numam-dpdk/lib/librte_mempool/rte_mempool.h
David Marchand a2348166ea tailq: move to dynamic tailq
Use dynamic tailq rather than static entries.

Signed-off-by: David Marchand <david.marchand@6wind.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2015-03-10 12:06:08 +01:00

1394 lines
47 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_MEMPOOL_H_
#define _RTE_MEMPOOL_H_
/**
* @file
* RTE Mempool.
*
* A memory pool is an allocator of fixed-size object. It is
* identified by its name, and uses a ring to store free objects. It
* provides some other optional services, like a per-core object
* cache, and an alignment helper to ensure that objects are padded
* to spread them equally on all RAM channels, ranks, and so on.
*
* Objects owned by a mempool should never be added in another
* mempool. When an object is freed using rte_mempool_put() or
* equivalent, the object data is not modified; the user can save some
* meta-data in the object data and retrieve them when allocating a
* new object.
*
* Note: the mempool implementation is not preemptable. A lcore must
* not be interrupted by another task that uses the same mempool
* (because it uses a ring which is not preemptable). Also, mempool
* functions must not be used outside the DPDK environment: for
* example, in linuxapp environment, a thread that is not created by
* the EAL must not use mempools. This is due to the per-lcore cache
* that won't work as rte_lcore_id() will not return a correct value.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <errno.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_lcore.h>
#include <rte_memory.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#ifdef __cplusplus
extern "C" {
#endif
#define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
#define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
#define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/**
* A structure that stores the mempool statistics (per-lcore).
*/
struct rte_mempool_debug_stats {
uint64_t put_bulk; /**< Number of puts. */
uint64_t put_objs; /**< Number of objects successfully put. */
uint64_t get_success_bulk; /**< Successful allocation number. */
uint64_t get_success_objs; /**< Objects successfully allocated. */
uint64_t get_fail_bulk; /**< Failed allocation number. */
uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
} __rte_cache_aligned;
#endif
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
/**
* A structure that stores a per-core object cache.
*/
struct rte_mempool_cache {
unsigned len; /**< Cache len */
/*
* Cache is allocated to this size to allow it to overflow in certain
* cases to avoid needless emptying of cache.
*/
void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
} __rte_cache_aligned;
#endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
struct rte_mempool_objsz {
uint32_t elt_size; /**< Size of an element. */
uint32_t header_size; /**< Size of header (before elt). */
uint32_t trailer_size; /**< Size of trailer (after elt). */
uint32_t total_size;
/**< Total size of an object (header + elt + trailer). */
};
#define RTE_MEMPOOL_NAMESIZE 32 /**< Maximum length of a memory pool. */
#define RTE_MEMPOOL_MZ_PREFIX "MP_"
/* "MP_<name>" */
#define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
#ifdef RTE_LIBRTE_XEN_DOM0
/* "<name>_MP_elt" */
#define RTE_MEMPOOL_OBJ_NAME "%s_" RTE_MEMPOOL_MZ_PREFIX "elt"
#else
#define RTE_MEMPOOL_OBJ_NAME RTE_MEMPOOL_MZ_FORMAT
#endif /* RTE_LIBRTE_XEN_DOM0 */
#define MEMPOOL_PG_SHIFT_MAX (sizeof(uintptr_t) * CHAR_BIT - 1)
/** Mempool over one chunk of physically continuous memory */
#define MEMPOOL_PG_NUM_DEFAULT 1
/**
* The RTE mempool structure.
*/
struct rte_mempool {
char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
struct rte_ring *ring; /**< Ring to store objects. */
phys_addr_t phys_addr; /**< Phys. addr. of mempool struct. */
int flags; /**< Flags of the mempool. */
uint32_t size; /**< Size of the mempool. */
uint32_t cache_size; /**< Size of per-lcore local cache. */
uint32_t cache_flushthresh;
/**< Threshold before we flush excess elements. */
uint32_t elt_size; /**< Size of an element. */
uint32_t header_size; /**< Size of header (before elt). */
uint32_t trailer_size; /**< Size of trailer (after elt). */
unsigned private_data_size; /**< Size of private data. */
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
/** Per-lcore local cache. */
struct rte_mempool_cache local_cache[RTE_MAX_LCORE];
#endif
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/** Per-lcore statistics. */
struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
#endif
/* Address translation support, starts from next cache line. */
/** Number of elements in the elt_pa array. */
uint32_t pg_num __rte_cache_aligned;
uint32_t pg_shift; /**< LOG2 of the physical pages. */
uintptr_t pg_mask; /**< physical page mask value. */
uintptr_t elt_va_start;
/**< Virtual address of the first mempool object. */
uintptr_t elt_va_end;
/**< Virtual address of the <size + 1> mempool object. */
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];
/**< Array of physical pages addresses for the mempool objects buffer. */
} __rte_cache_aligned;
#define MEMPOOL_F_NO_SPREAD 0x0001 /**< Do not spread in memory. */
#define MEMPOOL_F_NO_CACHE_ALIGN 0x0002 /**< Do not align objs on cache lines.*/
#define MEMPOOL_F_SP_PUT 0x0004 /**< Default put is "single-producer".*/
#define MEMPOOL_F_SC_GET 0x0008 /**< Default get is "single-consumer".*/
/**
* @internal When debug is enabled, store some statistics.
