numam-dpdk/drivers/net/enic/enic_ethdev.c
John Daley 61c7b522d9 net/enic: enable GENEVE offload via VNIC configuration
The admin-configured vNIC settings (i.e. via CIMC or UCSM) now include
Geneve offload. Use that setting to decide whether to enable or
disable Geneve offload and remove the devarg 'geneve-opt'.

Also, the firmware now allows the driver to change the Geneve port
number. So extend udp_tunnel_port_{add,del} to accept Geneve port, in
addition to VXLAN.

Fixes: 93fb21fdbe ("net/enic: enable overlay offload for VXLAN and GENEVE")
Cc: stable@dpdk.org

Signed-off-by: John Daley <johndale@cisco.com>
Reviewed-by: Hyong Youb Kim <hyonkim@cisco.com>
2021-05-11 23:52:26 +02:00

1403 lines
38 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include <stdio.h>
#include <stdint.h>
#include <rte_dev.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_geneve.h>
#include <rte_kvargs.h>
#include <rte_string_fns.h>
#include "vnic_intr.h"
#include "vnic_cq.h"
#include "vnic_wq.h"
#include "vnic_rq.h"
#include "vnic_enet.h"
#include "enic.h"
/*
* The set of PCI devices this driver supports
*/
#define CISCO_PCI_VENDOR_ID 0x1137
static const struct rte_pci_id pci_id_enic_map[] = {
{RTE_PCI_DEVICE(CISCO_PCI_VENDOR_ID, PCI_DEVICE_ID_CISCO_VIC_ENET)},
{RTE_PCI_DEVICE(CISCO_PCI_VENDOR_ID, PCI_DEVICE_ID_CISCO_VIC_ENET_VF)},
{RTE_PCI_DEVICE(CISCO_PCI_VENDOR_ID, PCI_DEVICE_ID_CISCO_VIC_ENET_SN)},
{.vendor_id = 0, /* sentinel */},
};
/* Supported link speeds of production VIC models */
static const struct vic_speed_capa {
uint16_t sub_devid;
uint32_t capa;
} vic_speed_capa_map[] = {
{ 0x0043, ETH_LINK_SPEED_10G }, /* VIC */
{ 0x0047, ETH_LINK_SPEED_10G }, /* P81E PCIe */
{ 0x0048, ETH_LINK_SPEED_10G }, /* M81KR Mezz */
{ 0x004f, ETH_LINK_SPEED_10G }, /* 1280 Mezz */
{ 0x0084, ETH_LINK_SPEED_10G }, /* 1240 MLOM */
{ 0x0085, ETH_LINK_SPEED_10G }, /* 1225 PCIe */
{ 0x00cd, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1285 PCIe */
{ 0x00ce, ETH_LINK_SPEED_10G }, /* 1225T PCIe */
{ 0x012a, ETH_LINK_SPEED_40G }, /* M4308 */
{ 0x012c, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1340 MLOM */
{ 0x012e, ETH_LINK_SPEED_10G }, /* 1227 PCIe */
{ 0x0137, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1380 Mezz */
{ 0x014d, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1385 PCIe */
{ 0x015d, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_40G }, /* 1387 MLOM */
{ 0x0215, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G |
ETH_LINK_SPEED_40G }, /* 1440 Mezz */
{ 0x0216, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G |
ETH_LINK_SPEED_40G }, /* 1480 MLOM */
{ 0x0217, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G }, /* 1455 PCIe */
{ 0x0218, ETH_LINK_SPEED_10G | ETH_LINK_SPEED_25G }, /* 1457 MLOM */
{ 0x0219, ETH_LINK_SPEED_40G }, /* 1485 PCIe */
{ 0x021a, ETH_LINK_SPEED_40G }, /* 1487 MLOM */
{ 0x024a, ETH_LINK_SPEED_40G | ETH_LINK_SPEED_100G }, /* 1495 PCIe */
{ 0x024b, ETH_LINK_SPEED_40G | ETH_LINK_SPEED_100G }, /* 1497 MLOM */
{ 0, 0 }, /* End marker */
};
#define ENIC_DEVARG_CQ64 "cq64"
#define ENIC_DEVARG_DISABLE_OVERLAY "disable-overlay"
#define ENIC_DEVARG_ENABLE_AVX2_RX "enable-avx2-rx"
#define ENIC_DEVARG_IG_VLAN_REWRITE "ig-vlan-rewrite"
#define ENIC_DEVARG_REPRESENTOR "representor"
RTE_LOG_REGISTER_DEFAULT(enic_pmd_logtype, INFO);
static int
enicpmd_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
if (enic->flow_filter_mode == FILTER_FLOWMAN)
*ops = &enic_fm_flow_ops;
else
*ops = &enic_flow_ops;
return 0;
}
static void enicpmd_dev_tx_queue_release(void *txq)
{
ENICPMD_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
enic_free_wq(txq);
}
static int enicpmd_dev_setup_intr(struct enic *enic)
{
int ret;
unsigned int index;
ENICPMD_FUNC_TRACE();
/* Are we done with the init of all the queues? */
for (index = 0; index < enic->cq_count; index++) {
if (!enic->cq[index].ctrl)
break;
}
if (enic->cq_count != index)
return 0;
for (index = 0; index < enic->wq_count; index++) {
if (!enic->wq[index].ctrl)
break;
}
if (enic->wq_count != index)
return 0;
/* check start of packet (SOP) RQs only in case scatter is disabled. */
for (index = 0; index < enic->rq_count; index++) {
if (!enic->rq[enic_rte_rq_idx_to_sop_idx(index)].ctrl)
break;
}
if (enic->rq_count != index)
return 0;
ret = enic_alloc_intr_resources(enic);
if (ret) {
dev_err(enic, "alloc intr failed\n");
return ret;
}
enic_init_vnic_resources(enic);
ret = enic_setup_finish(enic);
if (ret)
dev_err(enic, "setup could not be finished\n");
