numam-dpdk/drivers/net/sfc/sfc_mae.c
Ivan Malov e52d36cf8f net/sfc: fix outer match in MAE backend
The current code doesn't use match on invalid outer rule ID
in action rules of non-encap. flows. This is wrong and must
be fixed. Do that and explain correct behaviour in the code.

Fixes: dadff13793 ("net/sfc: support encap flow items in transfer rules")
Cc: stable@dpdk.org

Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Andy Moreton <amoreton@xilinx.com>
2021-07-07 11:54:21 +02:00

3067 lines
83 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <stdbool.h>
#include <rte_bitops.h>
#include <rte_common.h>
#include <rte_vxlan.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_log.h"
#include "sfc_switch.h"
static int
sfc_mae_assign_entity_mport(struct sfc_adapter *sa,
efx_mport_sel_t *mportp)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
return efx_mae_mport_by_pcie_function(encp->enc_pf, encp->enc_vf,
mportp);
}
int
sfc_mae_attach(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_mae_switch_port_request switch_port_request = {0};
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
efx_mport_sel_t entity_mport;
struct sfc_mae *mae = &sa->mae;
struct sfc_mae_bounce_eh *bounce_eh = &mae->bounce_eh;
efx_mae_limits_t limits;
int rc;
sfc_log_init(sa, "entry");
if (!encp->enc_mae_supported) {
mae->status = SFC_MAE_STATUS_UNSUPPORTED;
return 0;
}
sfc_log_init(sa, "init MAE");
rc = efx_mae_init(sa->nic);
if (rc != 0)
goto fail_mae_init;
sfc_log_init(sa, "get MAE limits");
rc = efx_mae_get_limits(sa->nic, &limits);
if (rc != 0)
goto fail_mae_get_limits;
sfc_log_init(sa, "assign entity MPORT");
rc = sfc_mae_assign_entity_mport(sa, &entity_mport);
if (rc != 0)
goto fail_mae_assign_entity_mport;
sfc_log_init(sa, "assign RTE switch domain");
rc = sfc_mae_assign_switch_domain(sa, &mae->switch_domain_id);
if (rc != 0)
goto fail_mae_assign_switch_domain;
sfc_log_init(sa, "assign RTE switch port");
switch_port_request.type = SFC_MAE_SWITCH_PORT_INDEPENDENT;
switch_port_request.entity_mportp = &entity_mport;
/*
* As of now, the driver does not support representors, so
* RTE ethdev MPORT simply matches that of the entity.
*/
switch_port_request.ethdev_mportp = &entity_mport;
switch_port_request.ethdev_port_id = sas->port_id;
rc = sfc_mae_assign_switch_port(mae->switch_domain_id,
&switch_port_request,
&mae->switch_port_id);
if (rc != 0)
goto fail_mae_assign_switch_port;
sfc_log_init(sa, "allocate encap. header bounce buffer");
bounce_eh->buf_size = limits.eml_encap_header_size_limit;
bounce_eh->buf = rte_malloc("sfc_mae_bounce_eh",
bounce_eh->buf_size, 0);
if (bounce_eh->buf == NULL)
goto fail_mae_alloc_bounce_eh;
mae->status = SFC_MAE_STATUS_SUPPORTED;
mae->nb_outer_rule_prios_max = limits.eml_max_n_outer_prios;
mae->nb_action_rule_prios_max = limits.eml_max_n_action_prios;
mae->encap_types_supported = limits.eml_encap_types_supported;
TAILQ_INIT(&mae->outer_rules);
TAILQ_INIT(&mae->encap_headers);
TAILQ_INIT(&mae->action_sets);
sfc_log_init(sa, "done");
return 0;
fail_mae_alloc_bounce_eh:
fail_mae_assign_switch_port:
fail_mae_assign_switch_domain:
fail_mae_assign_entity_mport:
fail_mae_get_limits:
efx_mae_fini(sa->nic);
fail_mae_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_mae_detach(struct sfc_adapter *sa)
{
struct sfc_mae *mae = &sa->mae;
enum sfc_mae_status status_prev = mae->status;
sfc_log_init(sa, "entry");
mae->nb_action_rule_prios_max = 0;
mae->status = SFC_MAE_STATUS_UNKNOWN;
if (status_prev != SFC_MAE_STATUS_SUPPORTED)
return;
rte_free(mae->bounce_eh.buf);
efx_mae_fini(sa->nic);
sfc_log_init(sa, "done");
}
static struct sfc_mae_outer_rule *
sfc_mae_outer_rule_attach(struct sfc_adapter *sa,
const efx_mae_match_spec_t *match_spec,
efx_tunnel_protocol_t encap_type)
{
struct sfc_mae_outer_rule *rule;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(rule, &mae->outer_rules, entries) {
if (efx_mae_match_specs_equal(rule->match_spec, match_spec) &&
rule->encap_type == encap_type) {
sfc_dbg(sa, "attaching to outer_rule=%p", rule);
++(rule->refcnt);
return rule;
}
}
return NULL;
}
static int
sfc_mae_outer_rule_add(struct sfc_adapter *sa,
efx_mae_match_spec_t *match_spec,
efx_tunnel_protocol_t encap_type,
struct sfc_mae_outer_rule **rulep)
{
struct sfc_mae_outer_rule *rule;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
rule = rte_zmalloc("sfc_mae_outer_rule", sizeof(*rule), 0);
if (rule == NULL)
return ENOMEM;
rule->refcnt = 1;
rule->match_spec = match_spec;
rule->encap_type = encap_type;
rule->fw_rsrc.rule_id.id = EFX_MAE_RSRC_ID_INVALID;
TAILQ_INSERT_TAIL(&mae->outer_rules, rule, entries);
*rulep = rule;
sfc_dbg(sa, "added outer_rule=%p", rule);
return 0;
}
static void
sfc_mae_outer_rule_del(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule)
{
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(rule->refcnt != 0);
--(rule->refcnt);
if (rule->refcnt != 0)
return;
if (rule->fw_rsrc.rule_id.id != EFX_MAE_RSRC_ID_INVALID ||
rule->fw_rsrc.refcnt != 0) {
sfc_err(sa, "deleting outer_rule=%p abandons its FW resource: OR_ID=0x%08x, refcnt=%u",
rule, rule->fw_rsrc.rule_id.id, rule->fw_rsrc.refcnt);
}
efx_mae_match_spec_fini(sa->nic, rule->match_spec);
TAILQ_REMOVE(&mae->outer_rules, rule, entries);
rte_free(rule);
sfc_dbg(sa, "deleted outer_rule=%p", rule);
}
static int
sfc_mae_outer_rule_enable(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule,
efx_mae_match_spec_t *match_spec_action)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (fw_rsrc->refcnt == 0) {
SFC_ASSERT(fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(rule->match_spec != NULL);
rc = efx_mae_outer_rule_insert(sa->nic, rule->match_spec,
rule->encap_type,
&fw_rsrc->rule_id);
if (rc != 0) {
sfc_err(sa, "failed to enable outer_rule=%p: %s",
rule, strerror(rc));
return rc;
}
}
rc = efx_mae_match_spec_outer_rule_id_set(match_spec_action,
&fw_rsrc->rule_id);
if (rc != 0) {
if (fw_rsrc->refcnt == 0) {
(void)efx_mae_outer_rule_remove(sa->nic,
&fw_rsrc->rule_id);
fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
}
sfc_err(sa, "can't match on outer rule ID: %s", strerror(rc));
return rc;
}
if (fw_rsrc->refcnt == 0) {
sfc_dbg(sa, "enabled outer_rule=%p: OR_ID=0x%08x",
rule, fw_rsrc->rule_id.id);
}
++(fw_rsrc->refcnt);
return 0;
}
static void
sfc_mae_outer_rule_disable(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (fw_rsrc->rule_id.id == EFX_MAE_RSRC_ID_INVALID ||
fw_rsrc->refcnt == 0) {
sfc_err(sa, "failed to disable outer_rule=%p: already disabled; OR_ID=0x%08x, refcnt=%u",
rule, fw_rsrc->rule_id.id, fw_rsrc->refcnt);
return;
}
if (fw_rsrc->refcnt == 1) {
rc = efx_mae_outer_rule_remove(sa->nic, &fw_rsrc->rule_id);
if (rc == 0) {
sfc_dbg(sa, "disabled outer_rule=%p with OR_ID=0x%08x",
rule, fw_rsrc->rule_id.id);
} else {
sfc_err(sa, "failed to disable outer_rule=%p with OR_ID=0x%08x: %s",
rule, fw_rsrc->rule_id.id, strerror(rc));
}
fw_rsrc->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
}
--(fw_rsrc->refcnt);
}
static struct sfc_mae_encap_header *
sfc_mae_encap_header_attach(struct sfc_adapter *sa,
const struct sfc_mae_bounce_eh *bounce_eh)
{
struct sfc_mae_encap_header *encap_header;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(encap_header, &mae->encap_headers, entries) {
if (encap_header->size == bounce_eh->size &&
memcmp(encap_header->buf, bounce_eh->buf,
bounce_eh->size) == 0) {
sfc_dbg(sa, "attaching to encap_header=%p",
encap_header);
++(encap_header->refcnt);
return encap_header;
}
}
return NULL;
}
static int
sfc_mae_encap_header_add(struct sfc_adapter *sa,
const struct sfc_mae_bounce_eh *bounce_eh,
struct sfc_mae_encap_header **encap_headerp)
{
struct sfc_mae_encap_header *encap_header;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
encap_header = rte_zmalloc("sfc_mae_encap_header",
sizeof(*encap_header), 0);
if (encap_header == NULL)
return ENOMEM;
encap_header->size = bounce_eh->size;
encap_header->buf = rte_malloc("sfc_mae_encap_header_buf",
encap_header->size, 0);
if (encap_header->buf == NULL) {
rte_free(encap_header);
return ENOMEM;
}
rte_memcpy(encap_header->buf, bounce_eh->buf, bounce_eh->size);
encap_header->refcnt = 1;
encap_header->type = bounce_eh->type;
encap_header->fw_rsrc.eh_id.id = EFX_MAE_RSRC_ID_INVALID;
TAILQ_INSERT_TAIL(&mae->encap_headers, encap_header, entries);
*encap_headerp = encap_header;
sfc_dbg(sa, "added encap_header=%p", encap_header);
return 0;
}
static void
sfc_mae_encap_header_del(struct sfc_adapter *sa,
struct sfc_mae_encap_header *encap_header)
{
struct sfc_mae *mae = &sa->mae;
if (encap_header == NULL)
return;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(encap_header->refcnt != 0);
--(encap_header->refcnt);
if (encap_header->refcnt != 0)
return;
if (encap_header->fw_rsrc.eh_id.id != EFX_MAE_RSRC_ID_INVALID ||
