numam-dpdk/drivers/crypto/scheduler/scheduler_pmd_ops.c
Fan Zhang 725d2a7fbf cryptodev: change queue pair configure structure
This patch changes the cryptodev queue pair configure structure
to enable two mempool passed into cryptodev PMD simutaneously.

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2019-01-10 16:57:22 +01:00

545 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <string.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_reorder.h>
#include "scheduler_pmd_private.h"
/** attaching the slaves predefined by scheduler's EAL options */
static int
scheduler_attach_init_slave(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint8_t scheduler_id = dev->data->dev_id;
int i;
for (i = sched_ctx->nb_init_slaves - 1; i >= 0; i--) {
const char *dev_name = sched_ctx->init_slave_names[i];
struct rte_cryptodev *slave_dev =
rte_cryptodev_pmd_get_named_dev(dev_name);
int status;
if (!slave_dev) {
CR_SCHED_LOG(ERR, "Failed to locate slave dev %s",
dev_name);
return -EINVAL;
}
status = rte_cryptodev_scheduler_slave_attach(
scheduler_id, slave_dev->data->dev_id);
if (status < 0) {
CR_SCHED_LOG(ERR, "Failed to attach slave cryptodev %u",
slave_dev->data->dev_id);
return status;
}
CR_SCHED_LOG(INFO, "Scheduler %s attached slave %s",
dev->data->name,
sched_ctx->init_slave_names[i]);
rte_free(sched_ctx->init_slave_names[i]);
sched_ctx->init_slave_names[i] = NULL;
sched_ctx->nb_init_slaves -= 1;
}
return 0;
}
/** Configure device */
static int
scheduler_pmd_config(struct rte_cryptodev *dev,
struct rte_cryptodev_config *config)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
int ret;
/* although scheduler_attach_init_slave presents multiple times,
* there will be only 1 meaningful execution.
*/
ret = scheduler_attach_init_slave(dev);
if (ret < 0)
return ret;
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
ret = rte_cryptodev_configure(slave_dev_id, config);
if (ret < 0)
break;
}
return ret;
}
static int
update_order_ring(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
if (sched_ctx->reordering_enabled) {
char order_ring_name[RTE_CRYPTODEV_NAME_MAX_LEN];
uint32_t buff_size = rte_align32pow2(
sched_ctx->nb_slaves * PER_SLAVE_BUFF_SIZE);
if (qp_ctx->order_ring) {
rte_ring_free(qp_ctx->order_ring);
qp_ctx->order_ring = NULL;
}
if (!buff_size)
return 0;
if (snprintf(order_ring_name, RTE_CRYPTODEV_NAME_MAX_LEN,
"%s_rb_%u_%u", RTE_STR(CRYPTODEV_NAME_SCHEDULER_PMD),
dev->data->dev_id, qp_id) < 0) {
CR_SCHED_LOG(ERR, "failed to create unique reorder buffer"
"name");
return -ENOMEM;
}
qp_ctx->order_ring = rte_ring_create(order_ring_name,
buff_size, rte_socket_id(),
RING_F_SP_ENQ | RING_F_SC_DEQ);
if (!qp_ctx->order_ring) {
CR_SCHED_LOG(ERR, "failed to create order ring");
return -ENOMEM;
}
} else {
if (qp_ctx->order_ring) {
rte_ring_free(qp_ctx->order_ring);
qp_ctx->order_ring = NULL;
}
}
return 0;
}
/** Start device */
static int
scheduler_pmd_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
int ret;
if (dev->data->dev_started)
return 0;
/* although scheduler_attach_init_slave presents multiple times,
* there will be only 1 meaningful execution.