* @param mp
* Pointer to the memory pool.
* @param name
* Name of the statistics field to increment in the memory pool.
* @param n
* Number to add to the object-oriented statistics.
*/
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
#define __MEMPOOL_STAT_ADD(mp, name, n) do { \
unsigned __lcore_id = rte_lcore_id(); \
if (__lcore_id < RTE_MAX_LCORE) { \
mp->stats[__lcore_id].name##_objs += n; \
mp->stats[__lcore_id].name##_bulk += 1; \
} \
} while(0)
#else
#define __MEMPOOL_STAT_ADD(mp, name, n) do {} while(0)
#endif
/**
* Calculates size of the mempool header.
* @param mp
* Pointer to the memory pool.
* @param pgn
* Number of page used to store mempool objects.
*/
#define MEMPOOL_HEADER_SIZE(mp, pgn) (sizeof(*(mp)) + \
RTE_ALIGN_CEIL(((pgn) - RTE_DIM((mp)->elt_pa)) * \
sizeof ((mp)->elt_pa[0]), RTE_CACHE_LINE_SIZE))
/**
* Returns TRUE if whole mempool is allocated in one contiguous block of memory.
*/
#define MEMPOOL_IS_CONTIG(mp) \
((mp)->pg_num == MEMPOOL_PG_NUM_DEFAULT && \
(mp)->phys_addr == (mp)->elt_pa[0])
/**
* @internal Get a pointer to a mempool pointer in the object header.
* @param obj
* Pointer to object.
* @return
* The pointer to the mempool from which the object was allocated.
*/
static inline struct rte_mempool **__mempool_from_obj(void *obj)
{
struct rte_mempool **mpp;
unsigned off;
off = sizeof(struct rte_mempool *);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
off += sizeof(uint64_t);
#endif
mpp = (struct rte_mempool **)((char *)obj - off);
return mpp;
}
/**
* Return a pointer to the mempool owning this object.
*
* @param obj
* An object that is owned by a pool. If this is not the case,
* the behavior is undefined.
* @return
* A pointer to the mempool structure.
*/
static inline const struct rte_mempool *rte_mempool_from_obj(void *obj)
{
struct rte_mempool * const *mpp;
mpp = __mempool_from_obj(obj);
return *mpp;
}
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
/* get header cookie value */
static inline uint64_t __mempool_read_header_cookie(const void *obj)
{
return *(const uint64_t *)((const char *)obj - sizeof(uint64_t));
}
/* get trailer cookie value */
static inline uint64_t __mempool_read_trailer_cookie(void *obj)
{
struct rte_mempool **mpp = __mempool_from_obj(obj);
return *(uint64_t *)((char *)obj + (*mpp)->elt_size);
}
/* write header cookie value */
static inline void __mempool_write_header_cookie(void *obj, int free)
{
uint64_t *cookie_p;
cookie_p = (uint64_t *)((char *)obj - sizeof(uint64_t));
if (free == 0)
*cookie_p = RTE_MEMPOOL_HEADER_COOKIE1;
else
*cookie_p = RTE_MEMPOOL_HEADER_COOKIE2;
}
/* write trailer cookie value */
static inline void __mempool_write_trailer_cookie(void *obj)
{
uint64_t *cookie_p;
struct rte_mempool **mpp = __mempool_from_obj(obj);
cookie_p = (uint64_t *)((char *)obj + (*mpp)->elt_size);
*cookie_p = RTE_MEMPOOL_TRAILER_COOKIE;
}
#endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
/**
* @internal Check and update cookies or panic.