encap_header->fw_rsrc.refcnt != 0) {
sfc_err(sa, "deleting encap_header=%p abandons its FW resource: EH_ID=0x%08x, refcnt=%u",
encap_header, encap_header->fw_rsrc.eh_id.id,
encap_header->fw_rsrc.refcnt);
}
TAILQ_REMOVE(&mae->encap_headers, encap_header, entries);
rte_free(encap_header->buf);
rte_free(encap_header);
sfc_dbg(sa, "deleted encap_header=%p", encap_header);
}
static int
sfc_mae_encap_header_enable(struct sfc_adapter *sa,
struct sfc_mae_encap_header *encap_header,
efx_mae_actions_t *action_set_spec)
{
struct sfc_mae_fw_rsrc *fw_rsrc;
int rc;
if (encap_header == NULL)
return 0;
SFC_ASSERT(sfc_adapter_is_locked(sa));
fw_rsrc = &encap_header->fw_rsrc;
if (fw_rsrc->refcnt == 0) {
SFC_ASSERT(fw_rsrc->eh_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(encap_header->buf != NULL);
SFC_ASSERT(encap_header->size != 0);
rc = efx_mae_encap_header_alloc(sa->nic, encap_header->type,
encap_header->buf,
encap_header->size,
&fw_rsrc->eh_id);
if (rc != 0) {
sfc_err(sa, "failed to enable encap_header=%p: %s",
encap_header, strerror(rc));
return rc;
}
}
rc = efx_mae_action_set_fill_in_eh_id(action_set_spec,
&fw_rsrc->eh_id);
if (rc != 0) {
if (fw_rsrc->refcnt == 0) {
(void)efx_mae_encap_header_free(sa->nic,
&fw_rsrc->eh_id);
fw_rsrc->eh_id.id = EFX_MAE_RSRC_ID_INVALID;
}
sfc_err(sa, "can't fill in encap. header ID: %s", strerror(rc));
return rc;
}
if (fw_rsrc->refcnt == 0) {
sfc_dbg(sa, "enabled encap_header=%p: EH_ID=0x%08x",
encap_header, fw_rsrc->eh_id.id);
}
++(fw_rsrc->refcnt);
return 0;
}
static void
sfc_mae_encap_header_disable(struct sfc_adapter *sa,
struct sfc_mae_encap_header *encap_header)
{
struct sfc_mae_fw_rsrc *fw_rsrc;
int rc;
if (encap_header == NULL)
return;
SFC_ASSERT(sfc_adapter_is_locked(sa));
fw_rsrc = &encap_header->fw_rsrc;
if (fw_rsrc->eh_id.id == EFX_MAE_RSRC_ID_INVALID ||
fw_rsrc->refcnt == 0) {
sfc_err(sa, "failed to disable encap_header=%p: already disabled; EH_ID=0x%08x, refcnt=%u",
encap_header, fw_rsrc->eh_id.id, fw_rsrc->refcnt);
return;
}
if (fw_rsrc->refcnt == 1) {
rc = efx_mae_encap_header_free(sa->nic, &fw_rsrc->eh_id);
if (rc == 0) {
sfc_dbg(sa, "disabled encap_header=%p with EH_ID=0x%08x",
encap_header, fw_rsrc->eh_id.id);
} else {
sfc_err(sa, "failed to disable encap_header=%p with EH_ID=0x%08x: %s",
encap_header, fw_rsrc->eh_id.id, strerror(rc));
}
fw_rsrc->eh_id.id = EFX_MAE_RSRC_ID_INVALID;
}
--(fw_rsrc->refcnt);
}
static struct sfc_mae_action_set *
sfc_mae_action_set_attach(struct sfc_adapter *sa,
const struct sfc_mae_encap_header *encap_header,
const efx_mae_actions_t *spec)
{
struct sfc_mae_action_set *action_set;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
TAILQ_FOREACH(action_set, &mae->action_sets, entries) {
if (action_set->encap_header == encap_header &&
efx_mae_action_set_specs_equal(action_set->spec, spec)) {
sfc_dbg(sa, "attaching to action_set=%p", action_set);
++(action_set->refcnt);
return action_set;
}
}
return NULL;
}
static int
sfc_mae_action_set_add(struct sfc_adapter *sa,
efx_mae_actions_t *spec,
struct sfc_mae_encap_header *encap_header,
struct sfc_mae_action_set **action_setp)
{
struct sfc_mae_action_set *action_set;
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
action_set = rte_zmalloc("sfc_mae_action_set", sizeof(*action_set), 0);
if (action_set == NULL)
return ENOMEM;
action_set->refcnt = 1;
action_set->spec = spec;
action_set->encap_header = encap_header;
action_set->fw_rsrc.aset_id.id = EFX_MAE_RSRC_ID_INVALID;
TAILQ_INSERT_TAIL(&mae->action_sets, action_set, entries);
*action_setp = action_set;
sfc_dbg(sa, "added action_set=%p", action_set);
return 0;
}
static void
sfc_mae_action_set_del(struct sfc_adapter *sa,
struct sfc_mae_action_set *action_set)
{
struct sfc_mae *mae = &sa->mae;
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(action_set->refcnt != 0);
--(action_set->refcnt);
if (action_set->refcnt != 0)
return;
if (action_set->fw_rsrc.aset_id.id != EFX_MAE_RSRC_ID_INVALID ||
action_set->fw_rsrc.refcnt != 0) {
sfc_err(sa, "deleting action_set=%p abandons its FW resource: AS_ID=0x%08x, refcnt=%u",
action_set, action_set->fw_rsrc.aset_id.id,
action_set->fw_rsrc.refcnt);
}
efx_mae_action_set_spec_fini(sa->nic, action_set->spec);
sfc_mae_encap_header_del(sa, action_set->encap_header);
TAILQ_REMOVE(&mae->action_sets, action_set, entries);
rte_free(action_set);
sfc_dbg(sa, "deleted action_set=%p", action_set);
}
static int
sfc_mae_action_set_enable(struct sfc_adapter *sa,
struct sfc_mae_action_set *action_set)
{
struct sfc_mae_encap_header *encap_header = action_set->encap_header;
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (fw_rsrc->refcnt == 0) {
SFC_ASSERT(fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set->spec != NULL);
rc = sfc_mae_encap_header_enable(sa, encap_header,
action_set->spec);
if (rc != 0)
return rc;
rc = efx_mae_action_set_alloc(sa->nic, action_set->spec,
&fw_rsrc->aset_id);
if (rc != 0) {
sfc_mae_encap_header_disable(sa, encap_header);
sfc_err(sa, "failed to enable action_set=%p: %s",
action_set, strerror(rc));
return rc;
}
sfc_dbg(sa, "enabled action_set=%p: AS_ID=0x%08x",
action_set, fw_rsrc->aset_id.id);
}
++(fw_rsrc->refcnt);
return 0;
}
static void
sfc_mae_action_set_disable(struct sfc_adapter *sa,
struct sfc_mae_action_set *action_set)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (fw_rsrc->aset_id.id == EFX_MAE_RSRC_ID_INVALID ||
fw_rsrc->refcnt == 0) {
sfc_err(sa, "failed to disable action_set=%p: already disabled; AS_ID=0x%08x, refcnt=%u",
action_set, fw_rsrc->aset_id.id, fw_rsrc->refcnt);
return;
}
if (fw_rsrc->refcnt == 1) {
rc = efx_mae_action_set_free(sa->nic, &fw_rsrc->aset_id);
if (rc == 0) {
sfc_dbg(sa, "disabled action_set=%p with AS_ID=0x%08x",
action_set, fw_rsrc->aset_id.id);
} else {
sfc_err(sa, "failed to disable action_set=%p with AS_ID=0x%08x: %s",
action_set, fw_rsrc->aset_id.id, strerror(rc));
}
fw_rsrc->aset_id.id = EFX_MAE_RSRC_ID_INVALID;
sfc_mae_encap_header_disable(sa, action_set->encap_header);
}
--(fw_rsrc->refcnt);
}
void
sfc_mae_flow_cleanup(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec;
struct sfc_flow_spec_mae *spec_mae;
if (flow == NULL)
return;
spec = &flow->spec;
if (spec == NULL)
return;
spec_mae = &spec->mae;
SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
if (spec_mae->outer_rule != NULL)
sfc_mae_outer_rule_del(sa, spec_mae->outer_rule);
if (spec_mae->action_set != NULL)
sfc_mae_action_set_del(sa, spec_mae->action_set);
if (spec_mae->match_spec != NULL)
efx_mae_match_spec_fini(sa->nic, spec_mae->match_spec);
}
static int
sfc_mae_set_ethertypes(struct sfc_mae_parse_ctx *ctx)
{
struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
const efx_mae_field_id_t field_ids[] = {
EFX_MAE_FIELD_VLAN0_PROTO_BE,
EFX_MAE_FIELD_VLAN1_PROTO_BE,
};
const struct sfc_mae_ethertype *et;
unsigned int i;
int rc;
/*
* In accordance with RTE flow API convention, the innermost L2
* item's "type" ("inner_type") is a L3 EtherType. If there is
* no L3 item, it's 0x0000/0x0000.
*/
et = &pdata->ethertypes[pdata->nb_vlan_tags];
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[EFX_MAE_FIELD_ETHER_TYPE_BE],
sizeof(et->value),
(const uint8_t *)&et->value,
sizeof(et->mask),
(const uint8_t *)&et->mask);
if (rc != 0)
return rc;
/*
* sfc_mae_rule_parse_item_vlan() has already made sure
* that pdata->nb_vlan_tags does not exceed this figure.
*/
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
for (i = 0; i < pdata->nb_vlan_tags; ++i) {
et = &pdata->ethertypes[i];
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[field_ids[i]],
sizeof(et->value),
(const uint8_t *)&et->value,
sizeof(et->mask),
(const uint8_t *)&et->mask);
if (rc != 0)
return rc;
}
return 0;
}
static int
sfc_mae_rule_process_pattern_data(struct sfc_mae_parse_ctx *ctx,
struct rte_flow_error *error)
{
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
struct sfc_mae_pattern_data *pdata = &ctx->pattern_data;
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
const rte_be16_t supported_tpids[] = {
/* VLAN standard TPID (always the first element) */
RTE_BE16(RTE_ETHER_TYPE_VLAN),
/* Double-tagging TPIDs */
RTE_BE16(RTE_ETHER_TYPE_QINQ),
RTE_BE16(RTE_ETHER_TYPE_QINQ1),
RTE_BE16(RTE_ETHER_TYPE_QINQ2),
RTE_BE16(RTE_ETHER_TYPE_QINQ3),
};
bool enforce_tag_presence[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {0};
unsigned int nb_supported_tpids = RTE_DIM(supported_tpids);
unsigned int ethertype_idx;
const uint8_t *valuep;
const uint8_t *maskp;
int rc;
if (pdata->innermost_ethertype_restriction.mask != 0 &&
pdata->nb_vlan_tags < SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
/*
* If a single item VLAN is followed by a L3 item, value
* of "type" in item ETH can't be a double-tagging TPID.
