e987449c9f
Signed-off-by: Intel
1805 lines
43 KiB
C
1805 lines
43 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_random.h>
|
|
#include <rte_common.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_hexdump.h>
|
|
|
|
#include <cmdline_parse.h>
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Ring
|
|
* ====
|
|
*
|
|
* #. Basic tests: done on one core:
|
|
*
|
|
* - Using single producer/single consumer functions:
|
|
*
|
|
* - Enqueue one object, two objects, MAX_BULK objects
|
|
* - Dequeue one object, two objects, MAX_BULK objects
|
|
* - Check that dequeued pointers are correct
|
|
*
|
|
* - Using multi producers/multi consumers functions:
|
|
*
|
|
* - Enqueue one object, two objects, MAX_BULK objects
|
|
* - Dequeue one object, two objects, MAX_BULK objects
|
|
* - Check that dequeued pointers are correct
|
|
*
|
|
* - Test watermark and default bulk enqueue/dequeue:
|
|
*
|
|
* - Set watermark
|
|
* - Set default bulk value
|
|
* - Enqueue objects, check that -EDQUOT is returned when
|
|
* watermark is exceeded
|
|
* - Check that dequeued pointers are correct
|
|
*
|
|
* #. Check live watermark change
|
|
*
|
|
* - Start a loop on another lcore that will enqueue and dequeue
|
|
* objects in a ring. It will monitor the value of watermark.
|
|
* - At the same time, change the watermark on the master lcore.
|
|
* - The slave lcore will check that watermark changes from 16 to 32.
|
|
*
|
|
* #. Performance tests.
|
|
*
|
|
* This test is done on the following configurations:
|
|
*
|
|
* - One core enqueuing, one core dequeuing
|
|
* - One core enqueuing, other cores dequeuing
|
|
* - One core dequeuing, other cores enqueuing
|
|
* - Half of the cores enqueuing, the other half dequeuing
|
|
*
|
|
* When only one core enqueues/dequeues, the test is done with the
|
|
* SP/SC functions in addition to the MP/MC functions.
|
|
*
|
|
* The test is done with different bulk size.
|
|
*
|
|
* On each core, the test enqueues or dequeues objects during
|
|
* TIME_S seconds. The number of successes and failures are stored on
|
|
* each core, then summed and displayed.
|
|
*
|
|
* The test checks that the number of enqueues is equal to the
|
|
* number of dequeues.
|
|
*/
|
|
|
|
#define RING_SIZE 4096
|
|
#define MAX_BULK 32
|
|
#define N 65536
|
|
#define TIME_S 5
|
|
|
|
static rte_atomic32_t synchro;
|
|
|
|
static struct rte_ring *r;
|
|
|
|
struct test_stats {
|
|
unsigned enq_success ;
|
|
unsigned enq_quota;
|
|
unsigned enq_fail;
|
|
|
|
unsigned deq_success;
|
|
unsigned deq_fail;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct test_stats test_stats[RTE_MAX_LCORE];
|
|
|
|
static int
|
|
ring_enqueue_test(int (que_func)(struct rte_ring*, void * const *, unsigned),
|
|
void* arg, unsigned bulk_or_burst)
|
|
{
|
|
unsigned success = 0;
|
|
unsigned quota = 0;
|
|
unsigned fail = 0;
|
|
unsigned i;
|
|
unsigned long dummy_obj;
|
|
void *obj_table[MAX_BULK];
|
|
int ret;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned count = *((unsigned*)arg);
|
|
uint64_t start_cycles, end_cycles;
|
|
uint64_t time_diff = 0, hz = rte_get_hpet_hz();
|
|
|
|
/* init dummy object table */
|
|
for (i = 0; i< MAX_BULK; i++) {
|
|
dummy_obj = lcore_id + 0x1000 + i;
|
|
obj_table[i] = (void *)dummy_obj;
|
|
}
|
|
|
|
/* wait synchro for slaves */
|
|
if (lcore_id != rte_get_master_lcore())
|
|
while (rte_atomic32_read(&synchro) == 0);
|
|
|
|
start_cycles = rte_get_hpet_cycles();
|
|
|
|
/* enqueue as many object as possible */
|
|
while (time_diff/hz < TIME_S) {
|
|
for (i = 0; likely(i < N); i++) {
|
|
ret = que_func(r, obj_table, count);
|
|
/*
|
|
* bulk_or_burst
|
|
* 1: for bulk operation
|
|
* 0: for burst operation
|
|
*/
|
|
if (bulk_or_burst) {
|
|
/* The *count* objects enqueued, unless fail */
|
|
if (ret == 0)
|
|
success += count;
|
|
else if (ret == -EDQUOT)
|
|
quota += count;
|
|
else
|
|
fail++;
|
|
} else {
|
|
/* The actual objects enqueued */
|
|
if (ret != 0)
|
|
success += (ret & RTE_RING_SZ_MASK);
|
|
else
|
|
fail++;
|
|
}
|
|
}
|
|
end_cycles = rte_get_hpet_cycles();
|
|
time_diff = end_cycles - start_cycles;
|
|
}
|
|
|
|
/* write statistics in a shared structure */
|
|
test_stats[lcore_id].enq_success = success;
|
|
test_stats[lcore_id].enq_quota = quota;
|
|
test_stats[lcore_id].enq_fail = fail;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ring_dequeue_test(int (que_func)(struct rte_ring*, void **, unsigned),
|
|
void* arg, unsigned bulk_or_burst)
|
|
{
|
|
unsigned success = 0;
|
|
unsigned fail = 0;
|
|
unsigned i;
|
|
void *obj_table[MAX_BULK];
|
|
int ret;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned count = *((unsigned*)arg);
|
|
uint64_t start_cycles, end_cycles;
|
|
uint64_t time_diff = 0, hz = rte_get_hpet_hz();
|
|
|
|
/* wait synchro for slaves */
|
|
if (lcore_id != rte_get_master_lcore())
|
|
while (rte_atomic32_read(&synchro) == 0);
|
|
|
|
start_cycles = rte_get_hpet_cycles();
|
|
|
|
/* dequeue as many object as possible */
|
|
while (time_diff/hz < TIME_S) {
|
|
for (i = 0; likely(i < N); i++) {
|
|
ret = que_func(r, obj_table, count);
|
|
/*
|
|
* bulk_or_burst
|
|
* 1: for bulk operation
|
|
* 0: for burst operation
|
|
*/
|
|
if (bulk_or_burst) {
|
|
if (ret == 0)
|
|
success += count;
|
|
else
|
|
fail++;
|
|
} else {
|
|
if (ret != 0)
|
|
success += ret;