*
* @param mp
* Pointer to the memory pool.
* @param obj_table_const
* Pointer to a table of void * pointers (objects).
* @param n
* Index of object in object table.
* @param free
* - 0: object is supposed to be allocated, mark it as free
* - 1: object is supposed to be free, mark it as allocated
* - 2: just check that cookie is valid (free or allocated)
*/
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline void __mempool_check_cookies(const struct rte_mempool *mp,
void * const *obj_table_const,
unsigned n, int free)
{
uint64_t cookie;
void *tmp;
void *obj;
void **obj_table;
/* Force to drop the "const" attribute. This is done only when
* DEBUG is enabled */
tmp = (void *) obj_table_const;
obj_table = (void **) tmp;
while (n--) {
obj = obj_table[n];
if (rte_mempool_from_obj(obj) != mp)
rte_panic("MEMPOOL: object is owned by another "
"mempool\n");
cookie = __mempool_read_header_cookie(obj);
if (free == 0) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (put)\n");
}
__mempool_write_header_cookie(obj, 1);
}
else if (free == 1) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (get)\n");
}
__mempool_write_header_cookie(obj, 0);
}
else if (free == 2) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (audit)\n");
}
}
cookie = __mempool_read_trailer_cookie(obj);
if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad trailer cookie\n");
}
}
}
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic error "-Wcast-qual"
#endif
#else
#define __mempool_check_cookies(mp, obj_table_const, n, free) do {} while(0)
#endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
/**
* An mempool's object iterator callback function.
*/
typedef void (*rte_mempool_obj_iter_t)(void * /*obj_iter_arg*/,
void * /*obj_start*/,
void * /*obj_end*/,
uint32_t /*obj_index */);
/*
* Iterates across objects of the given size and alignment in the
* provided chunk of memory. The given memory buffer can consist of
* disjoint physical pages.
* For each object calls the provided callback (if any).
* Used to populate mempool, walk through all elements of the mempool,
* estimate how many elements of the given size could be created in the given
* memory buffer.
* @param vaddr
* Virtual address of the memory buffer.
* @param elt_num
* Maximum number of objects to iterate through.
* @param elt_sz
* Size of each object.
* @param paddr
* Array of phyiscall addresses of the pages that comprises given memory
* buffer.
* @param pg_num
* Number of elements in the paddr array.
* @param pg_shift
* LOG2 of the physical pages size.
* @param obj_iter
* Object iterator callback function (could be NULL).
* @param obj_iter_arg
* User defined Prameter for the object iterator callback function.
*
* @return
* Number of objects iterated through.
*/
uint32_t rte_mempool_obj_iter(void *vaddr,
uint32_t elt_num, size_t elt_sz, size_t align,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
rte_mempool_obj_iter_t obj_iter, void *obj_iter_arg);
/**
* An object constructor callback function for mempool.
*
* Arguments are the mempool, the opaque pointer given by the user in
* rte_mempool_create(), the pointer to the element and the index of
* the element in the pool.
*/
typedef void (rte_mempool_obj_ctor_t)(struct rte_mempool *, void *,
void *, unsigned);
/**
* A mempool constructor callback function.
*
* Arguments are the mempool and the opaque pointer given by the user in
* rte_mempool_create().
*/
typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
/**
* Creates a new mempool named *name* in memory.
*
* This function uses ``memzone_reserve()`` to allocate memory. The
* pool contains n elements of elt_size. Its size is set to n.
* All elements of the mempool are allocated together with the mempool header,
* in one physically continuous chunk of memory.
*
* @param name
* The name of the mempool.
* @param n
* The number of elements in the mempool. The optimum size (in terms of
* memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* If cache_size is non-zero, the rte_mempool library will try to
* limit the accesses to the common lockless pool, by maintaining a
* per-lcore object cache. This argument must be lower or equal to
* CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose
* cache_size to have "n modulo cache_size == 0": if this is
* not the case, some elements will always stay in the pool and will
* never be used. The access to the per-lcore table is of course
* faster than the multi-producer/consumer pool. The cache can be
* disabled if the cache_size argument is set to 0; it can be useful to
* avoid losing objects in cache. Note that even if not used, the
* memory space for cache is always reserved in a mempool structure,
* except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param mp_init
* A function pointer that is called for initialization of the pool,
* before object initialization. The user can initialize the private
* data in this function if needed. This parameter can be NULL if
* not needed.
* @param mp_init_arg
* An opaque pointer to data that can be used in the mempool
* constructor function.