*/
nb_supported_tpids = 1;
}
/*
* sfc_mae_rule_parse_item_vlan() has already made sure
* that pdata->nb_vlan_tags does not exceed this figure.
*/
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
for (ethertype_idx = 0;
ethertype_idx < pdata->nb_vlan_tags; ++ethertype_idx) {
unsigned int tpid_idx;
/*
* This loop can have only two iterations. On the second one,
* drop outer tag presence enforcement bit because the inner
* tag presence automatically assumes that for the outer tag.
*/
enforce_tag_presence[0] = B_FALSE;
if (ethertypes[ethertype_idx].mask == RTE_BE16(0)) {
if (pdata->tci_masks[ethertype_idx] == RTE_BE16(0))
enforce_tag_presence[ethertype_idx] = B_TRUE;
/* No match on this field, and no value check. */
nb_supported_tpids = 1;
continue;
}
/* Exact match is supported only. */
if (ethertypes[ethertype_idx].mask != RTE_BE16(0xffff)) {
rc = EINVAL;
goto fail;
}
for (tpid_idx = pdata->nb_vlan_tags - ethertype_idx - 1;
tpid_idx < nb_supported_tpids; ++tpid_idx) {
if (ethertypes[ethertype_idx].value ==
supported_tpids[tpid_idx])
break;
}
if (tpid_idx == nb_supported_tpids) {
rc = EINVAL;
goto fail;
}
nb_supported_tpids = 1;
}
if (pdata->innermost_ethertype_restriction.mask == RTE_BE16(0xffff)) {
struct sfc_mae_ethertype *et = &ethertypes[ethertype_idx];
if (et->mask == 0) {
et->mask = RTE_BE16(0xffff);
et->value =
pdata->innermost_ethertype_restriction.value;
} else if (et->mask != RTE_BE16(0xffff) ||
et->value !=
pdata->innermost_ethertype_restriction.value) {
rc = EINVAL;
goto fail;
}
}
/*
* Now, when the number of VLAN tags is known, set fields
* ETHER_TYPE, VLAN0_PROTO and VLAN1_PROTO so that the first
* one is either a valid L3 EtherType (or 0x0000/0x0000),
* and the last two are valid TPIDs (or 0x0000/0x0000).
*/
rc = sfc_mae_set_ethertypes(ctx);
if (rc != 0)
goto fail;
if (pdata->l3_next_proto_restriction_mask == 0xff) {
if (pdata->l3_next_proto_mask == 0) {
pdata->l3_next_proto_mask = 0xff;
pdata->l3_next_proto_value =
pdata->l3_next_proto_restriction_value;
} else if (pdata->l3_next_proto_mask != 0xff ||
pdata->l3_next_proto_value !=
pdata->l3_next_proto_restriction_value) {
rc = EINVAL;
goto fail;
}
}
if (enforce_tag_presence[0] || pdata->has_ovlan_mask) {
rc = efx_mae_match_spec_bit_set(ctx->match_spec,
fremap[EFX_MAE_FIELD_HAS_OVLAN],
enforce_tag_presence[0] ||
pdata->has_ovlan_value);
if (rc != 0)
goto fail;
}
if (enforce_tag_presence[1] || pdata->has_ivlan_mask) {
rc = efx_mae_match_spec_bit_set(ctx->match_spec,
fremap[EFX_MAE_FIELD_HAS_IVLAN],
enforce_tag_presence[1] ||
pdata->has_ivlan_value);
if (rc != 0)
goto fail;
}
valuep = (const uint8_t *)&pdata->l3_next_proto_value;
maskp = (const uint8_t *)&pdata->l3_next_proto_mask;
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[EFX_MAE_FIELD_IP_PROTO],
sizeof(pdata->l3_next_proto_value),
valuep,
sizeof(pdata->l3_next_proto_mask),
maskp);
if (rc != 0)
goto fail;
return 0;
fail:
return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Failed to process pattern data");
}
static int
sfc_mae_rule_parse_item_port_id(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const struct rte_flow_item_port_id supp_mask = {
.id = 0xffffffff,
};
const void *def_mask = &rte_flow_item_port_id_mask;
const struct rte_flow_item_port_id *spec = NULL;
const struct rte_flow_item_port_id *mask = NULL;
efx_mport_sel_t mport_sel;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask, def_mask,
sizeof(struct rte_flow_item_port_id), error);
if (rc != 0)
return rc;
if (mask->id != supp_mask.id) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the PORT_ID pattern item");
}
/* If "spec" is not set, could be any port ID */
if (spec == NULL)
return 0;
if (spec->id > UINT16_MAX) {
return rte_flow_error_set(error, EOVERFLOW,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"The port ID is too large");
}
rc = sfc_mae_switch_port_by_ethdev(ctx_mae->sa->mae.switch_domain_id,
spec->id, &mport_sel);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't find RTE ethdev by the port ID");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec,
&mport_sel, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the port ID");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
static int
sfc_mae_rule_parse_item_phy_port(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const struct rte_flow_item_phy_port supp_mask = {
.index = 0xffffffff,
};
const void *def_mask = &rte_flow_item_phy_port_mask;
const struct rte_flow_item_phy_port *spec = NULL;
const struct rte_flow_item_phy_port *mask = NULL;
efx_mport_sel_t mport_v;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask, def_mask,
sizeof(struct rte_flow_item_phy_port), error);
if (rc != 0)
return rc;
if (mask->index != supp_mask.index) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the PHY_PORT pattern item");
}
/* If "spec" is not set, could be any physical port */
if (spec == NULL)
return 0;
rc = efx_mae_mport_by_phy_port(spec->index, &mport_v);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to convert the PHY_PORT index");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the PHY_PORT");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
static int
sfc_mae_rule_parse_item_pf(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
efx_mport_sel_t mport_v;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, EFX_PCI_VF_INVALID,
&mport_v);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to convert the PF ID");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the PF");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
static int
sfc_mae_rule_parse_item_vf(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(ctx_mae->sa->nic);
const struct rte_flow_item_vf supp_mask = {
.id = 0xffffffff,
};
const void *def_mask = &rte_flow_item_vf_mask;
const struct rte_flow_item_vf *spec = NULL;
const struct rte_flow_item_vf *mask = NULL;
efx_mport_sel_t mport_v;
int rc;
if (ctx_mae->match_mport_set) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't handle multiple traffic source items");
}
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask, def_mask,
sizeof(struct rte_flow_item_vf), error);
if (rc != 0)
return rc;
if (mask->id != supp_mask.id) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad mask in the VF pattern item");
}
/*
* If "spec" is not set, the item requests any VF related to the
* PF of the current DPDK port (but not the PF itself).
* Reject this match criterion as unsupported.
*/
if (spec == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Bad spec in the VF pattern item");
}
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, spec->id, &mport_v);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to convert the PF + VF IDs");
}
rc = efx_mae_match_spec_mport_set(ctx_mae->match_spec, &mport_v, NULL);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Failed to set MPORT for the PF + VF");
}
ctx_mae->match_mport_set = B_TRUE;
return 0;
}
/*
* Having this field ID in a field locator means that this
* locator cannot be used to actually set the field at the
* time when the corresponding item gets encountered. Such
* fields get stashed in the parsing context instead. This
* is required to resolve dependencies between the stashed
* fields. See sfc_mae_rule_process_pattern_data().
*/
#define SFC_MAE_FIELD_HANDLING_DEFERRED EFX_MAE_FIELD_NIDS
struct sfc_mae_field_locator {
efx_mae_field_id_t field_id;
size_t size;
/* Field offset in the corresponding rte_flow_item_ struct */
size_t ofst;
};
static void
sfc_mae_item_build_supp_mask(const struct sfc_mae_field_locator *field_locators,
unsigned int nb_field_locators, void *mask_ptr,
size_t mask_size)
{
unsigned int i;
memset(mask_ptr, 0, mask_size);
for (i = 0; i < nb_field_locators; ++i) {
const struct sfc_mae_field_locator *fl = &field_locators[i];
SFC_ASSERT(fl->ofst + fl->size <= mask_size);
memset(RTE_PTR_ADD(mask_ptr, fl->ofst), 0xff, fl->size);
}
}
static int
sfc_mae_parse_item(const struct sfc_mae_field_locator *field_locators,
unsigned int nb_field_locators, const uint8_t *spec,
const uint8_t *mask, struct sfc_mae_parse_ctx *ctx,
struct rte_flow_error *error)
{
const efx_mae_field_id_t *fremap = ctx->field_ids_remap;
unsigned int i;
int rc = 0;
for (i = 0; i < nb_field_locators; ++i) {
const struct sfc_mae_field_locator *fl = &field_locators[i];
if (fl->field_id == SFC_MAE_FIELD_HANDLING_DEFERRED)
continue;
rc = efx_mae_match_spec_field_set(ctx->match_spec,
fremap[fl->field_id],
fl->size, spec + fl->ofst,
fl->size, mask + fl->ofst);
if (rc != 0)
break;
}
if (rc != 0) {
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Failed to process item fields");
}
return rc;
}
static const struct sfc_mae_field_locator flocs_eth[] = {
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, type),
offsetof(struct rte_flow_item_eth, type),
},
{
EFX_MAE_FIELD_ETH_DADDR_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, dst),
offsetof(struct rte_flow_item_eth, dst),
},
{
EFX_MAE_FIELD_ETH_SADDR_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_eth, src),
offsetof(struct rte_flow_item_eth, src),
},
};
static int
sfc_mae_rule_parse_item_eth(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct rte_flow_item_eth supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
sfc_mae_item_build_supp_mask(flocs_eth, RTE_DIM(flocs_eth),
&supp_mask, sizeof(supp_mask));
supp_mask.has_vlan = 1;
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_eth_mask,
sizeof(struct rte_flow_item_eth), error);
if (rc != 0)
return rc;
if (spec != NULL) {
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct sfc_mae_ethertype *ethertypes = pdata->ethertypes;
const struct rte_flow_item_eth *item_spec;
const struct rte_flow_item_eth *item_mask;
item_spec = (const struct rte_flow_item_eth *)spec;
item_mask = (const struct rte_flow_item_eth *)mask;
/*
* Remember various match criteria in the parsing context.
* sfc_mae_rule_process_pattern_data() will consider them
* altogether when the rest of the items have been parsed.
*/
ethertypes[0].value = item_spec->type;
ethertypes[0].mask = item_mask->type;
if (item_mask->has_vlan) {
pdata->has_ovlan_mask = B_TRUE;
if (item_spec->has_vlan)
pdata->has_ovlan_value = B_TRUE;
}
} else {
/*
* The specification is empty. The overall pattern
* validity will be enforced at the end of parsing.