|
|
else
|
|
fail++;
|
|
}
|
|
}
|
|
end_cycles = rte_get_hpet_cycles();
|
|
time_diff = end_cycles - start_cycles;
|
|
}
|
|
|
|
/* write statistics in a shared structure */
|
|
test_stats[lcore_id].deq_success = success;
|
|
test_stats[lcore_id].deq_fail = fail;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_sp_enqueue(void *arg)
|
|
{
|
|
return ring_enqueue_test(&rte_ring_sp_enqueue_bulk, arg, 1);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_mp_enqueue(void *arg)
|
|
{
|
|
return ring_enqueue_test(&rte_ring_mp_enqueue_bulk, arg, 1);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_mc_dequeue(void *arg)
|
|
{
|
|
return ring_dequeue_test(&rte_ring_mc_dequeue_bulk, arg, 1);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_sc_dequeue(void *arg)
|
|
{
|
|
return ring_dequeue_test(&rte_ring_sc_dequeue_bulk, arg, 1);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_sp_enqueue_burst(void *arg)
|
|
{
|
|
return ring_enqueue_test(&rte_ring_sp_enqueue_burst, arg, 0);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_mp_enqueue_burst(void *arg)
|
|
{
|
|
return ring_enqueue_test(&rte_ring_mp_enqueue_burst, arg, 0);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_mc_dequeue_burst(void *arg)
|
|
{
|
|
return ring_dequeue_test(&rte_ring_mc_dequeue_burst, arg, 0);
|
|
}
|
|
|
|
static int
|
|
test_ring_per_core_sc_dequeue_burst(void *arg)
|
|
{
|
|
return ring_dequeue_test(&rte_ring_sc_dequeue_burst, arg, 0);
|
|
}
|
|
|
|
#define TEST_RING_VERIFY(exp) \
|
|
if (!(exp)) { \
|
|
printf("error at %s:%d\tcondition " #exp " failed\n", \
|
|
__func__, __LINE__); \
|
|
rte_ring_dump(r); \
|
|
return (-1); \
|
|
}
|
|
|
|
#define TEST_RING_FULL_EMTPY_ITER 8
|
|
|
|
|
|
static int
|
|
launch_cores(unsigned enq_core_count, unsigned deq_core_count,
|
|
unsigned n_enq_bulk, unsigned n_deq_bulk,
|
|
int sp, int sc, int bulk_not_burst)
|
|
{
|
|
void *obj;
|
|
unsigned lcore_id;
|
|
unsigned rate, deq_remain = 0;
|
|
unsigned enq_total, deq_total;
|
|
struct test_stats sum;
|
|
int (*enq_f)(void *);
|
|
int (*deq_f)(void *);
|
|
unsigned cores = enq_core_count + deq_core_count;
|
|
int ret;
|
|
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
printf("ring_autotest e/d_core=%u,%u e/d_bulk=%u,%u ",
|
|
enq_core_count, deq_core_count, n_enq_bulk, n_deq_bulk);
|
|
printf("sp=%d sc=%d ", sp, sc);
|
|
|
|
if (bulk_not_burst) {
|
|
/* set enqueue function to be used */
|
|
if (sp)
|
|
enq_f = test_ring_per_core_sp_enqueue;
|
|
else
|
|
enq_f = test_ring_per_core_mp_enqueue;
|
|
|
|
/* set dequeue function to be used */
|
|
if (sc)
|
|
deq_f = test_ring_per_core_sc_dequeue;
|
|
else
|
|
deq_f = test_ring_per_core_mc_dequeue;
|
|
|
|
} else {
|
|
/* set enqueue function to be used */
|
|
if (sp)
|
|
enq_f = test_ring_per_core_sp_enqueue_burst;
|
|
else
|
|
enq_f = test_ring_per_core_mp_enqueue_burst;
|
|
|
|
/* set dequeue function to be used */
|
|
if (sc)
|
|
deq_f = test_ring_per_core_sc_dequeue_burst;
|
|
else
|
|
deq_f = test_ring_per_core_mc_dequeue_burst;
|
|
}
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (enq_core_count != 0) {
|
|
enq_core_count--;
|
|
rte_eal_remote_launch(enq_f, &n_enq_bulk, lcore_id);
|
|
}
|
|
if (deq_core_count != 1) {
|
|
deq_core_count--;
|
|
rte_eal_remote_launch(deq_f, &n_deq_bulk, lcore_id);
|
|
}
|
|
}
|
|
|
|
memset(test_stats, 0, sizeof(test_stats));
|
|
|
|
/* start synchro and launch test on master */
|
|
rte_atomic32_set(&synchro, 1);
|
|
ret = deq_f(&n_deq_bulk);
|
|
|
|
/* wait all cores */
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (cores == 1)
|
|
break;
|
|
cores--;
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
ret = -1;
|
|
}
|
|
|
|
memset(&sum, 0, sizeof(sum));
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
sum.enq_success += test_stats[lcore_id].enq_success;
|
|
sum.enq_quota += test_stats[lcore_id].enq_quota;
|
|
sum.enq_fail += test_stats[lcore_id].enq_fail;
|
|
sum.deq_success += test_stats[lcore_id].deq_success;
|
|
sum.deq_fail += test_stats[lcore_id].deq_fail;
|
|
}
|
|
|
|
/* empty the ring */
|
|
while (rte_ring_sc_dequeue(r, &obj) == 0)
|
|
deq_remain += 1;
|
|
|
|
if (ret < 0) {
|
|
printf("per-lcore test returned -1\n");
|
|
return -1;
|
|
}
|
|
|
|
enq_total = sum.enq_success + sum.enq_quota;
|
|
deq_total = sum.deq_success + deq_remain;
|
|
|
|
rate = deq_total/TIME_S;
|
|
|
|
printf("rate_persec=%u\n", rate);
|
|
|
|
if (enq_total != deq_total) {
|
|
printf("invalid enq/deq_success counter: %u %u\n",
|
|
enq_total, deq_total);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
do_one_ring_test2(unsigned enq_core_count, unsigned deq_core_count,
|
|
unsigned n_enq_bulk, unsigned n_deq_bulk, unsigned bulk_or_burst)
|
|
{
|
|
int sp, sc;
|
|
int do_sp, do_sc;
|
|
int ret;
|
|
|
|
do_sp = (enq_core_count == 1) ? 1 : 0;
|
|
do_sc = (deq_core_count == 1) ? 1 : 0;
|
|
|
|
for (sp = 0; sp <= do_sp; sp ++) {
|
|
for (sc = 0; sc <= do_sc; sc ++) {
|
|
ret = launch_cores(enq_core_count, deq_core_count,
|
|
n_enq_bulk, n_deq_bulk, sp, sc, bulk_or_burst);
|
|
if (ret < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
do_one_ring_test(unsigned enq_core_count, unsigned deq_core_count,
|
|
unsigned bulk_or_burst)
|
|
{
|
|
unsigned bulk_enqueue_tab[] = { 1, 2, 4, 32, 0 };
|
|
unsigned bulk_dequeue_tab[] = { 1, 2, 4, 32, 0 };
|
|