* @param obj_init
* A function pointer that is called for each object at
* initialization of the pool. The user can set some meta data in
* objects if needed. This parameter can be NULL if not needed.
* The obj_init() function takes the mempool pointer, the init_arg,
* the object pointer and the object number as parameters.
* @param obj_init_arg
* An opaque pointer to data that can be used as an argument for
* each call to the object constructor function.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* The *flags* arguments is an OR of following flags:
* - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
* between channels in RAM: the pool allocator will add padding
* between objects depending on the hardware configuration. See
* Memory alignment constraints for details. If this flag is set,
* the allocator will just align them to a cache line.
* - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
* cache-aligned. This flag removes this constraint, and no
* padding will be present between objects. This flag implies
* MEMPOOL_F_NO_SPREAD.
* - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
* when using rte_mempool_put() or rte_mempool_put_bulk() is
* "single-producer". Otherwise, it is "multi-producers".
* - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
* when using rte_mempool_get() or rte_mempool_get_bulk() is
* "single-consumer". Otherwise, it is "multi-consumers".
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags);
/**
* Creates a new mempool named *name* in memory.
*
* This function uses ``memzone_reserve()`` to allocate memory. The
* pool contains n elements of elt_size. Its size is set to n.
* Depending on the input parameters, mempool elements can be either allocated
* together with the mempool header, or an externally provided memory buffer
* could be used to store mempool objects. In later case, that external
* memory buffer can consist of set of disjoint phyiscal pages.
*
* @param name
* The name of the mempool.
* @param n
* The number of elements in the mempool. The optimum size (in terms of
* memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* If cache_size is non-zero, the rte_mempool library will try to
* limit the accesses to the common lockless pool, by maintaining a
* per-lcore object cache. This argument must be lower or equal to
* CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose
* cache_size to have "n modulo cache_size == 0": if this is
* not the case, some elements will always stay in the pool and will
* never be used. The access to the per-lcore table is of course
* faster than the multi-producer/consumer pool. The cache can be
* disabled if the cache_size argument is set to 0; it can be useful to
* avoid losing objects in cache. Note that even if not used, the
* memory space for cache is always reserved in a mempool structure,
* except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param mp_init
* A function pointer that is called for initialization of the pool,
* before object initialization. The user can initialize the private
* data in this function if needed. This parameter can be NULL if
* not needed.
* @param mp_init_arg
* An opaque pointer to data that can be used in the mempool
* constructor function.
* @param obj_init
* A function pointer that is called for each object at
* initialization of the pool. The user can set some meta data in
* objects if needed. This parameter can be NULL if not needed.
* The obj_init() function takes the mempool pointer, the init_arg,
* the object pointer and the object number as parameters.
* @param obj_init_arg
* An opaque pointer to data that can be used as an argument for
* each call to the object constructor function.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* The *flags* arguments is an OR of following flags:
* - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
* between channels in RAM: the pool allocator will add padding
* between objects depending on the hardware configuration. See
* Memory alignment constraints for details. If this flag is set,
* the allocator will just align them to a cache line.
* - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
* cache-aligned. This flag removes this constraint, and no
* padding will be present between objects. This flag implies
* MEMPOOL_F_NO_SPREAD.
* - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
* when using rte_mempool_put() or rte_mempool_put_bulk() is
* "single-producer". Otherwise, it is "multi-producers".
* - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
* when using rte_mempool_get() or rte_mempool_get_bulk() is
* "single-consumer". Otherwise, it is "multi-consumers".
* @param vaddr
* Virtual address of the externally allocated memory buffer.
* Will be used to store mempool objects.
* @param paddr
* Array of phyiscall addresses of the pages that comprises given memory
* buffer.
* @param pg_num
* Number of elements in the paddr array.
* @param pg_shift
* LOG2 of the physical pages size.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags, void *vaddr,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift);
#ifdef RTE_LIBRTE_XEN_DOM0
/**
* Creates a new mempool named *name* in memory on Xen Dom0.
*
* This function uses ``rte_mempool_xmem_create()`` to allocate memory. The
* pool contains n elements of elt_size. Its size is set to n.
* All elements of the mempool are allocated together with the mempool header,
* and memory buffer can consist of set of disjoint phyiscal pages.
*
* @param name
* The name of the mempool.
* @param n
* The number of elements in the mempool. The optimum size (in terms of
* memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param elt_size
* The size of each element.