* See sfc_mae_rule_process_pattern_data().
*/
return 0;
}
return sfc_mae_parse_item(flocs_eth, RTE_DIM(flocs_eth), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_vlan[] = {
/* Outermost tag */
{
EFX_MAE_FIELD_VLAN0_TCI_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
offsetof(struct rte_flow_item_vlan, tci),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
offsetof(struct rte_flow_item_vlan, inner_type),
},
/* Innermost tag */
{
EFX_MAE_FIELD_VLAN1_TCI_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, tci),
offsetof(struct rte_flow_item_vlan, tci),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_vlan, inner_type),
offsetof(struct rte_flow_item_vlan, inner_type),
},
};
static int
sfc_mae_rule_parse_item_vlan(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
boolean_t *has_vlan_mp_by_nb_tags[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {
&pdata->has_ovlan_mask,
&pdata->has_ivlan_mask,
};
boolean_t *has_vlan_vp_by_nb_tags[SFC_MAE_MATCH_VLAN_MAX_NTAGS] = {
&pdata->has_ovlan_value,
&pdata->has_ivlan_value,
};
boolean_t *cur_tag_presence_bit_mp;
boolean_t *cur_tag_presence_bit_vp;
const struct sfc_mae_field_locator *flocs;
struct rte_flow_item_vlan supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
unsigned int nb_flocs;
int rc;
RTE_BUILD_BUG_ON(SFC_MAE_MATCH_VLAN_MAX_NTAGS != 2);
if (pdata->nb_vlan_tags == SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't match that many VLAN tags");
}
cur_tag_presence_bit_mp = has_vlan_mp_by_nb_tags[pdata->nb_vlan_tags];
cur_tag_presence_bit_vp = has_vlan_vp_by_nb_tags[pdata->nb_vlan_tags];
if (*cur_tag_presence_bit_mp == B_TRUE &&
*cur_tag_presence_bit_vp == B_FALSE) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"The previous item enforces no (more) VLAN, "
"so the current item (VLAN) must not exist");
}
nb_flocs = RTE_DIM(flocs_vlan) / SFC_MAE_MATCH_VLAN_MAX_NTAGS;
flocs = flocs_vlan + pdata->nb_vlan_tags * nb_flocs;
sfc_mae_item_build_supp_mask(flocs, nb_flocs,
&supp_mask, sizeof(supp_mask));
/*
* This only means that the field is supported by the driver and libefx.
* Support on NIC level will be checked when all items have been parsed.
*/
supp_mask.has_more_vlan = 1;
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_vlan_mask,
sizeof(struct rte_flow_item_vlan), error);
if (rc != 0)
return rc;
if (spec != NULL) {
struct sfc_mae_ethertype *et = pdata->ethertypes;
const struct rte_flow_item_vlan *item_spec;
const struct rte_flow_item_vlan *item_mask;
item_spec = (const struct rte_flow_item_vlan *)spec;
item_mask = (const struct rte_flow_item_vlan *)mask;
/*
* Remember various match criteria in the parsing context.
* sfc_mae_rule_process_pattern_data() will consider them
* altogether when the rest of the items have been parsed.
*/
et[pdata->nb_vlan_tags + 1].value = item_spec->inner_type;
et[pdata->nb_vlan_tags + 1].mask = item_mask->inner_type;
pdata->tci_masks[pdata->nb_vlan_tags] = item_mask->tci;
if (item_mask->has_more_vlan) {
if (pdata->nb_vlan_tags ==
SFC_MAE_MATCH_VLAN_MAX_NTAGS) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't use 'has_more_vlan' in "
"the second item VLAN");
}
pdata->has_ivlan_mask = B_TRUE;
if (item_spec->has_more_vlan)
pdata->has_ivlan_value = B_TRUE;
}
/* Convert TCI to MAE representation right now. */
rc = sfc_mae_parse_item(flocs, nb_flocs, spec, mask,
ctx_mae, error);
if (rc != 0)
return rc;
}
++(pdata->nb_vlan_tags);
return 0;
}
static const struct sfc_mae_field_locator flocs_ipv4[] = {
{
EFX_MAE_FIELD_SRC_IP4_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.src_addr),
offsetof(struct rte_flow_item_ipv4, hdr.src_addr),
},
{
EFX_MAE_FIELD_DST_IP4_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.dst_addr),
offsetof(struct rte_flow_item_ipv4, hdr.dst_addr),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.next_proto_id),
offsetof(struct rte_flow_item_ipv4, hdr.next_proto_id),
},
{
EFX_MAE_FIELD_IP_TOS,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4,
hdr.type_of_service),
offsetof(struct rte_flow_item_ipv4, hdr.type_of_service),
},
{
EFX_MAE_FIELD_IP_TTL,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv4, hdr.time_to_live),
offsetof(struct rte_flow_item_ipv4, hdr.time_to_live),
},
};
static int
sfc_mae_rule_parse_item_ipv4(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
rte_be16_t ethertype_ipv4_be = RTE_BE16(RTE_ETHER_TYPE_IPV4);
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_ipv4 supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
sfc_mae_item_build_supp_mask(flocs_ipv4, RTE_DIM(flocs_ipv4),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_ipv4_mask,
sizeof(struct rte_flow_item_ipv4), error);
if (rc != 0)
return rc;
pdata->innermost_ethertype_restriction.value = ethertype_ipv4_be;
pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
if (spec != NULL) {
const struct rte_flow_item_ipv4 *item_spec;
const struct rte_flow_item_ipv4 *item_mask;
item_spec = (const struct rte_flow_item_ipv4 *)spec;
item_mask = (const struct rte_flow_item_ipv4 *)mask;
pdata->l3_next_proto_value = item_spec->hdr.next_proto_id;
pdata->l3_next_proto_mask = item_mask->hdr.next_proto_id;
} else {
return 0;
}
return sfc_mae_parse_item(flocs_ipv4, RTE_DIM(flocs_ipv4), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_ipv6[] = {
{
EFX_MAE_FIELD_SRC_IP6_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.src_addr),
offsetof(struct rte_flow_item_ipv6, hdr.src_addr),
},
{
EFX_MAE_FIELD_DST_IP6_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.dst_addr),
offsetof(struct rte_flow_item_ipv6, hdr.dst_addr),
},
{
/*
* This locator is used only for building supported fields mask.
* The field is handled by sfc_mae_rule_process_pattern_data().
*/
SFC_MAE_FIELD_HANDLING_DEFERRED,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.proto),
offsetof(struct rte_flow_item_ipv6, hdr.proto),
},
{
EFX_MAE_FIELD_IP_TTL,
RTE_SIZEOF_FIELD(struct rte_flow_item_ipv6, hdr.hop_limits),
offsetof(struct rte_flow_item_ipv6, hdr.hop_limits),
},
};
static int
sfc_mae_rule_parse_item_ipv6(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
rte_be16_t ethertype_ipv6_be = RTE_BE16(RTE_ETHER_TYPE_IPV6);
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
const efx_mae_field_id_t *fremap = ctx_mae->field_ids_remap;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_ipv6 supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
rte_be32_t vtc_flow_be;
uint32_t vtc_flow;
uint8_t tc_value;
uint8_t tc_mask;
int rc;
sfc_mae_item_build_supp_mask(flocs_ipv6, RTE_DIM(flocs_ipv6),
&supp_mask, sizeof(supp_mask));
vtc_flow_be = RTE_BE32(RTE_IPV6_HDR_TC_MASK);
memcpy(&supp_mask, &vtc_flow_be, sizeof(vtc_flow_be));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_ipv6_mask,
sizeof(struct rte_flow_item_ipv6), error);
if (rc != 0)
return rc;
pdata->innermost_ethertype_restriction.value = ethertype_ipv6_be;
pdata->innermost_ethertype_restriction.mask = RTE_BE16(0xffff);
if (spec != NULL) {
const struct rte_flow_item_ipv6 *item_spec;
const struct rte_flow_item_ipv6 *item_mask;
item_spec = (const struct rte_flow_item_ipv6 *)spec;
item_mask = (const struct rte_flow_item_ipv6 *)mask;
pdata->l3_next_proto_value = item_spec->hdr.proto;
pdata->l3_next_proto_mask = item_mask->hdr.proto;
} else {
return 0;
}
rc = sfc_mae_parse_item(flocs_ipv6, RTE_DIM(flocs_ipv6), spec, mask,
ctx_mae, error);
if (rc != 0)
return rc;
memcpy(&vtc_flow_be, spec, sizeof(vtc_flow_be));
vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
tc_value = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
memcpy(&vtc_flow_be, mask, sizeof(vtc_flow_be));
vtc_flow = rte_be_to_cpu_32(vtc_flow_be);
tc_mask = (vtc_flow & RTE_IPV6_HDR_TC_MASK) >> RTE_IPV6_HDR_TC_SHIFT;
rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
fremap[EFX_MAE_FIELD_IP_TOS],
sizeof(tc_value), &tc_value,
sizeof(tc_mask), &tc_mask);
if (rc != 0) {
return rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Failed to process item fields");
}
return 0;
}
static const struct sfc_mae_field_locator flocs_tcp[] = {
{
EFX_MAE_FIELD_L4_SPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.src_port),
offsetof(struct rte_flow_item_tcp, hdr.src_port),
},
{
EFX_MAE_FIELD_L4_DPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.dst_port),
offsetof(struct rte_flow_item_tcp, hdr.dst_port),
},
{
EFX_MAE_FIELD_TCP_FLAGS_BE,
/*
* The values have been picked intentionally since the
* target MAE field is oversize (16 bit). This mapping
* relies on the fact that the MAE field is big-endian.
*/
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.data_off) +
RTE_SIZEOF_FIELD(struct rte_flow_item_tcp, hdr.tcp_flags),
offsetof(struct rte_flow_item_tcp, hdr.data_off),
},
};
static int
sfc_mae_rule_parse_item_tcp(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_tcp supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
/*
* When encountered among outermost items, item TCP is invalid.
* Check which match specification is being constructed now.