unsigned *bulk_enqueue_ptr;
|
|
unsigned *bulk_dequeue_ptr;
|
|
int ret;
|
|
|
|
for (bulk_enqueue_ptr = bulk_enqueue_tab;
|
|
*bulk_enqueue_ptr;
|
|
bulk_enqueue_ptr++) {
|
|
|
|
for (bulk_dequeue_ptr = bulk_dequeue_tab;
|
|
*bulk_dequeue_ptr;
|
|
bulk_dequeue_ptr++) {
|
|
|
|
ret = do_one_ring_test2(enq_core_count, deq_core_count,
|
|
*bulk_enqueue_ptr,
|
|
*bulk_dequeue_ptr,
|
|
bulk_or_burst);
|
|
if (ret < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
check_live_watermark_change(__attribute__((unused)) void *dummy)
|
|
{
|
|
uint64_t hz = rte_get_timer_hz();
|
|
void *obj_table[MAX_BULK];
|
|
unsigned watermark, watermark_old = 16;
|
|
uint64_t cur_time, end_time;
|
|
int64_t diff = 0;
|
|
int i, ret;
|
|
unsigned count = 4;
|
|
|
|
/* init the object table */
|
|
memset(obj_table, 0, sizeof(obj_table));
|
|
end_time = rte_get_timer_cycles() + (hz * 2);
|
|
|
|
/* check that bulk and watermark are 4 and 32 (respectively) */
|
|
while (diff >= 0) {
|
|
|
|
/* add in ring until we reach watermark */
|
|
ret = 0;
|
|
for (i = 0; i < 16; i ++) {
|
|
if (ret != 0)
|
|
break;
|
|
ret = rte_ring_enqueue_bulk(r, obj_table, count);
|
|
}
|
|
|
|
if (ret != -EDQUOT) {
|
|
printf("Cannot enqueue objects, or watermark not "
|
|
"reached (ret=%d)\n", ret);
|
|
return -1;
|
|
}
|
|
|
|
/* read watermark, the only change allowed is from 16 to 32 */
|
|
watermark = r->prod.watermark;
|
|
if (watermark != watermark_old &&
|
|
(watermark_old != 16 || watermark != 32)) {
|
|
printf("Bad watermark change %u -> %u\n", watermark_old,
|
|
watermark);
|
|
return -1;
|
|
}
|
|
watermark_old = watermark;
|
|
|
|
/* dequeue objects from ring */
|
|
while (i--) {
|
|
ret = rte_ring_dequeue_bulk(r, obj_table, count);
|
|
if (ret != 0) {
|
|
printf("Cannot dequeue (ret=%d)\n", ret);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
cur_time = rte_get_timer_cycles();
|
|
diff = end_time - cur_time;
|
|
}
|
|
|
|
if (watermark_old != 32 ) {
|
|
printf(" watermark was not updated (wm=%u)\n",
|
|
watermark_old);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_live_watermark_change(void)
|
|
{
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned lcore_id2 = rte_get_next_lcore(lcore_id, 0, 1);
|
|
|
|
printf("Test watermark live modification\n");
|
|
rte_ring_set_water_mark(r, 16);
|
|
|
|
/* launch a thread that will enqueue and dequeue, checking
|
|
* watermark and quota */
|
|
rte_eal_remote_launch(check_live_watermark_change, NULL, lcore_id2);
|
|
|
|
rte_delay_ms(1000);
|
|
rte_ring_set_water_mark(r, 32);
|
|
rte_delay_ms(1000);
|
|
|
|
if (rte_eal_wait_lcore(lcore_id2) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Test for catch on invalid watermark values */
|
|
static int
|
|
test_set_watermark( void ){
|
|
unsigned count;
|
|
int setwm;
|
|
|
|
struct rte_ring *r = rte_ring_lookup("test_ring_basic_ex");
|
|
if(r == NULL){
|
|
printf( " ring lookup failed\n" );
|
|
goto error;
|
|
}
|
|
count = r->prod.size*2;
|
|
setwm = rte_ring_set_water_mark(r, count);
|
|
if (setwm != -EINVAL){
|
|
printf("Test failed to detect invalid watermark count value\n");
|
|
goto error;
|
|
}
|
|
|
|
count = 0;
|
|
rte_ring_set_water_mark(r, count);
|
|
if (r->prod.watermark != r->prod.size) {
|
|
printf("Test failed to detect invalid watermark count value\n");
|
|
goto error;
|
|
}
|
|
return 0;
|
|
|
|
error:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* helper routine for test_ring_basic
|
|
*/
|
|
static int
|
|
test_ring_basic_full_empty(void * const src[], void *dst[])
|
|
{
|
|
unsigned i, rand;
|
|
const unsigned rsz = RING_SIZE - 1;
|
|
|
|
printf("Basic full/empty test\n");
|
|
|
|
for (i = 0; TEST_RING_FULL_EMTPY_ITER != i; i++) {
|
|
|
|
/* random shift in the ring */
|
|
rand = RTE_MAX(rte_rand() % RING_SIZE, 1UL);
|
|
printf("%s: iteration %u, random shift: %u;\n",
|
|
__func__, i, rand);
|
|
TEST_RING_VERIFY(-ENOBUFS != rte_ring_enqueue_bulk(r, src,
|
|
rand));
|
|
TEST_RING_VERIFY(0 == rte_ring_dequeue_bulk(r, dst, rand));
|
|
|
|
/* fill the ring */
|
|
TEST_RING_VERIFY(-ENOBUFS != rte_ring_enqueue_bulk(r, src,
|
|
rsz));
|
|
TEST_RING_VERIFY(0 == rte_ring_free_count(r));
|
|
TEST_RING_VERIFY(rsz == rte_ring_count(r));
|
|
TEST_RING_VERIFY(rte_ring_full(r));
|
|
TEST_RING_VERIFY(0 == rte_ring_empty(r));
|
|
|
|
/* empty the ring */
|
|
TEST_RING_VERIFY(0 == rte_ring_dequeue_bulk(r, dst, rsz));
|
|
TEST_RING_VERIFY(rsz == rte_ring_free_count(r));
|
|
TEST_RING_VERIFY(0 == rte_ring_count(r));
|
|
TEST_RING_VERIFY(0 == rte_ring_full(r));
|
|
TEST_RING_VERIFY(rte_ring_empty(r));
|
|
|
|
/* check data */
|
|
TEST_RING_VERIFY(0 == memcmp(src, dst, rsz));
|
|
rte_ring_dump(r);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
test_ring_basic(void)
|
|
{
|
|
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
|
|
int ret;
|
|
unsigned i, num_elems;
|
|
|
|
/* alloc dummy object pointers */
|
|
src = malloc(RING_SIZE*2*sizeof(void *));
|
|
if (src == NULL)
|
|
goto fail;
|
|
|
|
for (i = 0; i < RING_SIZE*2 ; i++) {
|
|
src[i] = (void *)(unsigned long)i;
|
|
}
|
|
cur_src = src;
|
|
|
|
/* alloc some room for copied objects */
|
|
dst = malloc(RING_SIZE*2*sizeof(void *));
|
|
if (dst == NULL)
|
|
goto fail;
|
|
|
|
memset(dst, 0, RING_SIZE*2*sizeof(void *));
|
|
cur_dst = dst;
|
|
|
|
printf("enqueue 1 obj\n");
|
|