*/
ret = scheduler_attach_init_slave(dev);
if (ret < 0)
return ret;
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
ret = update_order_ring(dev, i);
if (ret < 0) {
CR_SCHED_LOG(ERR, "Failed to update reorder buffer");
return ret;
}
}
if (sched_ctx->mode == CDEV_SCHED_MODE_NOT_SET) {
CR_SCHED_LOG(ERR, "Scheduler mode is not set");
return -1;
}
if (!sched_ctx->nb_slaves) {
CR_SCHED_LOG(ERR, "No slave in the scheduler");
return -1;
}
RTE_FUNC_PTR_OR_ERR_RET(*sched_ctx->ops.slave_attach, -ENOTSUP);
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
if ((*sched_ctx->ops.slave_attach)(dev, slave_dev_id) < 0) {
CR_SCHED_LOG(ERR, "Failed to attach slave");
return -ENOTSUP;
}
}
RTE_FUNC_PTR_OR_ERR_RET(*sched_ctx->ops.scheduler_start, -ENOTSUP);
if ((*sched_ctx->ops.scheduler_start)(dev) < 0) {
CR_SCHED_LOG(ERR, "Scheduler start failed");
return -1;
}
/* start all slaves */
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev *slave_dev =
rte_cryptodev_pmd_get_dev(slave_dev_id);
ret = (*slave_dev->dev_ops->dev_start)(slave_dev);
if (ret < 0) {
CR_SCHED_LOG(ERR, "Failed to start slave dev %u",
slave_dev_id);
return ret;
}
}
return 0;
}
/** Stop device */
static void
scheduler_pmd_stop(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
if (!dev->data->dev_started)
return;
/* stop all slaves first */
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev *slave_dev =
rte_cryptodev_pmd_get_dev(slave_dev_id);
(*slave_dev->dev_ops->dev_stop)(slave_dev);
}
if (*sched_ctx->ops.scheduler_stop)
(*sched_ctx->ops.scheduler_stop)(dev);
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
if (*sched_ctx->ops.slave_detach)
(*sched_ctx->ops.slave_detach)(dev, slave_dev_id);
}
}
/** Close device */
static int
scheduler_pmd_close(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
int ret;
/* the dev should be stopped before being closed */
if (dev->data->dev_started)
return -EBUSY;
/* close all slaves first */
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev *slave_dev =
rte_cryptodev_pmd_get_dev(slave_dev_id);
ret = (*slave_dev->dev_ops->dev_close)(slave_dev);
if (ret < 0)
return ret;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
if (qp_ctx->order_ring) {
rte_ring_free(qp_ctx->order_ring);
qp_ctx->order_ring = NULL;
}
if (qp_ctx->private_qp_ctx) {
rte_free(qp_ctx->private_qp_ctx);
qp_ctx->private_qp_ctx = NULL;
}
}
if (sched_ctx->private_ctx) {
rte_free(sched_ctx->private_ctx);
sched_ctx->private_ctx = NULL;
}
if (sched_ctx->capabilities) {
rte_free(sched_ctx->capabilities);
sched_ctx->capabilities = NULL;
}
return 0;
}
/** Get device statistics */
static void
scheduler_pmd_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev *slave_dev =
rte_cryptodev_pmd_get_dev(slave_dev_id);
struct rte_cryptodev_stats slave_stats = {0};
(*slave_dev->dev_ops->stats_get)(slave_dev, &slave_stats);
stats->enqueued_count += slave_stats.enqueued_count;
stats->dequeued_count += slave_stats.dequeued_count;
stats->enqueue_err_count += slave_stats.enqueue_err_count;
stats->dequeue_err_count += slave_stats.dequeue_err_count;
}
}
/** Reset device statistics */
static void
scheduler_pmd_stats_reset(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev *slave_dev =
rte_cryptodev_pmd_get_dev(slave_dev_id);
(*slave_dev->dev_ops->stats_reset)(slave_dev);
}
}
/** Get device info */
static void
scheduler_pmd_info_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *dev_info)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t max_nb_sess = 0;
uint16_t headroom_sz = 0;
uint16_t tailroom_sz = 0;
uint32_t i;
if (!dev_info)
return;
/* although scheduler_attach_init_slave presents multiple times,
* there will be only 1 meaningful execution.
*/
scheduler_attach_init_slave(dev);
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev_info slave_info;
rte_cryptodev_info_get(slave_dev_id, &slave_info);
uint32_t dev_max_sess = slave_info.sym.max_nb_sessions;
if (dev_max_sess != 0) {
if (max_nb_sess == 0 || dev_max_sess < max_nb_sess)
max_nb_sess = slave_info.sym.max_nb_sessions;
}
/* Get the max headroom requirement among slave PMDs */
headroom_sz = slave_info.min_mbuf_headroom_req >
headroom_sz ?
slave_info.min_mbuf_headroom_req :
headroom_sz;
/* Get the max tailroom requirement among slave PMDs */
tailroom_sz = slave_info.min_mbuf_tailroom_req >
tailroom_sz ?