*/
if (ctx_mae->match_spec != ctx_mae->match_spec_action) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"TCP in outer frame is invalid");
}
sfc_mae_item_build_supp_mask(flocs_tcp, RTE_DIM(flocs_tcp),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_tcp_mask,
sizeof(struct rte_flow_item_tcp), error);
if (rc != 0)
return rc;
pdata->l3_next_proto_restriction_value = IPPROTO_TCP;
pdata->l3_next_proto_restriction_mask = 0xff;
if (spec == NULL)
return 0;
return sfc_mae_parse_item(flocs_tcp, RTE_DIM(flocs_tcp), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_udp[] = {
{
EFX_MAE_FIELD_L4_SPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.src_port),
offsetof(struct rte_flow_item_udp, hdr.src_port),
},
{
EFX_MAE_FIELD_L4_DPORT_BE,
RTE_SIZEOF_FIELD(struct rte_flow_item_udp, hdr.dst_port),
offsetof(struct rte_flow_item_udp, hdr.dst_port),
},
};
static int
sfc_mae_rule_parse_item_udp(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
struct sfc_mae_pattern_data *pdata = &ctx_mae->pattern_data;
struct rte_flow_item_udp supp_mask;
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
sfc_mae_item_build_supp_mask(flocs_udp, RTE_DIM(flocs_udp),
&supp_mask, sizeof(supp_mask));
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
&rte_flow_item_udp_mask,
sizeof(struct rte_flow_item_udp), error);
if (rc != 0)
return rc;
pdata->l3_next_proto_restriction_value = IPPROTO_UDP;
pdata->l3_next_proto_restriction_mask = 0xff;
if (spec == NULL)
return 0;
return sfc_mae_parse_item(flocs_udp, RTE_DIM(flocs_udp), spec, mask,
ctx_mae, error);
}
static const struct sfc_mae_field_locator flocs_tunnel[] = {
{
/*
* The size and offset values are relevant
* for Geneve and NVGRE, too.
*/
.size = RTE_SIZEOF_FIELD(struct rte_flow_item_vxlan, vni),
.ofst = offsetof(struct rte_flow_item_vxlan, vni),
},
};
/*
* An auxiliary registry which allows using non-encap. field IDs
* directly when building a match specification of type ACTION.
*
* See sfc_mae_rule_parse_pattern() and sfc_mae_rule_parse_item_tunnel().
*/
static const efx_mae_field_id_t field_ids_no_remap[] = {
#define FIELD_ID_NO_REMAP(_field) \
[EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_##_field
FIELD_ID_NO_REMAP(ETHER_TYPE_BE),
FIELD_ID_NO_REMAP(ETH_SADDR_BE),
FIELD_ID_NO_REMAP(ETH_DADDR_BE),
FIELD_ID_NO_REMAP(VLAN0_TCI_BE),
FIELD_ID_NO_REMAP(VLAN0_PROTO_BE),
FIELD_ID_NO_REMAP(VLAN1_TCI_BE),
FIELD_ID_NO_REMAP(VLAN1_PROTO_BE),
FIELD_ID_NO_REMAP(SRC_IP4_BE),
FIELD_ID_NO_REMAP(DST_IP4_BE),
FIELD_ID_NO_REMAP(IP_PROTO),
FIELD_ID_NO_REMAP(IP_TOS),
FIELD_ID_NO_REMAP(IP_TTL),
FIELD_ID_NO_REMAP(SRC_IP6_BE),
FIELD_ID_NO_REMAP(DST_IP6_BE),
FIELD_ID_NO_REMAP(L4_SPORT_BE),
FIELD_ID_NO_REMAP(L4_DPORT_BE),
FIELD_ID_NO_REMAP(TCP_FLAGS_BE),
FIELD_ID_NO_REMAP(HAS_OVLAN),
FIELD_ID_NO_REMAP(HAS_IVLAN),
#undef FIELD_ID_NO_REMAP
};
/*
* An auxiliary registry which allows using "ENC" field IDs
* when building a match specification of type OUTER.
*
* See sfc_mae_rule_encap_parse_init().
*/
static const efx_mae_field_id_t field_ids_remap_to_encap[] = {
#define FIELD_ID_REMAP_TO_ENCAP(_field) \
[EFX_MAE_FIELD_##_field] = EFX_MAE_FIELD_ENC_##_field
FIELD_ID_REMAP_TO_ENCAP(ETHER_TYPE_BE),
FIELD_ID_REMAP_TO_ENCAP(ETH_SADDR_BE),
FIELD_ID_REMAP_TO_ENCAP(ETH_DADDR_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN0_TCI_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN0_PROTO_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN1_TCI_BE),
FIELD_ID_REMAP_TO_ENCAP(VLAN1_PROTO_BE),
FIELD_ID_REMAP_TO_ENCAP(SRC_IP4_BE),
FIELD_ID_REMAP_TO_ENCAP(DST_IP4_BE),
FIELD_ID_REMAP_TO_ENCAP(IP_PROTO),
FIELD_ID_REMAP_TO_ENCAP(IP_TOS),
FIELD_ID_REMAP_TO_ENCAP(IP_TTL),
FIELD_ID_REMAP_TO_ENCAP(SRC_IP6_BE),
FIELD_ID_REMAP_TO_ENCAP(DST_IP6_BE),
FIELD_ID_REMAP_TO_ENCAP(L4_SPORT_BE),
FIELD_ID_REMAP_TO_ENCAP(L4_DPORT_BE),
FIELD_ID_REMAP_TO_ENCAP(HAS_OVLAN),
FIELD_ID_REMAP_TO_ENCAP(HAS_IVLAN),
#undef FIELD_ID_REMAP_TO_ENCAP
};
static int
sfc_mae_rule_parse_item_tunnel(const struct rte_flow_item *item,
struct sfc_flow_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx *ctx_mae = ctx->mae;
uint8_t vnet_id_v[sizeof(uint32_t)] = {0};
uint8_t vnet_id_m[sizeof(uint32_t)] = {0};
const struct rte_flow_item_vxlan *vxp;
uint8_t supp_mask[sizeof(uint64_t)];
const uint8_t *spec = NULL;
const uint8_t *mask = NULL;
int rc;
/*
* We're about to start processing inner frame items.
* Process pattern data that has been deferred so far
* and reset pattern data storage.
*/
rc = sfc_mae_rule_process_pattern_data(ctx_mae, error);
if (rc != 0)
return rc;
memset(&ctx_mae->pattern_data, 0, sizeof(ctx_mae->pattern_data));
sfc_mae_item_build_supp_mask(flocs_tunnel, RTE_DIM(flocs_tunnel),
&supp_mask, sizeof(supp_mask));
/*
* This tunnel item was preliminarily detected by
* sfc_mae_rule_encap_parse_init(). Default mask
* was also picked by that helper. Use it here.
*/
rc = sfc_flow_parse_init(item,
(const void **)&spec, (const void **)&mask,
(const void *)&supp_mask,
ctx_mae->tunnel_def_mask,
ctx_mae->tunnel_def_mask_size, error);
if (rc != 0)
return rc;
/*
* This item and later ones comprise a
* match specification of type ACTION.
*/
ctx_mae->match_spec = ctx_mae->match_spec_action;
/* This item and later ones use non-encap. EFX MAE field IDs. */
ctx_mae->field_ids_remap = field_ids_no_remap;
if (spec == NULL)
return 0;
/*
* Field EFX_MAE_FIELD_ENC_VNET_ID_BE is a 32-bit one.
* Copy 24-bit VNI, which is BE, at offset 1 in it.
* The extra byte is 0 both in the mask and in the value.
*/
vxp = (const struct rte_flow_item_vxlan *)spec;
memcpy(vnet_id_v + 1, &vxp->vni, sizeof(vxp->vni));
vxp = (const struct rte_flow_item_vxlan *)mask;
memcpy(vnet_id_m + 1, &vxp->vni, sizeof(vxp->vni));
rc = efx_mae_match_spec_field_set(ctx_mae->match_spec,
EFX_MAE_FIELD_ENC_VNET_ID_BE,
sizeof(vnet_id_v), vnet_id_v,
sizeof(vnet_id_m), vnet_id_m);
if (rc != 0) {
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Failed to set VXLAN VNI");
}
return rc;
}
static const struct sfc_flow_item sfc_flow_items[] = {
{
.type = RTE_FLOW_ITEM_TYPE_PORT_ID,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_port_id,
},
{
.type = RTE_FLOW_ITEM_TYPE_PHY_PORT,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_phy_port,
},
{
.type = RTE_FLOW_ITEM_TYPE_PF,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_pf,
},
{
.type = RTE_FLOW_ITEM_TYPE_VF,
/*
* In terms of RTE flow, this item is a META one,
* and its position in the pattern is don't care.
*/
.prev_layer = SFC_FLOW_ITEM_ANY_LAYER,
.layer = SFC_FLOW_ITEM_ANY_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_vf,
},
{
.type = RTE_FLOW_ITEM_TYPE_ETH,
.prev_layer = SFC_FLOW_ITEM_START_LAYER,
.layer = SFC_FLOW_ITEM_L2,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_eth,
},
{
.type = RTE_FLOW_ITEM_TYPE_VLAN,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L2,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_vlan,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV4,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L3,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_ipv4,
},
{
.type = RTE_FLOW_ITEM_TYPE_IPV6,
.prev_layer = SFC_FLOW_ITEM_L2,
.layer = SFC_FLOW_ITEM_L3,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_ipv6,
},
{
.type = RTE_FLOW_ITEM_TYPE_TCP,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_L4,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tcp,
},
{
.type = RTE_FLOW_ITEM_TYPE_UDP,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_L4,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_udp,
},
{
.type = RTE_FLOW_ITEM_TYPE_VXLAN,
.prev_layer = SFC_FLOW_ITEM_L4,
.layer = SFC_FLOW_ITEM_START_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tunnel,
},
{
.type = RTE_FLOW_ITEM_TYPE_GENEVE,
.prev_layer = SFC_FLOW_ITEM_L4,
.layer = SFC_FLOW_ITEM_START_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tunnel,
},
{
.type = RTE_FLOW_ITEM_TYPE_NVGRE,
.prev_layer = SFC_FLOW_ITEM_L3,
.layer = SFC_FLOW_ITEM_START_LAYER,
.ctx_type = SFC_FLOW_PARSE_CTX_MAE,
.parse = sfc_mae_rule_parse_item_tunnel,
},
};
static int
sfc_mae_rule_process_outer(struct sfc_adapter *sa,
struct sfc_mae_parse_ctx *ctx,
struct sfc_mae_outer_rule **rulep,
struct rte_flow_error *error)
{
efx_mae_rule_id_t invalid_rule_id = { .id = EFX_MAE_RSRC_ID_INVALID };
int rc;
if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE) {
*rulep = NULL;
goto no_or_id;
}
SFC_ASSERT(ctx->match_spec_outer != NULL);
if (!efx_mae_match_spec_is_valid(sa->nic, ctx->match_spec_outer)) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Inconsistent pattern (outer)");
}
*rulep = sfc_mae_outer_rule_attach(sa, ctx->match_spec_outer,
ctx->encap_type);
if (*rulep != NULL) {
efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
} else {
rc = sfc_mae_outer_rule_add(sa, ctx->match_spec_outer,
ctx->encap_type, rulep);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Failed to process the pattern");
}
}
/* The spec has now been tracked by the outer rule entry. */
ctx->match_spec_outer = NULL;
no_or_id:
/*
* In MAE, lookup sequence comprises outer parse, outer rule lookup,
* inner parse (when some outer rule is hit) and action rule lookup.