* @param cache_size
* If cache_size is non-zero, the rte_mempool library will try to
* limit the accesses to the common lockless pool, by maintaining a
* per-lcore object cache. This argument must be lower or equal to
* CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE. It is advised to choose
* cache_size to have "n modulo cache_size == 0": if this is
* not the case, some elements will always stay in the pool and will
* never be used. The access to the per-lcore table is of course
* faster than the multi-producer/consumer pool. The cache can be
* disabled if the cache_size argument is set to 0; it can be useful to
* avoid losing objects in cache. Note that even if not used, the
* memory space for cache is always reserved in a mempool structure,
* except if CONFIG_RTE_MEMPOOL_CACHE_MAX_SIZE is set to 0.
* @param private_data_size
* The size of the private data appended after the mempool
* structure. This is useful for storing some private data after the
* mempool structure, as is done for rte_mbuf_pool for example.
* @param mp_init
* A function pointer that is called for initialization of the pool,
* before object initialization. The user can initialize the private
* data in this function if needed. This parameter can be NULL if
* not needed.
* @param mp_init_arg
* An opaque pointer to data that can be used in the mempool
* constructor function.
* @param obj_init
* A function pointer that is called for each object at
* initialization of the pool. The user can set some meta data in
* objects if needed. This parameter can be NULL if not needed.
* The obj_init() function takes the mempool pointer, the init_arg,
* the object pointer and the object number as parameters.
* @param obj_init_arg
* An opaque pointer to data that can be used as an argument for
* each call to the object constructor function.
* @param socket_id
* The *socket_id* argument is the socket identifier in the case of
* NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
* constraint for the reserved zone.
* @param flags
* The *flags* arguments is an OR of following flags:
* - MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
* between channels in RAM: the pool allocator will add padding
* between objects depending on the hardware configuration. See
* Memory alignment constraints for details. If this flag is set,
* the allocator will just align them to a cache line.
* - MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
* cache-aligned. This flag removes this constraint, and no
* padding will be present between objects. This flag implies
* MEMPOOL_F_NO_SPREAD.
* - MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
* when using rte_mempool_put() or rte_mempool_put_bulk() is
* "single-producer". Otherwise, it is "multi-producers".
* - MEMPOOL_F_SC_GET: If this flag is set, the default behavior
* when using rte_mempool_get() or rte_mempool_get_bulk() is
* "single-consumer". Otherwise, it is "multi-consumers".
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_dom0_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_ctor_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags);
#endif
/**
* Dump the status of the mempool to the console.
*
* @param f
* A pointer to a file for output
* @param mp
* A pointer to the mempool structure.
*/
void rte_mempool_dump(FILE *f, const struct rte_mempool *mp);
/**
* @internal Put several objects back in the mempool; used internally.
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to store back in the mempool, must be strictly
* positive.
* @param is_mp
* Mono-producer (0) or multi-producers (1).
*/
static inline void __attribute__((always_inline))
__mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned n, int is_mp)
{
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
struct rte_mempool_cache *cache;
uint32_t index;
void **cache_objs;
unsigned lcore_id = rte_lcore_id();
uint32_t cache_size = mp->cache_size;
uint32_t flushthresh = mp->cache_flushthresh;
#endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
/* increment stat now, adding in mempool always success */
__MEMPOOL_STAT_ADD(mp, put, n);
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
/* cache is not enabled or single producer or non-EAL thread */
if (unlikely(cache_size == 0 || is_mp == 0 ||
lcore_id >= RTE_MAX_LCORE))
goto ring_enqueue;
/* Go straight to ring if put would overflow mem allocated for cache */
if (unlikely(n > RTE_MEMPOOL_CACHE_MAX_SIZE))
goto ring_enqueue;
cache = &mp->local_cache[lcore_id];
cache_objs = &cache->objs[cache->len];
/*
* The cache follows the following algorithm
* 1. Add the objects to the cache
* 2. Anything greater than the cache min value (if it crosses the
* cache flush threshold) is flushed to the ring.
