numam-dpdk/examples/ipv4_frag/main.c
Intel 041cdbf947 ethdev: add DCB support
Signed-off-by: Intel
2013-07-25 15:23:28 +02:00

701 lines
18 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/param.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_lpm.h>
#include <rte_ip.h>
#include "rte_ipv4_frag.h"
#include "main.h"
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
#define MAX_PORTS 32
#define MBUF_SIZE (2048 + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
/* allow max jumbo frame 9.5 KB */
#define JUMBO_FRAME_MAX_SIZE 0x2600
#define ROUNDUP_DIV(a, b) (((a) + (b) - 1) / (b))
/*
* Max number of fragments per packet expected.
*/
#define MAX_PACKET_FRAG ROUNDUP_DIV(JUMBO_FRAME_MAX_SIZE, IPV4_DEFAULT_PAYLOAD)
#define NB_MBUF 8192
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
#define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */
#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */
#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN 200000ULL /* around 100us at 2 Ghz */
#define SOCKET0 0
/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET 3
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct ether_addr ports_eth_addr[MAX_PORTS];
static struct ether_addr remote_eth_addr =
{{0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff}};
/* mask of enabled ports */
static int enabled_port_mask = 0;
static int rx_queue_per_lcore = 1;
#define MBUF_TABLE_SIZE (2 * MAX(MAX_PKT_BURST, MAX_PACKET_FRAG))
struct mbuf_table {
uint16_t len;
struct rte_mbuf *m_table[MBUF_TABLE_SIZE];
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
struct lcore_queue_conf {
uint16_t n_rx_queue;
uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
uint16_t tx_queue_id[MAX_PORTS];
struct mbuf_table tx_mbufs[MAX_PORTS];
} __rte_cache_aligned;
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
static const struct rte_eth_conf port_conf = {
.rxmode = {
.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 1, /**< Jumbo Frame Support enabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.txmode = {
.mq_mode = ETH_DCB_NONE,
},
};
static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
},
};
static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
},
.tx_free_thresh = 0, /* Use PMD default values */
.tx_rs_thresh = 0, /* Use PMD default values */
};
struct rte_mempool *pool_direct = NULL, *pool_indirect = NULL;
struct l3fwd_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
};
struct l3fwd_route l3fwd_route_array[] = {
{IPv4(100,10,0,0), 16, 2},
{IPv4(100,20,0,0), 16, 2},
{IPv4(100,30,0,0), 16, 0},
{IPv4(100,40,0,0), 16, 0},
};
#define L3FWD_NUM_ROUTES \
(sizeof(l3fwd_route_array) / sizeof(l3fwd_route_array[0]))
#define L3FWD_LPM_MAX_RULES 1024
struct rte_lpm *l3fwd_lpm = NULL;
/* Send burst of packets on an output interface */
static inline int
send_burst(struct lcore_queue_conf *qconf, uint16_t n, uint8_t port)
{
struct rte_mbuf **m_table;
int ret;
uint16_t queueid;
queueid = qconf->tx_queue_id[port];
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
ret = rte_eth_tx_burst(port, queueid, m_table, n);
if (unlikely(ret < n)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < n);
}
return 0;
}
static inline void
l3fwd_simple_forward(struct rte_mbuf *m, uint8_t port_in)
{
struct lcore_queue_conf *qconf;
struct ipv4_hdr *ip_hdr;
uint32_t i, len, lcore_id, ip_dst;
uint8_t next_hop, port_out;
int32_t len2;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
/* Remove the Ethernet header and trailer from the input packet */
rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
/* Read the lookup key (i.e. ip_dst) from the input packet */
ip_hdr = rte_pktmbuf_mtod(m, struct ipv4_hdr *);
ip_dst = rte_be_to_cpu_32(ip_hdr->dst_addr);
/* Find destination port */
if (rte_lpm_lookup(l3fwd_lpm, ip_dst, &next_hop) == 0 &&
(enabled_port_mask & 1 << next_hop) != 0)
port_out = next_hop;
else
port_out = port_in;
/* Build transmission burst */
len = qconf->tx_mbufs[port_out].len;