* If the currently processed flow does not come with an outer rule,
* its action rule must be available only for packets which miss in
* outer rule table. Set OR_ID match field to 0xffffffff/0xffffffff
* in the action rule specification; this ensures correct behaviour.
*
* If, on the other hand, this flow does have an outer rule, its ID
* may be unknown at the moment (not yet allocated), but OR_ID mask
* has to be set to 0xffffffff anyway for correct class comparisons.
* When the outer rule has been allocated, this match field will be
* overridden by sfc_mae_outer_rule_enable() to use the right value.
*/
rc = efx_mae_match_spec_outer_rule_id_set(ctx->match_spec_action,
&invalid_rule_id);
if (rc != 0) {
if (*rulep != NULL)
sfc_mae_outer_rule_del(sa, *rulep);
*rulep = NULL;
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Failed to process the pattern");
}
return 0;
}
static int
sfc_mae_rule_encap_parse_init(struct sfc_adapter *sa,
const struct rte_flow_item pattern[],
struct sfc_mae_parse_ctx *ctx,
struct rte_flow_error *error)
{
struct sfc_mae *mae = &sa->mae;
int rc;
if (pattern == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM, NULL,
"NULL pattern");
return -rte_errno;
}
for (;;) {
switch (pattern->type) {
case RTE_FLOW_ITEM_TYPE_VXLAN:
ctx->encap_type = EFX_TUNNEL_PROTOCOL_VXLAN;
ctx->tunnel_def_mask = &rte_flow_item_vxlan_mask;
ctx->tunnel_def_mask_size =
sizeof(rte_flow_item_vxlan_mask);
break;
case RTE_FLOW_ITEM_TYPE_GENEVE:
ctx->encap_type = EFX_TUNNEL_PROTOCOL_GENEVE;
ctx->tunnel_def_mask = &rte_flow_item_geneve_mask;
ctx->tunnel_def_mask_size =
sizeof(rte_flow_item_geneve_mask);
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
ctx->encap_type = EFX_TUNNEL_PROTOCOL_NVGRE;
ctx->tunnel_def_mask = &rte_flow_item_nvgre_mask;
ctx->tunnel_def_mask_size =
sizeof(rte_flow_item_nvgre_mask);
break;
case RTE_FLOW_ITEM_TYPE_END:
break;
default:
++pattern;
continue;
};
break;
}
if (pattern->type == RTE_FLOW_ITEM_TYPE_END)
return 0;
if ((mae->encap_types_supported & (1U << ctx->encap_type)) == 0) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
pattern, "Unsupported tunnel item");
}
if (ctx->priority >= mae->nb_outer_rule_prios_max) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL, "Unsupported priority level");
}
rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_OUTER, ctx->priority,
&ctx->match_spec_outer);
if (rc != 0) {
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ITEM, pattern,
"Failed to initialise outer rule match specification");
}
/* Outermost items comprise a match specification of type OUTER. */
ctx->match_spec = ctx->match_spec_outer;
/* Outermost items use "ENC" EFX MAE field IDs. */
ctx->field_ids_remap = field_ids_remap_to_encap;
return 0;
}
static void
sfc_mae_rule_encap_parse_fini(struct sfc_adapter *sa,
struct sfc_mae_parse_ctx *ctx)
{
if (ctx->encap_type == EFX_TUNNEL_PROTOCOL_NONE)
return;
if (ctx->match_spec_outer != NULL)
efx_mae_match_spec_fini(sa->nic, ctx->match_spec_outer);
}
int
sfc_mae_rule_parse_pattern(struct sfc_adapter *sa,
const struct rte_flow_item pattern[],
struct sfc_flow_spec_mae *spec,
struct rte_flow_error *error)
{
struct sfc_mae_parse_ctx ctx_mae;
struct sfc_flow_parse_ctx ctx;
int rc;
memset(&ctx_mae, 0, sizeof(ctx_mae));
ctx_mae.priority = spec->priority;
ctx_mae.sa = sa;
rc = efx_mae_match_spec_init(sa->nic, EFX_MAE_RULE_ACTION,
spec->priority,
&ctx_mae.match_spec_action);
if (rc != 0) {
rc = rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Failed to initialise action rule match specification");
goto fail_init_match_spec_action;
}
/*
* As a preliminary setting, assume that there is no encapsulation
* in the pattern. That is, pattern items are about to comprise a
* match specification of type ACTION and use non-encap. field IDs.
*
* sfc_mae_rule_encap_parse_init() below may override this.
*/
ctx_mae.encap_type = EFX_TUNNEL_PROTOCOL_NONE;
ctx_mae.match_spec = ctx_mae.match_spec_action;
ctx_mae.field_ids_remap = field_ids_no_remap;
ctx.type = SFC_FLOW_PARSE_CTX_MAE;
ctx.mae = &ctx_mae;
rc = sfc_mae_rule_encap_parse_init(sa, pattern, &ctx_mae, error);
if (rc != 0)
goto fail_encap_parse_init;
rc = sfc_flow_parse_pattern(sfc_flow_items, RTE_DIM(sfc_flow_items),
pattern, &ctx, error);
if (rc != 0)
goto fail_parse_pattern;
rc = sfc_mae_rule_process_pattern_data(&ctx_mae, error);
if (rc != 0)
goto fail_process_pattern_data;
rc = sfc_mae_rule_process_outer(sa, &ctx_mae, &spec->outer_rule, error);
if (rc != 0)
goto fail_process_outer;
if (!efx_mae_match_spec_is_valid(sa->nic, ctx_mae.match_spec_action)) {
rc = rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"Inconsistent pattern");
goto fail_validate_match_spec_action;
}
spec->match_spec = ctx_mae.match_spec_action;
return 0;
fail_validate_match_spec_action:
fail_process_outer:
fail_process_pattern_data:
fail_parse_pattern:
sfc_mae_rule_encap_parse_fini(sa, &ctx_mae);
fail_encap_parse_init:
efx_mae_match_spec_fini(sa->nic, ctx_mae.match_spec_action);
fail_init_match_spec_action:
return rc;
}
/*
* An action supported by MAE may correspond to a bundle of RTE flow actions,
* in example, VLAN_PUSH = OF_PUSH_VLAN + OF_VLAN_SET_VID + OF_VLAN_SET_PCP.
* That is, related RTE flow actions need to be tracked as parts of a whole
* so that they can be combined into a single action and submitted to MAE
* representation of a given rule's action set.
*
* Each RTE flow action provided by an application gets classified as
* one belonging to some bundle type. If an action is not supposed to
* belong to any bundle, or if this action is END, it is described as
* one belonging to a dummy bundle of type EMPTY.
*
* A currently tracked bundle will be submitted if a repeating
* action or an action of different bundle type follows.
*/
enum sfc_mae_actions_bundle_type {
SFC_MAE_ACTIONS_BUNDLE_EMPTY = 0,
SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH,
};
struct sfc_mae_actions_bundle {
enum sfc_mae_actions_bundle_type type;
/* Indicates actions already tracked by the current bundle */
uint64_t actions_mask;
/* Parameters used by SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH */
rte_be16_t vlan_push_tpid;
rte_be16_t vlan_push_tci;
};
/*
* Combine configuration of RTE flow actions tracked by the bundle into a
* single action and submit the result to MAE action set specification.
* Do nothing in the case of dummy action bundle.
*/
static int
sfc_mae_actions_bundle_submit(const struct sfc_mae_actions_bundle *bundle,
efx_mae_actions_t *spec)
{
int rc = 0;
switch (bundle->type) {
case SFC_MAE_ACTIONS_BUNDLE_EMPTY:
break;
case SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH:
rc = efx_mae_action_set_populate_vlan_push(
spec, bundle->vlan_push_tpid, bundle->vlan_push_tci);
break;
default:
SFC_ASSERT(B_FALSE);
break;
}
return rc;
}
/*
* Given the type of the next RTE flow action in the line, decide
* whether a new bundle is about to start, and, if this is the case,
* submit and reset the current bundle.
*/
static int
sfc_mae_actions_bundle_sync(const struct rte_flow_action *action,
struct sfc_mae_actions_bundle *bundle,
efx_mae_actions_t *spec,
struct rte_flow_error *error)
{
enum sfc_mae_actions_bundle_type bundle_type_new;
int rc;
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_VLAN_PUSH;
break;
default:
/*
* Self-sufficient actions, including END, are handled in this
* case. No checks for unsupported actions are needed here
* because parsing doesn't occur at this point.
*/
bundle_type_new = SFC_MAE_ACTIONS_BUNDLE_EMPTY;
break;
}
if (bundle_type_new != bundle->type ||
(bundle->actions_mask & (1ULL << action->type)) != 0) {
rc = sfc_mae_actions_bundle_submit(bundle, spec);
if (rc != 0)
goto fail_submit;
memset(bundle, 0, sizeof(*bundle));
}
bundle->type = bundle_type_new;
return 0;
fail_submit:
return rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"Failed to request the (group of) action(s)");
}
static void
sfc_mae_rule_parse_action_of_push_vlan(
const struct rte_flow_action_of_push_vlan *conf,
struct sfc_mae_actions_bundle *bundle)
{
bundle->vlan_push_tpid = conf->ethertype;
}
static void
sfc_mae_rule_parse_action_of_set_vlan_vid(
const struct rte_flow_action_of_set_vlan_vid *conf,
struct sfc_mae_actions_bundle *bundle)
{
bundle->vlan_push_tci |= (conf->vlan_vid &
rte_cpu_to_be_16(RTE_LEN2MASK(12, uint16_t)));
}
static void
sfc_mae_rule_parse_action_of_set_vlan_pcp(
const struct rte_flow_action_of_set_vlan_pcp *conf,
struct sfc_mae_actions_bundle *bundle)
{
uint16_t vlan_tci_pcp = (uint16_t)(conf->vlan_pcp &
RTE_LEN2MASK(3, uint8_t)) << 13;
bundle->vlan_push_tci |= rte_cpu_to_be_16(vlan_tci_pcp);
}
struct sfc_mae_parsed_item {
const struct rte_flow_item *item;
size_t proto_header_ofst;
size_t proto_header_size;
};
/*
* For each 16-bit word of the given header, override
* bits enforced by the corresponding 16-bit mask.
