket(..., %u) succeeded\n",
i);
return -1;
}
}
}
/* Print warnign if only a single socket, but don't fail the test */
if (socket_count < 2) {
printf("WARNING: alloc_socket test needs memory on multiple sockets!\n");
}
return 0;
}
static int
test_malloc(void)
{
unsigned lcore_id;
int ret = 0;
if (test_str_to_size() < 0){
printf("test_str_to_size() failed\n");
return -1;
}
else printf("test_str_to_size() passed\n");
if (test_memzone_size_alloc() < 0){
printf("test_memzone_size_alloc() failed\n");
return -1;
}
else printf("test_memzone_size_alloc() passed\n");
if (test_big_alloc() < 0){
printf("test_big_alloc() failed\n");
return -1;
}
else printf("test_big_alloc() passed\n");
if (test_zero_aligned_alloc() < 0){
printf("test_zero_aligned_alloc() failed\n");
return -1;
}
else printf("test_zero_aligned_alloc() passed\n");
if (test_malloc_bad_params() < 0){
printf("test_malloc_bad_params() failed\n");
return -1;
}
else printf("test_malloc_bad_params() passed\n");
if (test_realloc() < 0){
printf("test_realloc() failed\n");
return -1;
}
else printf("test_realloc() passed\n");
/*----------------------------*/
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(test_align_overlap_per_lcore, NULL, lcore_id);
}
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (rte_eal_wait_lcore(lcore_id) < 0)
ret = -1;
}
if (ret < 0){
printf("test_align_overlap_per_lcore() failed\n");
return ret;
}
else printf("test_align_overlap_per_lcore() passed\n");
/*----------------------------*/
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(test_reordered_free_per_lcore, NULL, lcore_id);
}
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (rte_eal_wait_lcore(lcore_id) < 0)
ret = -1;
}
if (ret < 0){
printf("test_reordered_free_per_lcore() failed\n");
return ret;
}
else printf("test_reordered_free_per_lcore() passed\n");
/*----------------------------*/
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(test_random_alloc_free, NULL, lcore_id);
}
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (rte_eal_wait_lcore(lcore_id) < 0)
ret = -1;
}
if (ret < 0){
printf("test_random_alloc_free() failed\n");
return ret;
}
else printf("test_random_alloc_free() passed\n");
/*----------------------------*/
ret = test_rte_malloc_type_limits();
if (ret < 0){
printf("test_rte_malloc_type_limits() failed\n");
return ret;
}
/* TODO: uncomment following line once type limits are valid */
/*else printf("test_rte_malloc_type_limits() passed\n");*/
/*----------------------------*/
ret = test_rte_malloc_validate();
if (ret < 0){
printf("test_rte_malloc_validate() failed\n");
return ret;
}
else printf("test_rte_malloc_validate() passed\n");
ret = test_alloc_socket();
if (ret < 0){
printf("test_alloc_socket() failed\n");
return ret;
}
else printf("test_alloc_socket() passed\n");
ret = test_multi_alloc_statistics();
if (ret < 0) {
printf("test_multi_alloc_statistics() failed\n");
return ret;
}
else
printf("test_multi_alloc_statistics() passed\n");
return 0;
}
static struct test_command malloc_cmd = {
.command = "malloc_autotest",
.callback = test_malloc,
};
REGISTER_TEST_COMMAND(malloc_cmd);