/* if we don't need to do any fragmentation */
if (likely (IPV4_MTU_DEFAULT >= m->pkt.pkt_len)) {
qconf->tx_mbufs[port_out].m_table[len] = m;
len2 = 1;
} else {
len2 = rte_ipv4_fragmentation(m,
&qconf->tx_mbufs[port_out].m_table[len],
(uint16_t)(MBUF_TABLE_SIZE - len),
IPV4_MTU_DEFAULT,
pool_direct, pool_indirect);
/* Free input packet */
rte_pktmbuf_free(m);
/* If we fail to fragment the packet */
if (unlikely (len2 < 0))
return;
}
for (i = len; i < len + len2; i ++) {
m = qconf->tx_mbufs[port_out].m_table[i];
struct ether_hdr *eth_hdr = (struct ether_hdr *)
rte_pktmbuf_prepend(m, (uint16_t)sizeof(struct ether_hdr));
if (eth_hdr == NULL) {
rte_panic("No headroom in mbuf.\n");
}
m->pkt.vlan_macip.f.l2_len = sizeof(struct ether_hdr);
ether_addr_copy(&remote_eth_addr, &eth_hdr->d_addr);
ether_addr_copy(&ports_eth_addr[port_out], &eth_hdr->s_addr);
eth_hdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
}
len += len2;
if (likely(len < MAX_PKT_BURST)) {
qconf->tx_mbufs[port_out].len = (uint16_t)len;
return;
}
/* Transmit packets */
send_burst(qconf, (uint16_t)len, port_out);
qconf->tx_mbufs[port_out].len = 0;
}
/* main processing loop */
static __attribute__((noreturn)) int
main_loop(__attribute__((unused)) void *dummy)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
uint32_t lcore_id;
uint64_t prev_tsc = 0;
uint64_t diff_tsc, cur_tsc;
int i, j, nb_rx;
uint8_t portid;
struct lcore_queue_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
if (qconf->n_rx_queue == 0) {
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
while(1);
}
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i];
RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%d\n", lcore_id,
(int) portid);
}
while (1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > BURST_TX_DRAIN)) {
/*
* This could be optimized (use queueid instead of
* portid), but it is not called so often
*/
for (portid = 0; portid < MAX_PORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)
continue;
send_burst(&lcore_queue_conf[lcore_id],
qconf->tx_mbufs[portid].len,
portid);
qconf->tx_mbufs[portid].len = 0;
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i];
nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
MAX_PKT_BURST);
/* Prefetch first packets */
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
rte_prefetch0(rte_pktmbuf_mtod(
pkts_burst[j], void *));
}
/* Prefetch and forward already prefetched packets */
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
j + PREFETCH_OFFSET], void *));
l3fwd_simple_forward(pkts_burst[j], portid);
}
/* Forward remaining prefetched packets */
for (; j < nb_rx; j++) {
l3fwd_simple_forward(pkts_burst[j], portid);
}
}
}
}
/* display usage */
static void
print_usage(const char *prgname)
{
printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of queue (=ports) per lcore (default is 1)\n",
prgname);
}
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (pm == 0)
return -1;
return pm;
}
static int
parse_nqueue(const char *q_arg)
{
char *end = NULL;
unsigned long n;
/* parse hexadecimal string */
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
return -1;
if (n == 0)
return -1;
if (n >= MAX_RX_QUEUE_PER_LCORE)
return -1;
return n;
}
/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{NULL, 0, 0, 0}
};
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "p:q:",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask < 0) {
printf("invalid portmask\n");
print_usage(prgname);
return -1;
}
break;
/* nqueue */
case 'q':
rx_queue_per_lcore = parse_nqueue(optarg);
if (rx_queue_per_lcore < 0) {
printf("invalid queue number\n");
print_usage(prgname);
return -1;
}
break;
/* long options */
case 0:
print_usage(prgname);
return -1;
default:
print_usage(prgname);
return -1;
}
}
if (enabled_port_mask == 0) {
printf("portmask not specified\n");
print_usage(prgname);
return -1;
}
if (optind >= 0)
argv[optind-1] = prgname;
ret = optind-1;
optind = 0; /* reset getopt lib */
return ret;
}
static void