*/
static void
sfc_mae_header_force_item_masks(uint8_t *header_buf,
const struct sfc_mae_parsed_item *parsed_items,
unsigned int nb_parsed_items)
{
unsigned int item_idx;
for (item_idx = 0; item_idx < nb_parsed_items; ++item_idx) {
const struct sfc_mae_parsed_item *parsed_item;
const struct rte_flow_item *item;
size_t proto_header_size;
size_t ofst;
parsed_item = &parsed_items[item_idx];
proto_header_size = parsed_item->proto_header_size;
item = parsed_item->item;
for (ofst = 0; ofst < proto_header_size;
ofst += sizeof(rte_be16_t)) {
rte_be16_t *wp = RTE_PTR_ADD(header_buf, ofst);
const rte_be16_t *w_maskp;
const rte_be16_t *w_specp;
w_maskp = RTE_PTR_ADD(item->mask, ofst);
w_specp = RTE_PTR_ADD(item->spec, ofst);
*wp &= ~(*w_maskp);
*wp |= (*w_specp & *w_maskp);
}
header_buf += proto_header_size;
}
}
#define SFC_IPV4_TTL_DEF 0x40
#define SFC_IPV6_VTC_FLOW_DEF 0x60000000
#define SFC_IPV6_HOP_LIMITS_DEF 0xff
#define SFC_VXLAN_FLAGS_DEF 0x08000000
static int
sfc_mae_rule_parse_action_vxlan_encap(
struct sfc_mae *mae,
const struct rte_flow_action_vxlan_encap *conf,
efx_mae_actions_t *spec,
struct rte_flow_error *error)
{
struct sfc_mae_bounce_eh *bounce_eh = &mae->bounce_eh;
struct rte_flow_item *pattern = conf->definition;
uint8_t *buf = bounce_eh->buf;
/* This array will keep track of non-VOID pattern items. */
struct sfc_mae_parsed_item parsed_items[1 /* Ethernet */ +
2 /* VLAN tags */ +
1 /* IPv4 or IPv6 */ +
1 /* UDP */ +
1 /* VXLAN */];
unsigned int nb_parsed_items = 0;
size_t eth_ethertype_ofst = offsetof(struct rte_ether_hdr, ether_type);
uint8_t dummy_buf[RTE_MAX(sizeof(struct rte_ipv4_hdr),
sizeof(struct rte_ipv6_hdr))];
struct rte_ipv4_hdr *ipv4 = (void *)dummy_buf;
struct rte_ipv6_hdr *ipv6 = (void *)dummy_buf;
struct rte_vxlan_hdr *vxlan = NULL;
struct rte_udp_hdr *udp = NULL;
unsigned int nb_vlan_tags = 0;
size_t next_proto_ofst = 0;
size_t ethertype_ofst = 0;
uint64_t exp_items;
if (pattern == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"The encap. header definition is NULL");
}
bounce_eh->type = EFX_TUNNEL_PROTOCOL_VXLAN;
bounce_eh->size = 0;
/*
* Process pattern items and remember non-VOID ones.
* Defer applying masks until after the complete header
* has been built from the pattern items.
*/
exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_ETH);
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; ++pattern) {
struct sfc_mae_parsed_item *parsed_item;
const uint64_t exp_items_extra_vlan[] = {
RTE_BIT64(RTE_FLOW_ITEM_TYPE_VLAN), 0
};
size_t proto_header_size;
rte_be16_t *ethertypep;
uint8_t *next_protop;
uint8_t *buf_cur;
if (pattern->spec == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"NULL item spec in the encap. header");
}
if (pattern->mask == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"NULL item mask in the encap. header");
}
if (pattern->last != NULL) {
/* This is not a match pattern, so disallow range. */
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"Range item in the encap. header");
}
if (pattern->type == RTE_FLOW_ITEM_TYPE_VOID) {
/* Handle VOID separately, for clarity. */
continue;
}
if ((exp_items & RTE_BIT64(pattern->type)) == 0) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"Unexpected item in the encap. header");
}
parsed_item = &parsed_items[nb_parsed_items];
buf_cur = buf + bounce_eh->size;
switch (pattern->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_ETH,
exp_items);
RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_eth,
hdr) != 0);
proto_header_size = sizeof(struct rte_ether_hdr);
ethertype_ofst = eth_ethertype_ofst;
exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_VLAN) |
RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV4) |
RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV6);
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_VLAN,
exp_items);
RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_vlan,
hdr) != 0);
proto_header_size = sizeof(struct rte_vlan_hdr);
ethertypep = RTE_PTR_ADD(buf, eth_ethertype_ofst);
*ethertypep = RTE_BE16(RTE_ETHER_TYPE_QINQ);
ethertypep = RTE_PTR_ADD(buf, ethertype_ofst);
*ethertypep = RTE_BE16(RTE_ETHER_TYPE_VLAN);
ethertype_ofst =
bounce_eh->size +
offsetof(struct rte_vlan_hdr, eth_proto);
exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV4) |
RTE_BIT64(RTE_FLOW_ITEM_TYPE_IPV6);
exp_items |= exp_items_extra_vlan[nb_vlan_tags];
++nb_vlan_tags;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_IPV4,
exp_items);
RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_ipv4,
hdr) != 0);
proto_header_size = sizeof(struct rte_ipv4_hdr);
ethertypep = RTE_PTR_ADD(buf, ethertype_ofst);
*ethertypep = RTE_BE16(RTE_ETHER_TYPE_IPV4);
next_proto_ofst =
bounce_eh->size +
offsetof(struct rte_ipv4_hdr, next_proto_id);
ipv4 = (struct rte_ipv4_hdr *)buf_cur;
exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_UDP);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_IPV6,
exp_items);
RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_ipv6,
hdr) != 0);
proto_header_size = sizeof(struct rte_ipv6_hdr);
ethertypep = RTE_PTR_ADD(buf, ethertype_ofst);
*ethertypep = RTE_BE16(RTE_ETHER_TYPE_IPV6);
next_proto_ofst = bounce_eh->size +
offsetof(struct rte_ipv6_hdr, proto);
ipv6 = (struct rte_ipv6_hdr *)buf_cur;
exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_UDP);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_UDP,
exp_items);
RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_udp,
hdr) != 0);
proto_header_size = sizeof(struct rte_udp_hdr);
next_protop = RTE_PTR_ADD(buf, next_proto_ofst);
*next_protop = IPPROTO_UDP;
udp = (struct rte_udp_hdr *)buf_cur;
exp_items = RTE_BIT64(RTE_FLOW_ITEM_TYPE_VXLAN);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ITEM_TYPE_VXLAN,
exp_items);
RTE_BUILD_BUG_ON(offsetof(struct rte_flow_item_vxlan,
hdr) != 0);
proto_header_size = sizeof(struct rte_vxlan_hdr);
vxlan = (struct rte_vxlan_hdr *)buf_cur;
udp->dst_port = RTE_BE16(RTE_VXLAN_DEFAULT_PORT);
udp->dgram_len = RTE_BE16(sizeof(*udp) +
sizeof(*vxlan));
udp->dgram_cksum = 0;
exp_items = 0;
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"Unknown item in the encap. header");
}
if (bounce_eh->size + proto_header_size > bounce_eh->buf_size) {
return rte_flow_error_set(error, E2BIG,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"The encap. header is too big");
}
if ((proto_header_size & 1) != 0) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"Odd layer size in the encap. header");
}
rte_memcpy(buf_cur, pattern->spec, proto_header_size);
bounce_eh->size += proto_header_size;
parsed_item->item = pattern;
parsed_item->proto_header_size = proto_header_size;
++nb_parsed_items;
}
if (exp_items != 0) {
/* Parsing item VXLAN would have reset exp_items to 0. */
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
"No item VXLAN in the encap. header");
}
/* One of the pointers (ipv4, ipv6) refers to a dummy area. */
ipv4->version_ihl = RTE_IPV4_VHL_DEF;
ipv4->time_to_live = SFC_IPV4_TTL_DEF;
ipv4->total_length = RTE_BE16(sizeof(*ipv4) + sizeof(*udp) +
sizeof(*vxlan));
/* The HW cannot compute this checksum. */
ipv4->hdr_checksum = 0;
ipv4->hdr_checksum = rte_ipv4_cksum(ipv4);
ipv6->vtc_flow = RTE_BE32(SFC_IPV6_VTC_FLOW_DEF);
ipv6->hop_limits = SFC_IPV6_HOP_LIMITS_DEF;
ipv6->payload_len = udp->dgram_len;
vxlan->vx_flags = RTE_BE32(SFC_VXLAN_FLAGS_DEF);
/* Take care of the masks. */
sfc_mae_header_force_item_masks(buf, parsed_items, nb_parsed_items);
return (spec != NULL) ? efx_mae_action_set_populate_encap(spec) : 0;
}
static int
sfc_mae_rule_parse_action_mark(const struct rte_flow_action_mark *conf,
efx_mae_actions_t *spec)
{
return efx_mae_action_set_populate_mark(spec, conf->id);
}
static int
sfc_mae_rule_parse_action_phy_port(struct sfc_adapter *sa,
const struct rte_flow_action_phy_port *conf,
efx_mae_actions_t *spec)
{
efx_mport_sel_t mport;
uint32_t phy_port;
int rc;
if (conf->original != 0)
phy_port = efx_nic_cfg_get(sa->nic)->enc_assigned_port;
else
phy_port = conf->index;
rc = efx_mae_mport_by_phy_port(phy_port, &mport);
if (rc != 0)
return rc;
return efx_mae_action_set_populate_deliver(spec, &mport);
}
static int
sfc_mae_rule_parse_action_pf_vf(struct sfc_adapter *sa,
const struct rte_flow_action_vf *vf_conf,
efx_mae_actions_t *spec)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
efx_mport_sel_t mport;
uint32_t vf;
int rc;
if (vf_conf == NULL)
vf = EFX_PCI_VF_INVALID;
else if (vf_conf->original != 0)
vf = encp->enc_vf;
else
vf = vf_conf->id;
rc = efx_mae_mport_by_pcie_function(encp->enc_pf, vf, &mport);
if (rc != 0)
return rc;
return efx_mae_action_set_populate_deliver(spec, &mport);
}
static int
sfc_mae_rule_parse_action_port_id(struct sfc_adapter *sa,
const struct rte_flow_action_port_id *conf,
efx_mae_actions_t *spec)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_mae *mae = &sa->mae;
efx_mport_sel_t mport;
uint16_t port_id;
int rc;
if (conf->id > UINT16_MAX)
return EOVERFLOW;
port_id = (conf->original != 0) ? sas->port_id : conf->id;
rc = sfc_mae_switch_port_by_ethdev(mae->switch_domain_id,
port_id, &mport);
if (rc != 0)
return rc;
return efx_mae_action_set_populate_deliver(spec, &mport);
}
static int
sfc_mae_rule_parse_action(struct sfc_adapter *sa,
const struct rte_flow_action *action,
const struct sfc_mae_outer_rule *outer_rule,
struct sfc_mae_actions_bundle *bundle,
efx_mae_actions_t *spec,
struct rte_flow_error *error)
{
bool custom_error = B_FALSE;
int rc = 0;
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VXLAN_DECAP,
bundle->actions_mask);
if (outer_rule == NULL ||