*/
/* Add elements back into the cache */
for (index = 0; index < n; ++index, obj_table++)
cache_objs[index] = *obj_table;
cache->len += n;
if (cache->len >= flushthresh) {
rte_ring_mp_enqueue_bulk(mp->ring, &cache->objs[cache_size],
cache->len - cache_size);
cache->len = cache_size;
}
return;
ring_enqueue:
#endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
/* push remaining objects in ring */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
if (is_mp) {
if (rte_ring_mp_enqueue_bulk(mp->ring, obj_table, n) < 0)
rte_panic("cannot put objects in mempool\n");
}
else {
if (rte_ring_sp_enqueue_bulk(mp->ring, obj_table, n) < 0)
rte_panic("cannot put objects in mempool\n");
}
#else
if (is_mp)
rte_ring_mp_enqueue_bulk(mp->ring, obj_table, n);
else
rte_ring_sp_enqueue_bulk(mp->ring, obj_table, n);
#endif
}
/**
* Put several objects back in the mempool (multi-producers safe).
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from the obj_table.
*/
static inline void __attribute__((always_inline))
rte_mempool_mp_put_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned n)
{
__mempool_check_cookies(mp, obj_table, n, 0);
__mempool_put_bulk(mp, obj_table, n, 1);
}
/**
* Put several objects back in the mempool (NOT multi-producers safe).
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from obj_table.
*/
static inline void
rte_mempool_sp_put_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned n)
{
__mempool_check_cookies(mp, obj_table, n, 0);
__mempool_put_bulk(mp, obj_table, n, 0);
}
/**
* Put several objects back in the mempool.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* mempool creation time (see flags).
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the mempool from obj_table.
*/
static inline void __attribute__((always_inline))
rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
unsigned n)
{
__mempool_check_cookies(mp, obj_table, n, 0);
__mempool_put_bulk(mp, obj_table, n, !(mp->flags & MEMPOOL_F_SP_PUT));
}
/**
* Put one object in the mempool (multi-producers safe).
*
* @param mp
* A pointer to the mempool structure.
* @param obj
* A pointer to the object to be added.
*/
static inline void __attribute__((always_inline))
rte_mempool_mp_put(struct rte_mempool *mp, void *obj)
{
rte_mempool_mp_put_bulk(mp, &obj, 1);
}
/**
* Put one object back in the mempool (NOT multi-producers safe).
*
* @param mp
* A pointer to the mempool structure.
* @param obj
* A pointer to the object to be added.
*/
static inline void __attribute__((always_inline))
rte_mempool_sp_put(struct rte_mempool *mp, void *obj)
{
rte_mempool_sp_put_bulk(mp, &obj, 1);
}
/**
* Put one object back in the mempool.
*
* This function calls the multi-producer or the single-producer
* version depending on the default behavior that was specified at
* mempool creation time (see flags).
*
* @param mp
* A pointer to the mempool structure.
* @param obj
* A pointer to the object to be added.
*/
static inline void __attribute__((always_inline))
rte_mempool_put(struct rte_mempool *mp, void *obj)
{
rte_mempool_put_bulk(mp, &obj, 1);
}
/**
* @internal Get several objects from the mempool; used internally.
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to get, must be strictly positive.
* @param is_mc
* Mono-consumer (0) or multi-consumers (1).
* @return
* - >=0: Success; number of objects supplied.
* - <0: Error; code of ring dequeue function.
*/
static inline int __attribute__((always_inline))
__mempool_get_bulk(struct rte_mempool *mp, void **obj_table,
unsigned n, int is_mc)
{
int ret;
#if RTE_MEMPOOL_CACHE_MAX_SIZE > 0
struct rte_mempool_cache *cache;
uint32_t index, len;
void **cache_objs;
unsigned lcore_id = rte_lcore_id();
uint32_t cache_size = mp->cache_size;
/* cache is not enabled or single consumer */
if (unlikely(cache_size == 0 || is_mc == 0 ||
n >= cache_size || lcore_id >= RTE_MAX_LCORE))
goto ring_dequeue;
cache = &mp->local_cache[lcore_id];
cache_objs = cache->objs;
/* Can this be satisfied from the cache? */
if (cache->len < n) {
/* No. Backfill the cache first, and then fill from it */
uint32_t req = n + (cache_size - cache->len);
/* How many do we require i.e. number to fill the cache + the request */
ret = rte_ring_mc_dequeue_bulk(mp->ring, &cache->objs[cache->len], req);
if (unlikely(ret < 0)) {
/*
* In the offchance that we are buffer constrained,
* where we are not able to allocate cache + n, go to
* the ring directly. If that fails, we are truly out of
* buffers.