print_ethaddr(const char *name, struct ether_addr *eth_addr)
{
printf("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
eth_addr->addr_bytes[0],
eth_addr->addr_bytes[1],
eth_addr->addr_bytes[2],
eth_addr->addr_bytes[3],
eth_addr->addr_bytes[4],
eth_addr->addr_bytes[5]);
}
int
MAIN(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct rte_eth_link link;
int ret;
unsigned nb_ports, i;
uint16_t queueid = 0;
unsigned lcore_id = 0, rx_lcore_id = 0;;
uint32_t n_tx_queue, nb_lcores;
uint8_t portid;
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eal_init failed");
argc -= ret;
argv += ret;
/* parse application arguments (after the EAL ones) */
ret = parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid arguments");
/* create the mbuf pools */
pool_direct =
rte_mempool_create("pool_direct", NB_MBUF,
MBUF_SIZE, 32,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
SOCKET0, 0);
if (pool_direct == NULL)
rte_panic("Cannot init direct mbuf pool\n");
pool_indirect =
rte_mempool_create("pool_indirect", NB_MBUF,
sizeof(struct rte_mbuf), 32,
0,
NULL, NULL,
rte_pktmbuf_init, NULL,
SOCKET0, 0);
if (pool_indirect == NULL)
rte_panic("Cannot init indirect mbuf pool\n");
/* init driver */
if (rte_pmd_init_all() < 0)
rte_panic("Cannot init PMD\n");
if (rte_eal_pci_probe() < 0)
rte_panic("Cannot probe PCI\n");
nb_ports = rte_eth_dev_count();
if (nb_ports > MAX_PORTS)
nb_ports = MAX_PORTS;
nb_lcores = rte_lcore_count();
/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
printf("Skipping disabled port %d\n", portid);
continue;
}
qconf = &lcore_queue_conf[rx_lcore_id];
/* get the lcore_id for this port */
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {
rx_lcore_id ++;
qconf = &lcore_queue_conf[rx_lcore_id];
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE, "Not enough cores\n");
}
qconf->rx_queue_list[qconf->n_rx_queue] = portid;
qconf->n_rx_queue++;
/* init port */
printf("Initializing port %d on lcore %u... ", portid,
rx_lcore_id);
fflush(stdout);
n_tx_queue = nb_lcores;
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
&port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%d\n",
ret, portid);
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
print_ethaddr(" Address:", &ports_eth_addr[portid]);
printf(", ");
/* init one RX queue */
queueid = 0;
printf("rxq=%d ", queueid);
fflush(stdout);
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
SOCKET0, &rx_conf,
pool_direct);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
"err=%d, port=%d\n",
ret, portid);
/* init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
printf("txq=%u,%d ", lcore_id, queueid);
fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
SOCKET0, &tx_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "
"err=%d, port=%d\n", ret, portid);
qconf = &lcore_queue_conf[lcore_id];
qconf->tx_queue_id[portid] = queueid;
queueid++;
}
/* Start device */
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: "
"err=%d, port=%d\n",
ret, portid);
printf("done: ");
/* get link status */
rte_eth_link_get(portid, &link);
if (link.link_status) {
printf(" Link Up - speed %u Mbps - %s\n",
(uint32_t) link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
} else {
printf(" Link Down\n");
}
/* Set port in promiscuous mode */
rte_eth_promiscuous_enable(portid);
}
/* create the LPM table */
l3fwd_lpm = rte_lpm_create("L3FWD_LPM", SOCKET0, L3FWD_LPM_MAX_RULES, 0);
if (l3fwd_lpm == NULL)
rte_panic("Unable to create the l3fwd LPM table\n");
/* populate the LPM table */
for (i = 0; i < L3FWD_NUM_ROUTES; i++) {
ret = rte_lpm_add(l3fwd_lpm,
l3fwd_route_array[i].ip,
l3fwd_route_array[i].depth,
l3fwd_route_array[i].if_out);
if (ret < 0) {
rte_panic("Unable to add entry %u to the l3fwd "
"LPM table\n", i);
}
printf("Adding route 0x%08x / %d (%d)\n",
l3fwd_route_array[i].ip,
l3fwd_route_array[i].depth,
l3fwd_route_array[i].if_out);
}
/* launch per-lcore init on every lcore */
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
return 0;
}