ret = rte_ring_sp_enqueue_bulk(r, cur_src, 1);
|
|
cur_src += 1;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("enqueue 2 objs\n");
|
|
ret = rte_ring_sp_enqueue_bulk(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("enqueue MAX_BULK objs\n");
|
|
ret = rte_ring_sp_enqueue_bulk(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("dequeue 1 obj\n");
|
|
ret = rte_ring_sc_dequeue_bulk(r, cur_dst, 1);
|
|
cur_dst += 1;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("dequeue 2 objs\n");
|
|
ret = rte_ring_sc_dequeue_bulk(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("dequeue MAX_BULK objs\n");
|
|
ret = rte_ring_sc_dequeue_bulk(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("enqueue 1 obj\n");
|
|
ret = rte_ring_mp_enqueue_bulk(r, cur_src, 1);
|
|
cur_src += 1;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("enqueue 2 objs\n");
|
|
ret = rte_ring_mp_enqueue_bulk(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("enqueue MAX_BULK objs\n");
|
|
ret = rte_ring_mp_enqueue_bulk(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("dequeue 1 obj\n");
|
|
ret = rte_ring_mc_dequeue_bulk(r, cur_dst, 1);
|
|
cur_dst += 1;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("dequeue 2 objs\n");
|
|
ret = rte_ring_mc_dequeue_bulk(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
printf("dequeue MAX_BULK objs\n");
|
|
ret = rte_ring_mc_dequeue_bulk(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("fill and empty the ring\n");
|
|
for (i = 0; i<RING_SIZE/MAX_BULK; i++) {
|
|
ret = rte_ring_mp_enqueue_bulk(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if (ret != 0)
|
|
goto fail;
|
|
ret = rte_ring_mc_dequeue_bulk(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if (ret != 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (test_ring_basic_full_empty(src, dst) != 0)
|
|
goto fail;
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("test watermark and default bulk enqueue / dequeue\n");
|
|
rte_ring_set_water_mark(r, 20);
|
|
num_elems = 16;
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
ret = rte_ring_enqueue_bulk(r, cur_src, num_elems);
|
|
cur_src += num_elems;
|
|
if (ret != 0) {
|
|
printf("Cannot enqueue\n");
|
|
goto fail;
|
|
}
|
|
ret = rte_ring_enqueue_bulk(r, cur_src, num_elems);
|
|
cur_src += num_elems;
|
|
if (ret != -EDQUOT) {
|
|
printf("Watermark not exceeded\n");
|
|
goto fail;
|
|
}
|
|
ret = rte_ring_dequeue_bulk(r, cur_dst, num_elems);
|
|
cur_dst += num_elems;
|
|
if (ret != 0) {
|
|
printf("Cannot dequeue\n");
|
|
goto fail;
|
|
}
|
|
ret = rte_ring_dequeue_bulk(r, cur_dst, num_elems);
|
|
cur_dst += num_elems;
|
|
if (ret != 0) {
|
|
printf("Cannot dequeue2\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
ret = rte_ring_mp_enqueue(r, cur_src);
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
ret = rte_ring_mc_dequeue(r, cur_dst);
|
|
if (ret != 0)
|
|
goto fail;
|
|
|
|
if (src)
|
|
free(src);
|
|
if (dst)
|
|
free(dst);
|
|
return 0;
|
|
|
|
fail:
|
|
if (src)
|
|
free(src);
|
|
if (dst)
|
|
free(dst);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_ring_burst_basic(void)
|
|
{
|
|
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
|
|
int ret;
|
|
unsigned i;
|
|
|
|
/* alloc dummy object pointers */
|
|
src = malloc(RING_SIZE*2*sizeof(void *));
|
|
if (src == NULL)
|
|
goto fail;
|
|
|
|
for (i = 0; i < RING_SIZE*2 ; i++) {
|
|
src[i] = (void *)(unsigned long)i;
|
|
}
|
|
cur_src = src;
|
|
|
|
/* alloc some room for copied objects */
|
|
dst = malloc(RING_SIZE*2*sizeof(void *));
|
|
if (dst == NULL)
|
|
goto fail;
|
|
|
|
memset(dst, 0, RING_SIZE*2*sizeof(void *));
|
|
cur_dst = dst;
|
|
|
|
printf("Test SP & SC basic functions \n");
|
|
printf("enqueue 1 obj\n");
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, 1);
|
|
cur_src += 1;
|
|
if ((ret & RTE_RING_SZ_MASK) != 1)
|
|
goto fail;
|
|
|
|
printf("enqueue 2 objs\n");
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
printf("enqueue MAX_BULK objs\n");
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, MAX_BULK) ;
|
|
cur_src += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
|
|
printf("dequeue 1 obj\n");
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, 1) ;
|
|
cur_dst += 1;
|
|
if ((ret & RTE_RING_SZ_MASK) != 1)
|
|
goto fail;
|
|
|
|
printf("dequeue 2 objs\n");
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
printf("dequeue MAX_BULK objs\n");
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("Test enqueue without enough memory space \n");
|
|
for (i = 0; i< (RING_SIZE/MAX_BULK - 1); i++) {
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
printf("Enqueue 2 objects, free entries = MAX_BULK - 2 \n");
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
printf("Enqueue the remaining entries = MAX_BULK - 2 \n");
|
|
/* Always one free entry left */
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK - 3;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK - 3)
|
|
goto fail;
|
|
|
|
printf("Test if ring is full \n");
|
|
if (rte_ring_full(r) != 1)
|
|
goto fail;
|
|
|
|
printf("Test enqueue for a full entry \n");
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
if ((ret & RTE_RING_SZ_MASK) != 0)
|
|
goto fail;
|
|
|
|
printf("Test dequeue without enough objects \n");
|
|
for (i = 0; i<RING_SIZE/MAX_BULK - 1; i++) {