slave_info.min_mbuf_tailroom_req :
tailroom_sz;
}
dev_info->driver_id = dev->driver_id;
dev_info->feature_flags = dev->feature_flags;
dev_info->capabilities = sched_ctx->capabilities;
dev_info->max_nb_queue_pairs = sched_ctx->max_nb_queue_pairs;
dev_info->min_mbuf_headroom_req = headroom_sz;
dev_info->min_mbuf_tailroom_req = tailroom_sz;
dev_info->sym.max_nb_sessions = max_nb_sess;
}
/** Release queue pair */
static int
scheduler_pmd_qp_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
if (!qp_ctx)
return 0;
if (qp_ctx->order_ring)
rte_ring_free(qp_ctx->order_ring);
if (qp_ctx->private_qp_ctx)
rte_free(qp_ctx->private_qp_ctx);
rte_free(qp_ctx);
dev->data->queue_pairs[qp_id] = NULL;
return 0;
}
/** Setup a queue pair */
static int
scheduler_pmd_qp_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *qp_conf, int socket_id)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct scheduler_qp_ctx *qp_ctx;
char name[RTE_CRYPTODEV_NAME_MAX_LEN];
uint32_t i;
int ret;
if (snprintf(name, RTE_CRYPTODEV_NAME_MAX_LEN,
"CRYTO_SCHE PMD %u QP %u",
dev->data->dev_id, qp_id) < 0) {
CR_SCHED_LOG(ERR, "Failed to create unique queue pair name");
return -EFAULT;
}
/* Free memory prior to re-allocation if needed. */
if (dev->data->queue_pairs[qp_id] != NULL)
scheduler_pmd_qp_release(dev, qp_id);
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_id = sched_ctx->slaves[i].dev_id;
/*
* All slaves will share the same session mempool
* for session-less operations, so the objects
* must be big enough for all the drivers used.
*/
ret = rte_cryptodev_queue_pair_setup(slave_id, qp_id,
qp_conf, socket_id);
if (ret < 0)
return ret;
}
/* Allocate the queue pair data structure. */
qp_ctx = rte_zmalloc_socket(name, sizeof(*qp_ctx), RTE_CACHE_LINE_SIZE,
socket_id);
if (qp_ctx == NULL)
return -ENOMEM;
/* The actual available object number = nb_descriptors - 1 */
qp_ctx->max_nb_objs = qp_conf->nb_descriptors - 1;
dev->data->queue_pairs[qp_id] = qp_ctx;
/* although scheduler_attach_init_slave presents multiple times,
* there will be only 1 meaningful execution.
*/
ret = scheduler_attach_init_slave(dev);
if (ret < 0) {
CR_SCHED_LOG(ERR, "Failed to attach slave");
scheduler_pmd_qp_release(dev, qp_id);
return ret;
}
if (*sched_ctx->ops.config_queue_pair) {
if ((*sched_ctx->ops.config_queue_pair)(dev, qp_id) < 0) {
CR_SCHED_LOG(ERR, "Unable to configure queue pair");
return -1;
}
}
return 0;
}
/** Return the number of allocated queue pairs */
static uint32_t
scheduler_pmd_qp_count(struct rte_cryptodev *dev)
{
return dev->data->nb_queue_pairs;
}
static uint32_t
scheduler_pmd_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint8_t i = 0;
uint32_t max_priv_sess_size = 0;
/* Check what is the maximum private session size for all slaves */
for (i = 0; i < sched_ctx->nb_slaves; i++) {
uint8_t slave_dev_id = sched_ctx->slaves[i].dev_id;
struct rte_cryptodev *dev = &rte_cryptodevs[slave_dev_id];
uint32_t priv_sess_size = (*dev->dev_ops->sym_session_get_size)(dev);
if (max_priv_sess_size < priv_sess_size)
max_priv_sess_size = priv_sess_size;
}
return max_priv_sess_size;
}
static int
scheduler_pmd_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *mempool)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
int ret;
for (i = 0; i < sched_ctx->nb_slaves; i++) {
struct scheduler_slave *slave = &sched_ctx->slaves[i];
ret = rte_cryptodev_sym_session_init(slave->dev_id, sess,
xform, mempool);
if (ret < 0) {
CR_SCHED_LOG(ERR, "unable to config sym session");
return ret;
}
}
return 0;
}
/** Clear the memory of session so it doesn't leave key material behind */
static void
scheduler_pmd_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
/* Clear private data of slaves */
for (i = 0; i < sched_ctx->nb_slaves; i++) {
struct scheduler_slave *slave = &sched_ctx->slaves[i];
rte_cryptodev_sym_session_clear(slave->dev_id, sess);
}
}
static struct rte_cryptodev_ops scheduler_pmd_ops = {
.dev_configure = scheduler_pmd_config,
.dev_start = scheduler_pmd_start,
.dev_stop = scheduler_pmd_stop,
.dev_close = scheduler_pmd_close,
.stats_get = scheduler_pmd_stats_get,
.stats_reset = scheduler_pmd_stats_reset,
.dev_infos_get = scheduler_pmd_info_get,
.queue_pair_setup = scheduler_pmd_qp_setup,
.queue_pair_release = scheduler_pmd_qp_release,
.queue_pair_count = scheduler_pmd_qp_count,
.sym_session_get_size = scheduler_pmd_sym_session_get_size,
.sym_session_configure = scheduler_pmd_sym_session_configure,
.sym_session_clear = scheduler_pmd_sym_session_clear,
};
struct rte_cryptodev_ops *rte_crypto_scheduler_pmd_ops = &scheduler_pmd_ops;