*/
goto ring_dequeue;
}
cache->len += req;
}
/* Now fill in the response ... */
for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
*obj_table = cache_objs[len];
cache->len -= n;
__MEMPOOL_STAT_ADD(mp, get_success, n);
return 0;
ring_dequeue:
#endif /* RTE_MEMPOOL_CACHE_MAX_SIZE > 0 */
/* get remaining objects from ring */
if (is_mc)
ret = rte_ring_mc_dequeue_bulk(mp->ring, obj_table, n);
else
ret = rte_ring_sc_dequeue_bulk(mp->ring, obj_table, n);
if (ret < 0)
__MEMPOOL_STAT_ADD(mp, get_fail, n);
else
__MEMPOOL_STAT_ADD(mp, get_success, n);
return ret;
}
/**
* Get several objects from the mempool (multi-consumers safe).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from mempool to obj_table.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static inline int __attribute__((always_inline))
rte_mempool_mc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n)
{
int ret;
ret = __mempool_get_bulk(mp, obj_table, n, 1);
if (ret == 0)
__mempool_check_cookies(mp, obj_table, n, 1);
return ret;
}
/**
* Get several objects from the mempool (NOT multi-consumers safe).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from the mempool to obj_table.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is
* retrieved.
*/
static inline int __attribute__((always_inline))
rte_mempool_sc_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n)
{
int ret;
ret = __mempool_get_bulk(mp, obj_table, n, 0);
if (ret == 0)
__mempool_check_cookies(mp, obj_table, n, 1);
return ret;
}
/**
* Get several objects from the mempool.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behaviour that was specified at
* mempool creation time (see flags).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to get from the mempool to obj_table.
* @return
* - 0: Success; objects taken
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static inline int __attribute__((always_inline))
rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned n)
{
int ret;
ret = __mempool_get_bulk(mp, obj_table, n,
!(mp->flags & MEMPOOL_F_SC_GET));
if (ret == 0)
__mempool_check_cookies(mp, obj_table, n, 1);
return ret;
}
/**
* Get one object from the mempool (multi-consumers safe).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_p
* A pointer to a void * pointer (object) that will be filled.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static inline int __attribute__((always_inline))
rte_mempool_mc_get(struct rte_mempool *mp, void **obj_p)
{
return rte_mempool_mc_get_bulk(mp, obj_p, 1);
}
/**
* Get one object from the mempool (NOT multi-consumers safe).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_p
* A pointer to a void * pointer (object) that will be filled.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static inline int __attribute__((always_inline))
rte_mempool_sc_get(struct rte_mempool *mp, void **obj_p)
{
return rte_mempool_sc_get_bulk(mp, obj_p, 1);
}
/**
* Get one object from the mempool.
*
* This function calls the multi-consumers or the single-consumer
* version, depending on the default behavior that was specified at
* mempool creation (see flags).
*
* If cache is enabled, objects will be retrieved first from cache,
* subsequently from the common pool. Note that it can return -ENOENT when
* the local cache and common pool are empty, even if cache from other
* lcores are full.
*
* @param mp
* A pointer to the mempool structure.
* @param obj_p
* A pointer to a void * pointer (object) that will be filled.
* @return
* - 0: Success; objects taken.
* - -ENOENT: Not enough entries in the mempool; no object is retrieved.
*/
static inline int __attribute__((always_inline))
rte_mempool_get(struct rte_mempool *mp, void **obj_p)
{
return rte_mempool_get_bulk(mp, obj_p, 1);
}
/**
* Return the number of entries in the mempool.
*
* When cache is enabled, this function has to browse the length of
* all lcores, so it should not be used in a data path, but only for
* debug purposes.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of entries in the mempool.
*/
unsigned rte_mempool_count(const struct rte_mempool *mp);
/**
* Return the number of free entries in the mempool ring.
* i.e. how many entries can be freed back to the mempool.
*
* NOTE: This corresponds to the number of elements *allocated* from the
* memory pool, not the number of elements in the pool itself. To count
* the number elements currently available in the pool, use "rte_mempool_count"
*
* When cache is enabled, this function has to browse the length of
* all lcores, so it should not be used in a data path, but only for
* debug purposes.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The number of free entries in the mempool.
*/
static inline unsigned
rte_mempool_free_count(const struct rte_mempool *mp)
{
return mp->size - rte_mempool_count(mp);
}
/**
* Test if the mempool is full.
*
* When cache is enabled, this function has to browse the length of all
* lcores, so it should not be used in a data path, but only for debug
* purposes.
*
* @param mp
* A pointer to the mempool structure.
* @return
* - 1: The mempool is full.
* - 0: The mempool is not full.