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
}
|
|
|
|
/* Available memory space for the exact MAX_BULK entries */
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK - 3;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK - 3)
|
|
goto fail;
|
|
|
|
printf("Test if ring is empty \n");
|
|
/* Check if ring is empty */
|
|
if (1 != rte_ring_empty(r))
|
|
goto fail;
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("Test MP & MC basic functions \n");
|
|
|
|
printf("enqueue 1 obj\n");
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, 1);
|
|
cur_src += 1;
|
|
if ((ret & RTE_RING_SZ_MASK) != 1)
|
|
goto fail;
|
|
|
|
printf("enqueue 2 objs\n");
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
printf("enqueue MAX_BULK objs\n");
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
|
|
printf("dequeue 1 obj\n");
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, 1);
|
|
cur_dst += 1;
|
|
if ((ret & RTE_RING_SZ_MASK) != 1)
|
|
goto fail;
|
|
|
|
printf("dequeue 2 objs\n");
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
printf("dequeue MAX_BULK objs\n");
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("fill and empty the ring\n");
|
|
for (i = 0; i<RING_SIZE/MAX_BULK; i++) {
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
}
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("Test enqueue without enough memory space \n");
|
|
for (i = 0; i<RING_SIZE/MAX_BULK - 1; i++) {
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
}
|
|
|
|
/* Available memory space for the exact MAX_BULK objects */
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK - 3;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK - 3)
|
|
goto fail;
|
|
|
|
|
|
printf("Test dequeue without enough objects \n");
|
|
for (i = 0; i<RING_SIZE/MAX_BULK - 1; i++) {
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK)
|
|
goto fail;
|
|
}
|
|
|
|
/* Available objects - the exact MAX_BULK */
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK - 3;
|
|
if ((ret & RTE_RING_SZ_MASK) != MAX_BULK - 3)
|
|
goto fail;
|
|
|
|
/* check data */
|
|
if (memcmp(src, dst, cur_dst - dst)) {
|
|
rte_hexdump("src", src, cur_src - src);
|
|
rte_hexdump("dst", dst, cur_dst - dst);
|
|
printf("data after dequeue is not the same\n");
|
|
goto fail;
|
|
}
|
|
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
printf("Covering rte_ring_enqueue_burst functions \n");
|
|
|
|
ret = rte_ring_enqueue_burst(r, cur_src, 2);
|
|
cur_src += 2;
|
|
if ((ret & RTE_RING_SZ_MASK) != 2)
|
|
goto fail;
|
|
|
|
ret = rte_ring_dequeue_burst(r, cur_dst, 2);
|
|
cur_dst += 2;
|
|
if (ret != 2)
|
|
goto fail;
|
|
|
|
/* Free memory before test completed */
|
|
if (src)
|
|
free(src);
|
|
if (dst)
|
|
free(dst);
|
|
return 0;
|
|
|
|
fail:
|
|
if (src)
|
|
free(src);
|
|
if (dst)
|
|
free(dst);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_ring_stats(void)
|
|
{
|
|
|
|
#ifndef RTE_LIBRTE_RING_DEBUG
|
|
printf("Enable RTE_LIBRTE_RING_DEBUG to test ring stats.\n");
|
|
return 0;
|
|
#else
|
|
void **src = NULL, **cur_src = NULL, **dst = NULL, **cur_dst = NULL;
|
|
int ret;
|
|
unsigned i;
|
|
unsigned num_items = 0;
|
|
unsigned failed_enqueue_ops = 0;
|
|
unsigned failed_enqueue_items = 0;
|
|
unsigned failed_dequeue_ops = 0;
|
|
unsigned failed_dequeue_items = 0;
|
|
unsigned last_enqueue_ops = 0;
|
|
unsigned last_enqueue_items = 0;
|
|
unsigned last_quota_ops = 0;
|
|
unsigned last_quota_items = 0;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
struct rte_ring_debug_stats *ring_stats = &r->stats[lcore_id];
|
|
|
|
printf("Test the ring stats.\n");
|
|
|
|
/* Reset the watermark in case it was set in another test. */
|
|
rte_ring_set_water_mark(r, 0);
|
|
|
|
/* Reset the ring stats. */
|
|
memset(&r->stats[lcore_id], 0, sizeof(r->stats[lcore_id]));
|
|
|
|
/* Allocate some dummy object pointers. */
|
|
src = malloc(RING_SIZE*2*sizeof(void *));
|
|
if (src == NULL)
|
|
goto fail;
|
|
|
|
for (i = 0; i < RING_SIZE*2 ; i++) {
|
|
src[i] = (void *)(unsigned long)i;
|
|
}
|
|
|
|
/* Allocate some memory for copied objects. */
|
|
dst = malloc(RING_SIZE*2*sizeof(void *));
|
|
if (dst == NULL)
|
|
goto fail;
|
|
|
|
memset(dst, 0, RING_SIZE*2*sizeof(void *));
|
|
|
|
/* Set the head and tail pointers. */
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
/* Do Enqueue tests. */
|
|
printf("Test the dequeue stats.\n");
|
|
|
|
/* Fill the ring up to RING_SIZE -1. */
|
|
printf("Fill the ring.\n");
|
|
for (i = 0; i< (RING_SIZE/MAX_BULK); i++) {
|
|
rte_ring_sp_enqueue_burst(r, cur_src, MAX_BULK);
|
|
cur_src += MAX_BULK;
|
|
}
|
|
|
|
/* Adjust for final enqueue = MAX_BULK -1. */
|
|
cur_src--;
|
|
|
|
printf("Verify that the ring is full.\n");
|
|
if (rte_ring_full(r) != 1)
|
|
goto fail;
|
|
|
|
|
|
printf("Verify the enqueue success stats.\n");
|
|
/* Stats should match above enqueue operations to fill the ring. */
|
|
if (ring_stats->enq_success_bulk != (RING_SIZE/MAX_BULK))
|
|
goto fail;
|
|
|
|
/* Current max objects is RING_SIZE -1. */
|
|
if (ring_stats->enq_success_objs != RING_SIZE -1)
|
|
goto fail;
|
|
|
|
/* Shouldn't have any failures yet. */
|
|
if (ring_stats->enq_fail_bulk != 0)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_objs != 0)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for SP burst enqueue to a full ring.\n");