outer_rule->encap_type != EFX_TUNNEL_PROTOCOL_VXLAN)
rc = EINVAL;
else
rc = efx_mae_action_set_populate_decap(spec);
break;
case RTE_FLOW_ACTION_TYPE_OF_POP_VLAN:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_POP_VLAN,
bundle->actions_mask);
rc = efx_mae_action_set_populate_vlan_pop(spec);
break;
case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN,
bundle->actions_mask);
sfc_mae_rule_parse_action_of_push_vlan(action->conf, bundle);
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID,
bundle->actions_mask);
sfc_mae_rule_parse_action_of_set_vlan_vid(action->conf, bundle);
break;
case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP,
bundle->actions_mask);
sfc_mae_rule_parse_action_of_set_vlan_pcp(action->conf, bundle);
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_vxlan_encap(&sa->mae,
action->conf,
spec, error);
custom_error = B_TRUE;
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_FLAG,
bundle->actions_mask);
rc = efx_mae_action_set_populate_flag(spec);
break;
case RTE_FLOW_ACTION_TYPE_MARK:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_MARK,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_mark(action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_PHY_PORT:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PHY_PORT,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_phy_port(sa, action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_PF:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PF,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_pf_vf(sa, NULL, spec);
break;
case RTE_FLOW_ACTION_TYPE_VF:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_VF,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_pf_vf(sa, action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_PORT_ID:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_PORT_ID,
bundle->actions_mask);
rc = sfc_mae_rule_parse_action_port_id(sa, action->conf, spec);
break;
case RTE_FLOW_ACTION_TYPE_DROP:
SFC_BUILD_SET_OVERFLOW(RTE_FLOW_ACTION_TYPE_DROP,
bundle->actions_mask);
rc = efx_mae_action_set_populate_drop(spec);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"Unsupported action");
}
if (rc == 0) {
bundle->actions_mask |= (1ULL << action->type);
} else if (!custom_error) {
rc = rte_flow_error_set(error, rc, RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "Failed to request the action");
}
return rc;
}
static void
sfc_mae_bounce_eh_invalidate(struct sfc_mae_bounce_eh *bounce_eh)
{
bounce_eh->type = EFX_TUNNEL_PROTOCOL_NONE;
}
static int
sfc_mae_process_encap_header(struct sfc_adapter *sa,
const struct sfc_mae_bounce_eh *bounce_eh,
struct sfc_mae_encap_header **encap_headerp)
{
if (bounce_eh->type == EFX_TUNNEL_PROTOCOL_NONE) {
encap_headerp = NULL;
return 0;
}
*encap_headerp = sfc_mae_encap_header_attach(sa, bounce_eh);
if (*encap_headerp != NULL)
return 0;
return sfc_mae_encap_header_add(sa, bounce_eh, encap_headerp);
}
int
sfc_mae_rule_parse_actions(struct sfc_adapter *sa,
const struct rte_flow_action actions[],
struct sfc_flow_spec_mae *spec_mae,
struct rte_flow_error *error)
{
struct sfc_mae_encap_header *encap_header = NULL;
struct sfc_mae_actions_bundle bundle = {0};
const struct rte_flow_action *action;
struct sfc_mae *mae = &sa->mae;
efx_mae_actions_t *spec;
int rc;
rte_errno = 0;
if (actions == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM, NULL,
"NULL actions");
}
rc = efx_mae_action_set_spec_init(sa->nic, &spec);
if (rc != 0)
goto fail_action_set_spec_init;
/* Cleanup after previous encap. header bounce buffer usage. */
sfc_mae_bounce_eh_invalidate(&mae->bounce_eh);
for (action = actions;
action->type != RTE_FLOW_ACTION_TYPE_END; ++action) {
rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
if (rc != 0)
goto fail_rule_parse_action;
rc = sfc_mae_rule_parse_action(sa, action, spec_mae->outer_rule,
&bundle, spec, error);
if (rc != 0)
goto fail_rule_parse_action;
}
rc = sfc_mae_actions_bundle_sync(action, &bundle, spec, error);
if (rc != 0)
goto fail_rule_parse_action;
rc = sfc_mae_process_encap_header(sa, &mae->bounce_eh, &encap_header);
if (rc != 0)
goto fail_process_encap_header;
spec_mae->action_set = sfc_mae_action_set_attach(sa, encap_header,
spec);
if (spec_mae->action_set != NULL) {
sfc_mae_encap_header_del(sa, encap_header);
efx_mae_action_set_spec_fini(sa->nic, spec);
return 0;
}
rc = sfc_mae_action_set_add(sa, spec, encap_header,
&spec_mae->action_set);
if (rc != 0)
goto fail_action_set_add;
return 0;
fail_action_set_add:
sfc_mae_encap_header_del(sa, encap_header);
fail_process_encap_header:
fail_rule_parse_action:
efx_mae_action_set_spec_fini(sa->nic, spec);
fail_action_set_spec_init:
if (rc > 0 && rte_errno == 0) {
rc = rte_flow_error_set(error, rc,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "Failed to process the action");
}
return rc;
}
static bool
sfc_mae_rules_class_cmp(struct sfc_adapter *sa,
const efx_mae_match_spec_t *left,
const efx_mae_match_spec_t *right)
{
bool have_same_class;
int rc;
rc = efx_mae_match_specs_class_cmp(sa->nic, left, right,
&have_same_class);
return (rc == 0) ? have_same_class : false;
}
static int
sfc_mae_outer_rule_class_verify(struct sfc_adapter *sa,
struct sfc_mae_outer_rule *rule)
{
struct sfc_mae_fw_rsrc *fw_rsrc = &rule->fw_rsrc;
struct sfc_mae_outer_rule *entry;
struct sfc_mae *mae = &sa->mae;
if (fw_rsrc->rule_id.id != EFX_MAE_RSRC_ID_INVALID) {
/* An active rule is reused. It's class is wittingly valid. */
return 0;
}
TAILQ_FOREACH_REVERSE(entry, &mae->outer_rules,
sfc_mae_outer_rules, entries) {
const efx_mae_match_spec_t *left = entry->match_spec;
const efx_mae_match_spec_t *right = rule->match_spec;
if (entry == rule)
continue;
if (sfc_mae_rules_class_cmp(sa, left, right))
return 0;
}
sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
"support for outer frame pattern items is not guaranteed; "
"other than that, the items are valid from SW standpoint");
return 0;
}
static int
sfc_mae_action_rule_class_verify(struct sfc_adapter *sa,
struct sfc_flow_spec_mae *spec)
{
const struct rte_flow *entry;
TAILQ_FOREACH_REVERSE(entry, &sa->flow_list, sfc_flow_list, entries) {
const struct sfc_flow_spec *entry_spec = &entry->spec;
const struct sfc_flow_spec_mae *es_mae = &entry_spec->mae;
const efx_mae_match_spec_t *left = es_mae->match_spec;
const efx_mae_match_spec_t *right = spec->match_spec;
switch (entry_spec->type) {
case SFC_FLOW_SPEC_FILTER:
/* Ignore VNIC-level flows */
break;
case SFC_FLOW_SPEC_MAE:
if (sfc_mae_rules_class_cmp(sa, left, right))
return 0;
break;
default:
SFC_ASSERT(false);
}
}
sfc_info(sa, "for now, the HW doesn't support rule validation, and HW "
"support for inner frame pattern items is not guaranteed; "
"other than that, the items are valid from SW standpoint");
return 0;
}
/**
* Confirm that a given flow can be accepted by the FW.
*
* @param sa
* Software adapter context
* @param flow
* Flow to be verified
* @return
* Zero on success and non-zero in the case of error.
* A special value of EAGAIN indicates that the adapter is
* not in started state. This state is compulsory because
* it only makes sense to compare the rule class of the flow
* being validated with classes of the active rules.
* Such classes are wittingly supported by the FW.
*/
int
sfc_mae_flow_verify(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec = &flow->spec;
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
int rc;
SFC_ASSERT(sfc_adapter_is_locked(sa));
if (sa->state != SFC_ADAPTER_STARTED)
return EAGAIN;
if (outer_rule != NULL) {
rc = sfc_mae_outer_rule_class_verify(sa, outer_rule);
if (rc != 0)
return rc;
}
return sfc_mae_action_rule_class_verify(sa, spec_mae);
}
int
sfc_mae_flow_insert(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec = &flow->spec;
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
struct sfc_mae_action_set *action_set = spec_mae->action_set;
struct sfc_mae_fw_rsrc *fw_rsrc = &action_set->fw_rsrc;
int rc;
SFC_ASSERT(spec_mae->rule_id.id == EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set != NULL);
if (outer_rule != NULL) {
rc = sfc_mae_outer_rule_enable(sa, outer_rule,
spec_mae->match_spec);
if (rc != 0)
goto fail_outer_rule_enable;
}
rc = sfc_mae_action_set_enable(sa, action_set);
if (rc != 0)
goto fail_action_set_enable;
rc = efx_mae_action_rule_insert(sa->nic, spec_mae->match_spec,
NULL, &fw_rsrc->aset_id,
&spec_mae->rule_id);
if (rc != 0)
goto fail_action_rule_insert;
sfc_dbg(sa, "enabled flow=%p: AR_ID=0x%08x",
flow, spec_mae->rule_id.id);
return 0;
fail_action_rule_insert:
sfc_mae_action_set_disable(sa, action_set);
fail_action_set_enable:
if (outer_rule != NULL)
sfc_mae_outer_rule_disable(sa, outer_rule);
fail_outer_rule_enable:
return rc;
}
int
sfc_mae_flow_remove(struct sfc_adapter *sa,
struct rte_flow *flow)
{
struct sfc_flow_spec *spec = &flow->spec;
struct sfc_flow_spec_mae *spec_mae = &spec->mae;
struct sfc_mae_action_set *action_set = spec_mae->action_set;
struct sfc_mae_outer_rule *outer_rule = spec_mae->outer_rule;
int rc;
SFC_ASSERT(spec_mae->rule_id.id != EFX_MAE_RSRC_ID_INVALID);
SFC_ASSERT(action_set != NULL);
rc = efx_mae_action_rule_remove(sa->nic, &spec_mae->rule_id);
if (rc != 0) {
sfc_err(sa, "failed to disable flow=%p with AR_ID=0x%08x: %s",
flow, spec_mae->rule_id.id, strerror(rc));
}
sfc_dbg(sa, "disabled flow=%p with AR_ID=0x%08x",
flow, spec_mae->rule_id.id);
spec_mae->rule_id.id = EFX_MAE_RSRC_ID_INVALID;
sfc_mae_action_set_disable(sa, action_set);
if (outer_rule != NULL)
sfc_mae_outer_rule_disable(sa, outer_rule);
return 0;
}