*/
static inline int
rte_mempool_full(const struct rte_mempool *mp)
{
return !!(rte_mempool_count(mp) == mp->size);
}
/**
* Test if the mempool is empty.
*
* When cache is enabled, this function has to browse the length of all
* lcores, so it should not be used in a data path, but only for debug
* purposes.
*
* @param mp
* A pointer to the mempool structure.
* @return
* - 1: The mempool is empty.
* - 0: The mempool is not empty.
*/
static inline int
rte_mempool_empty(const struct rte_mempool *mp)
{
return !!(rte_mempool_count(mp) == 0);
}
/**
* Return the physical address of elt, which is an element of the pool mp.
*
* @param mp
* A pointer to the mempool structure.
* @param elt
* A pointer (virtual address) to the element of the pool.
* @return
* The physical address of the elt element.
*/
static inline phys_addr_t
rte_mempool_virt2phy(const struct rte_mempool *mp, const void *elt)
{
if (rte_eal_has_hugepages()) {
uintptr_t off;
off = (const char *)elt - (const char *)mp->elt_va_start;
return (mp->elt_pa[off >> mp->pg_shift] + (off & mp->pg_mask));
} else {
/*
* If huge pages are disabled, we cannot assume the
* memory region to be physically contiguous.
* Lookup for each element.
*/
return rte_mem_virt2phy(elt);
}
}
/**
* Check the consistency of mempool objects.
*
* Verify the coherency of fields in the mempool structure. Also check
* that the cookies of mempool objects (even the ones that are not
* present in pool) have a correct value. If not, a panic will occur.
*
* @param mp
* A pointer to the mempool structure.
*/
void rte_mempool_audit(const struct rte_mempool *mp);
/**
* Return a pointer to the private data in an mempool structure.
*
* @param mp
* A pointer to the mempool structure.
* @return
* A pointer to the private data.
*/
static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
{
return (char *)mp + MEMPOOL_HEADER_SIZE(mp, mp->pg_num);
}
/**
* Dump the status of all mempools on the console
*
* @param f
* A pointer to a file for output
*/
void rte_mempool_list_dump(FILE *f);
/**
* Search a mempool from its name
*
* @param name
* The name of the mempool.
* @return
* The pointer to the mempool matching the name, or NULL if not found.
* NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - ENOENT - required entry not available to return.
*
*/
struct rte_mempool *rte_mempool_lookup(const char *name);
/**
* Given a desired size of the mempool element and mempool flags,
* caluclates header, trailer, body and total sizes of the mempool object.
* @param elt_size
* The size of each element.
* @param flags
* The flags used for the mempool creation.
* Consult rte_mempool_create() for more information about possible values.
* The size of each element.
* @return
* Total size of the mempool object.
*/
uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
struct rte_mempool_objsz *sz);
/**
* Calculate maximum amount of memory required to store given number of objects.
* Assumes that the memory buffer will be aligned at page boundary.
* Note, that if object size is bigger then page size, then it assumes that
* we have a subsets of physically continuous pages big enough to store
* at least one object.
* @param elt_num
* Number of elements.
* @param elt_sz
* The size of each element.
* @param pg_shift
* LOG2 of the physical pages size.
* @return
* Required memory size aligned at page boundary.
*/
size_t rte_mempool_xmem_size(uint32_t elt_num, size_t elt_sz,
uint32_t pg_shift);
/**
* Calculate how much memory would be actually required with the given
* memory footprint to store required number of objects.
* @param vaddr
* Virtual address of the externally allocated memory buffer.
* Will be used to store mempool objects.
* @param elt_num
* Number of elements.
* @param elt_sz
* The size of each element.
* @param paddr
* Array of phyiscall addresses of the pages that comprises given memory
* buffer.
* @param pg_num
* Number of elements in the paddr array.
* @param pg_shift
* LOG2 of the physical pages size.
* @return
* Number of bytes needed to store given number of objects,
* aligned to the given page size.
* If provided memory buffer is not big enough:
* (-1) * actual number of elemnts that can be stored in that buffer.
*/
ssize_t rte_mempool_xmem_usage(void *vaddr, uint32_t elt_num, size_t elt_sz,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift);
/**
* Walk list of all memory pools
*
* @param func
* Iterator function
* @param arg
* Argument passed to iterator
*/
void rte_mempool_walk(void (*func)(const struct rte_mempool *, void *arg),
void *arg);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MEMPOOL_H_ */