|
|
num_items = 2;
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != 0)
|
|
goto fail;
|
|
|
|
failed_enqueue_ops += 1;
|
|
failed_enqueue_items += num_items;
|
|
|
|
/* The enqueue should have failed. */
|
|
if (ring_stats->enq_fail_bulk != failed_enqueue_ops)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_objs != failed_enqueue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for SP bulk enqueue to a full ring.\n");
|
|
num_items = 4;
|
|
ret = rte_ring_sp_enqueue_bulk(r, cur_src, num_items);
|
|
if (ret != -ENOBUFS)
|
|
goto fail;
|
|
|
|
failed_enqueue_ops += 1;
|
|
failed_enqueue_items += num_items;
|
|
|
|
/* The enqueue should have failed. */
|
|
if (ring_stats->enq_fail_bulk != failed_enqueue_ops)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_objs != failed_enqueue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for MP burst enqueue to a full ring.\n");
|
|
num_items = 8;
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != 0)
|
|
goto fail;
|
|
|
|
failed_enqueue_ops += 1;
|
|
failed_enqueue_items += num_items;
|
|
|
|
/* The enqueue should have failed. */
|
|
if (ring_stats->enq_fail_bulk != failed_enqueue_ops)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_objs != failed_enqueue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for MP bulk enqueue to a full ring.\n");
|
|
num_items = 16;
|
|
ret = rte_ring_mp_enqueue_bulk(r, cur_src, num_items);
|
|
if (ret != -ENOBUFS)
|
|
goto fail;
|
|
|
|
failed_enqueue_ops += 1;
|
|
failed_enqueue_items += num_items;
|
|
|
|
/* The enqueue should have failed. */
|
|
if (ring_stats->enq_fail_bulk != failed_enqueue_ops)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_objs != failed_enqueue_items)
|
|
goto fail;
|
|
|
|
|
|
/* Do Dequeue tests. */
|
|
printf("Test the dequeue stats.\n");
|
|
|
|
printf("Empty the ring.\n");
|
|
for (i = 0; i<RING_SIZE/MAX_BULK; i++) {
|
|
rte_ring_sc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
}
|
|
|
|
/* There was only RING_SIZE -1 objects to dequeue. */
|
|
cur_dst++;
|
|
|
|
printf("Verify ring is empty.\n");
|
|
if (1 != rte_ring_empty(r))
|
|
goto fail;
|
|
|
|
printf("Verify the dequeue success stats.\n");
|
|
/* Stats should match above dequeue operations. */
|
|
if (ring_stats->deq_success_bulk != (RING_SIZE/MAX_BULK))
|
|
goto fail;
|
|
|
|
/* Objects dequeued is RING_SIZE -1. */
|
|
if (ring_stats->deq_success_objs != RING_SIZE -1)
|
|
goto fail;
|
|
|
|
/* Shouldn't have any dequeue failure stats yet. */
|
|
if (ring_stats->deq_fail_bulk != 0)
|
|
goto fail;
|
|
|
|
printf("Test stats for SC burst dequeue with an empty ring.\n");
|
|
num_items = 2;
|
|
ret = rte_ring_sc_dequeue_burst(r, cur_dst, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != 0)
|
|
goto fail;
|
|
|
|
failed_dequeue_ops += 1;
|
|
failed_dequeue_items += num_items;
|
|
|
|
/* The dequeue should have failed. */
|
|
if (ring_stats->deq_fail_bulk != failed_dequeue_ops)
|
|
goto fail;
|
|
if (ring_stats->deq_fail_objs != failed_dequeue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for SC bulk dequeue with an empty ring.\n");
|
|
num_items = 4;
|
|
ret = rte_ring_sc_dequeue_bulk(r, cur_dst, num_items);
|
|
if (ret != -ENOENT)
|
|
goto fail;
|
|
|
|
failed_dequeue_ops += 1;
|
|
failed_dequeue_items += num_items;
|
|
|
|
/* The dequeue should have failed. */
|
|
if (ring_stats->deq_fail_bulk != failed_dequeue_ops)
|
|
goto fail;
|
|
if (ring_stats->deq_fail_objs != failed_dequeue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for MC burst dequeue with an empty ring.\n");
|
|
num_items = 8;
|
|
ret = rte_ring_mc_dequeue_burst(r, cur_dst, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != 0)
|
|
goto fail;
|
|
failed_dequeue_ops += 1;
|
|
failed_dequeue_items += num_items;
|
|
|
|
/* The dequeue should have failed. */
|
|
if (ring_stats->deq_fail_bulk != failed_dequeue_ops)
|
|
goto fail;
|
|
if (ring_stats->deq_fail_objs != failed_dequeue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test stats for MC bulk dequeue with an empty ring.\n");
|
|
num_items = 16;
|
|
ret = rte_ring_mc_dequeue_bulk(r, cur_dst, num_items);
|
|
if (ret != -ENOENT)
|
|
goto fail;
|
|
|
|
failed_dequeue_ops += 1;
|
|
failed_dequeue_items += num_items;
|
|
|
|
/* The dequeue should have failed. */
|
|
if (ring_stats->deq_fail_bulk != failed_dequeue_ops)
|
|
goto fail;
|
|
if (ring_stats->deq_fail_objs != failed_dequeue_items)
|
|
goto fail;
|
|
|
|
|
|
printf("Test total enqueue/dequeue stats.\n");
|
|
/* At this point the enqueue and dequeue stats should be the same. */
|
|
if (ring_stats->enq_success_bulk != ring_stats->deq_success_bulk)
|
|
goto fail;
|
|
if (ring_stats->enq_success_objs != ring_stats->deq_success_objs)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_bulk != ring_stats->deq_fail_bulk)
|
|
goto fail;
|
|
if (ring_stats->enq_fail_objs != ring_stats->deq_fail_objs)
|
|
goto fail;
|
|
|
|
|
|
/* Watermark Tests. */
|
|
printf("Test the watermark/quota stats.\n");
|
|
|
|
printf("Verify the initial watermark stats.\n");
|
|
/* Watermark stats should be 0 since there is no watermark. */
|
|
if (ring_stats->enq_quota_bulk != 0)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != 0)
|
|
goto fail;
|
|
|
|
/* Set a watermark. */
|
|
rte_ring_set_water_mark(r, 16);
|
|
|
|
/* Reset pointers. */
|
|
cur_src = src;
|
|
cur_dst = dst;
|
|
|
|
last_enqueue_ops = ring_stats->enq_success_bulk;
|
|
last_enqueue_items = ring_stats->enq_success_objs;
|
|
|
|
|
|
printf("Test stats for SP burst enqueue below watermark.\n");
|
|
num_items = 8;
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != num_items)
|
|
goto fail;
|
|
|
|
/* Watermark stats should still be 0. */
|
|
if (ring_stats->enq_quota_bulk != 0)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != 0)
|
|
goto fail;
|
|
|
|
/* Success stats should have increased. */
|
|
if (ring_stats->enq_success_bulk != last_enqueue_ops + 1)
|
|
goto fail;
|
|
if (ring_stats->enq_success_objs != last_enqueue_items + num_items)
|
|
goto fail;
|
|
|
|
last_enqueue_ops = ring_stats->enq_success_bulk;
|
|
last_enqueue_items = ring_stats->enq_success_objs;
|
|
|
|
|
|
printf("Test stats for SP burst enqueue at watermark.\n");
|
|
num_items = 8;
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != num_items)
|
|
goto fail;
|
|
|
|
/* Watermark stats should have changed. */
|
|
if (ring_stats->enq_quota_bulk != 1)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != num_items)
|
|
goto fail;
|
|
|
|
last_quota_ops = ring_stats->enq_quota_bulk;
|
|
last_quota_items = ring_stats->enq_quota_objs;
|
|
|
|
|
|
printf("Test stats for SP burst enqueue above watermark.\n");
|
|
num_items = 1;
|
|
ret = rte_ring_sp_enqueue_burst(r, cur_src, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != num_items)
|
|
goto fail;
|
|
|
|
/* Watermark stats should have changed. */
|
|
if (ring_stats->enq_quota_bulk != last_quota_ops +1)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != last_quota_items + num_items)
|
|
goto fail;
|
|
|
|
last_quota_ops = ring_stats->enq_quota_bulk;
|
|
last_quota_items = ring_stats->enq_quota_objs;
|
|
|
|
|
|
printf("Test stats for MP burst enqueue above watermark.\n");
|
|
num_items = 2;
|
|
ret = rte_ring_mp_enqueue_burst(r, cur_src, num_items);
|
|
if ((ret & RTE_RING_SZ_MASK) != num_items)
|
|
goto fail;
|
|
|
|
/* Watermark stats should have changed. */
|
|
if (ring_stats->enq_quota_bulk != last_quota_ops +1)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != last_quota_items + num_items)
|
|
goto fail;
|
|
|
|
last_quota_ops = ring_stats->enq_quota_bulk;
|
|
last_quota_items = ring_stats->enq_quota_objs;
|
|
|
|
|
|
printf("Test stats for SP bulk enqueue above watermark.\n");
|
|
num_items = 4;
|
|
ret = rte_ring_sp_enqueue_bulk(r, cur_src, num_items);
|
|
if (ret != -EDQUOT)
|
|
goto fail;
|
|
|
|
/* Watermark stats should have changed. */
|
|
if (ring_stats->enq_quota_bulk != last_quota_ops +1)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != last_quota_items + num_items)
|
|
goto fail;
|
|
|
|
last_quota_ops = ring_stats->enq_quota_bulk;
|
|
last_quota_items = ring_stats->enq_quota_objs;
|
|
|
|
|
|
printf("Test stats for MP bulk enqueue above watermark.\n");
|
|
num_items = 8;
|
|
ret = rte_ring_mp_enqueue_bulk(r, cur_src, num_items);
|
|
if (ret != -EDQUOT)
|
|
goto fail;
|
|
|
|
/* Watermark stats should have changed. */
|
|
if (ring_stats->enq_quota_bulk != last_quota_ops +1)
|
|
goto fail;
|
|
if (ring_stats->enq_quota_objs != last_quota_items + num_items)
|
|
goto fail;
|
|
|
|
printf("Test watermark success stats.\n");
|
|
/* Success stats should be same as last non-watermarked enqueue. */
|
|
if (ring_stats->enq_success_bulk != last_enqueue_ops)
|
|
goto fail;
|
|
if (ring_stats->enq_success_objs != last_enqueue_items)
|
|
goto fail;
|
|
|
|
|
|
/* Cleanup. */
|
|
|
|
/* Empty the ring. */
|
|
for (i = 0; i<RING_SIZE/MAX_BULK; i++) {
|
|
rte_ring_sc_dequeue_burst(r, cur_dst, MAX_BULK);
|
|
cur_dst += MAX_BULK;
|
|
}
|
|
|
|
/* Reset the watermark. */
|
|
rte_ring_set_water_mark(r, 0);
|
|
|
|
/* Reset the ring stats. */
|
|
memset(&r->stats[lcore_id], 0, sizeof(r->stats[lcore_id]));
|
|
|
|
/* Free memory before test completed */
|
|
if (src)
|
|
free(src);
|
|
if (dst)
|
|
free(dst);
|
|
return 0;
|
|
|
|
fail:
|
|
if (src)
|
|
free(src);
|
|
if (dst)
|
|
free(dst);
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* it will always fail to create ring with a wrong ring size number in this function
|
|
*/
|
|
static int
|
|
test_ring_creation_with_wrong_size(void)
|
|
{
|
|
struct rte_ring * rp = NULL;
|
|
|
|
/* Test if ring size is not power of 2 */
|
|
rp = rte_ring_create("test_bad_ring_size", RING_SIZE + 1, SOCKET_ID_ANY, 0);
|
|
if (NULL != rp) {
|
|
return -1;
|
|
}
|
|
|
|
/* Test if ring size is exceeding the limit */
|
|
rp = rte_ring_create("test_bad_ring_size", (RTE_RING_SZ_MASK + 1), SOCKET_ID_ANY, 0);
|
|
if (NULL != rp) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* it tests if it would always fail to create ring with an used ring name
|
|
*/
|
|
static int
|
|
test_ring_creation_with_an_used_name(void)
|
|
{
|
|
struct rte_ring * rp;
|
|
|
|
rp = rte_ring_create("test", RING_SIZE, SOCKET_ID_ANY, 0);
|
|
if (NULL != rp)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test to if a non-power of 2 count causes the create
|
|
* function to fail correctly
|
|
*/
|
|
static int
|
|
test_create_count_odd(void)
|
|
{
|
|
struct rte_ring *r = rte_ring_create("test_ring_count",
|
|
4097, SOCKET_ID_ANY, 0 );
|
|
if(r != NULL){
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_lookup_null(void)
|
|
{
|
|
struct rte_ring *rlp = rte_ring_lookup("ring_not_found");
|
|
if (rlp ==NULL)
|
|
if (rte_errno != ENOENT){
|
|
printf( "test failed to returnn error on null pointer\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* it tests some more basic ring operations
|
|
*/
|
|
static int
|
|
test_ring_basic_ex(void)
|
|
{
|
|
int ret = -1;
|
|
unsigned i;
|
|
struct rte_ring * rp;
|
|
void **obj = NULL;
|
|
|
|
obj = (void **)rte_zmalloc("test_ring_basic_ex_malloc", (RING_SIZE * sizeof(void *)), 0);
|
|
if (obj == NULL) {
|
|
printf("test_ring_basic_ex fail to rte_malloc\n");
|
|
goto fail_test;
|
|
}
|
|
|
|
rp = rte_ring_create("test_ring_basic_ex", RING_SIZE, SOCKET_ID_ANY,
|
|
RING_F_SP_ENQ | RING_F_SC_DEQ);
|
|
if (rp == NULL) {
|
|
printf("test_ring_basic_ex fail to create ring\n");
|
|
goto fail_test;
|
|
}
|
|
|
|
if (rte_ring_lookup("test_ring_basic_ex") != rp) {
|
|
goto fail_test;
|
|
}
|
|
|
|
if (rte_ring_empty(rp) != 1) {
|
|
printf("test_ring_basic_ex ring is not empty but it should be\n");
|
|
goto fail_test;
|
|
}
|
|
|
|
printf("%u ring entries are now free\n", rte_ring_free_count(rp));
|
|
|
|
for (i = 0; i < RING_SIZE; i ++) {
|
|
rte_ring_enqueue(rp, obj[i]);
|
|
}
|
|
|
|
if (rte_ring_full(rp) != 1) {
|
|
printf("test_ring_basic_ex ring is not full but it should be\n");
|
|
goto fail_test;
|
|
}
|
|
|
|
for (i = 0; i < RING_SIZE; i ++) {
|
|
rte_ring_dequeue(rp, &obj[i]);
|
|
}
|
|
|
|
if (rte_ring_empty(rp) != 1) {
|
|
printf("test_ring_basic_ex ring is not empty but it should be\n");
|
|
goto fail_test;
|
|
}
|
|
|
|
/* Covering the ring burst operation */
|
|
ret = rte_ring_enqueue_burst(rp, obj, 2);
|
|
if ((ret & RTE_RING_SZ_MASK) != 2) {
|
|
printf("test_ring_basic_ex: rte_ring_enqueue_burst fails \n");
|
|
goto fail_test;
|
|
}
|
|
|
|
ret = rte_ring_dequeue_burst(rp, obj, 2);
|
|
if (ret != 2) {
|
|
printf("test_ring_basic_ex: rte_ring_dequeue_burst fails \n");
|
|
goto fail_test;
|
|
}
|
|
|
|
ret = 0;
|
|
fail_test:
|
|
if (obj != NULL)
|
|
rte_free(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
test_ring(void)
|
|
{
|
|
unsigned enq_core_count, deq_core_count;
|
|
|
|
/* some more basic operations */
|
|
if (test_ring_basic_ex() < 0)
|
|
return -1;
|
|
|
|
rte_atomic32_init(&synchro);
|
|
|
|
if (r == NULL)
|
|
r = rte_ring_create("test", RING_SIZE, SOCKET_ID_ANY, 0);
|
|
if (r == NULL)
|
|
return -1;
|
|
|
|
/* retrieve the ring from its name */
|
|
if (rte_ring_lookup("test") != r) {
|
|
printf("Cannot lookup ring from its name\n");
|
|
return -1;
|
|
}
|
|
|
|
/* burst operations */
|
|
if (test_ring_burst_basic() < 0)
|
|
return -1;
|
|
|
|
/* basic operations */
|
|
if (test_ring_basic() < 0)
|
|
return -1;
|
|
|
|
/* ring stats */
|
|
if (test_ring_stats() < 0)
|
|
return -1;
|
|
|
|
/* basic operations */
|
|
if (test_live_watermark_change() < 0)
|
|
return -1;
|
|
|
|
if ( test_set_watermark() < 0){
|
|
printf ("Test failed to detect invalid parameter\n");
|
|
return -1;
|
|
}
|
|
else
|
|
printf ( "Test detected forced bad watermark values\n");
|
|
|
|
if ( test_create_count_odd() < 0){
|
|
printf ("Test failed to detect odd count\n");
|
|
return -1;
|
|
}
|
|
else
|
|
printf ( "Test detected odd count\n");
|
|
|
|
if ( test_lookup_null() < 0){
|
|
printf ("Test failed to detect NULL ring lookup\n");
|
|
return -1;
|
|
}
|
|
else
|
|
printf ( "Test detected NULL ring lookup \n");
|
|
|
|
printf("start performance tests \n");
|
|
|
|
/* one lcore for enqueue, one for dequeue */
|
|
enq_core_count = 1;
|
|
deq_core_count = 1;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
|
|
return -1;
|
|
|
|
/* max cores for enqueue, one for dequeue */
|
|
enq_core_count = rte_lcore_count() - 1;
|
|
deq_core_count = 1;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
|
|
return -1;
|
|
|
|
/* max cores for dequeue, one for enqueue */
|
|
enq_core_count = 1;
|
|
deq_core_count = rte_lcore_count() - 1;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
|
|
return -1;
|
|
|
|
/* half for enqueue and half for dequeue */
|
|
enq_core_count = rte_lcore_count() / 2;
|
|
deq_core_count = rte_lcore_count() / 2;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
|
|
return -1;
|
|
|
|
printf("start performance tests - burst operations \n");
|
|
|
|
/* one lcore for enqueue, one for dequeue */
|
|
enq_core_count = 1;
|
|
deq_core_count = 1;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
|
|
return -1;
|
|
|
|
/* max cores for enqueue, one for dequeue */
|
|
enq_core_count = rte_lcore_count() - 1;
|
|
deq_core_count = 1;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
|
|
return -1;
|
|
|
|
/* max cores for dequeue, one for enqueue */
|
|
enq_core_count = 1;
|
|
deq_core_count = rte_lcore_count() - 1;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
|
|
return -1;
|
|
|
|
/* half for enqueue and half for dequeue */
|
|
enq_core_count = rte_lcore_count() / 2;
|
|
deq_core_count = rte_lcore_count() / 2;
|
|
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
|
|
return -1;
|
|
|
|
/* test of creating ring with wrong size */
|
|
if (test_ring_creation_with_wrong_size() < 0)
|
|
return -1;
|
|
|
|
/* test of creation ring with an used name */
|
|
if (test_ring_creation_with_an_used_name() < 0)
|
|
return -1;
|
|
|
|
/* dump the ring status */
|
|
rte_ring_list_dump();
|
|
|
|
return 0;
|
|
}
|