return ret;
}
static int enicpmd_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
int ret;
struct enic *enic = pmd_priv(eth_dev);
struct vnic_wq *wq;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
RTE_ASSERT(queue_idx < enic->conf_wq_count);
wq = &enic->wq[queue_idx];
wq->offloads = tx_conf->offloads |
eth_dev->data->dev_conf.txmode.offloads;
eth_dev->data->tx_queues[queue_idx] = (void *)wq;
ret = enic_alloc_wq(enic, queue_idx, socket_id, nb_desc);
if (ret) {
dev_err(enic, "error in allocating wq\n");
return ret;
}
return enicpmd_dev_setup_intr(enic);
}
static int enicpmd_dev_tx_queue_start(struct rte_eth_dev *eth_dev,
uint16_t queue_idx)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
enic_start_wq(enic, queue_idx);
return 0;
}
static int enicpmd_dev_tx_queue_stop(struct rte_eth_dev *eth_dev,
uint16_t queue_idx)
{
int ret;
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
ret = enic_stop_wq(enic, queue_idx);
if (ret)
dev_err(enic, "error in stopping wq %d\n", queue_idx);
return ret;
}
static int enicpmd_dev_rx_queue_start(struct rte_eth_dev *eth_dev,
uint16_t queue_idx)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
enic_start_rq(enic, queue_idx);
return 0;
}
static int enicpmd_dev_rx_queue_stop(struct rte_eth_dev *eth_dev,
uint16_t queue_idx)
{
int ret;
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
ret = enic_stop_rq(enic, queue_idx);
if (ret)
dev_err(enic, "error in stopping rq %d\n", queue_idx);
return ret;
}
static void enicpmd_dev_rx_queue_release(void *rxq)
{
ENICPMD_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
enic_free_rq(rxq);
}
static uint32_t enicpmd_dev_rx_queue_count(struct rte_eth_dev *dev,
uint16_t rx_queue_id)
{
struct enic *enic = pmd_priv(dev);
uint32_t queue_count = 0;
struct vnic_cq *cq;
uint32_t cq_tail;
uint16_t cq_idx;
int rq_num;
rq_num = enic_rte_rq_idx_to_sop_idx(rx_queue_id);
cq = &enic->cq[enic_cq_rq(enic, rq_num)];
cq_idx = cq->to_clean;
cq_tail = ioread32(&cq->ctrl->cq_tail);
if (cq_tail < cq_idx)
cq_tail += cq->ring.desc_count;
queue_count = cq_tail - cq_idx;
return queue_count;
}
static int enicpmd_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
int ret;
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
RTE_ASSERT(enic_rte_rq_idx_to_sop_idx(queue_idx) < enic->conf_rq_count);
eth_dev->data->rx_queues[queue_idx] =
(void *)&enic->rq[enic_rte_rq_idx_to_sop_idx(queue_idx)];
ret = enic_alloc_rq(enic, queue_idx, socket_id, mp, nb_desc,
rx_conf->rx_free_thresh);
if (ret) {
dev_err(enic, "error in allocating rq\n");
return ret;
}
return enicpmd_dev_setup_intr(enic);
}
static int enicpmd_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
{
struct enic *enic = pmd_priv(eth_dev);
uint64_t offloads;
ENICPMD_FUNC_TRACE();
offloads = eth_dev->data->dev_conf.rxmode.offloads;
if (mask & ETH_VLAN_STRIP_MASK) {
if (offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
enic->ig_vlan_strip_en = 1;
else
enic->ig_vlan_strip_en = 0;
}
return enic_set_vlan_strip(enic);
}
static int enicpmd_dev_configure(struct rte_eth_dev *eth_dev)
{
int ret;
int mask;
struct enic *enic = pmd_priv(eth_dev);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
ret = enic_set_vnic_res(enic);
if (ret) {
dev_err(enic, "Set vNIC resource num failed, aborting\n");
return ret;
}
if (eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
eth_dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_RSS_HASH;
enic->mc_count = 0;
enic->hw_ip_checksum = !!(eth_dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_CHECKSUM);
/* All vlan offload masks to apply the current settings */
mask = ETH_VLAN_STRIP_MASK |
ETH_VLAN_FILTER_MASK |
ETH_VLAN_EXTEND_MASK;
ret = enicpmd_vlan_offload_set(eth_dev, mask);
if (ret) {
dev_err(enic, "Failed to configure VLAN offloads\n");
return ret;
}
/*
* Initialize RSS with the default reta and key. If the user key is
* given (rx_adv_conf.rss_conf.rss_key), will use that instead of the
* default key.
*/
return enic_init_rss_nic_cfg(enic);
}
/* Start the device.
* It returns 0 on success.
*/
static int enicpmd_dev_start(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
return enic_enable(enic);
}
/*
* Stop device: disable rx and tx functions to allow for reconfiguring.
*/
static int enicpmd_dev_stop(struct rte_eth_dev *eth_dev)
{
struct rte_eth_link link;
struct enic *enic = pmd_priv(eth_dev);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
ENICPMD_FUNC_TRACE();
enic_disable(enic);
memset(&link, 0, sizeof(link));
rte_eth_linkstatus_set(eth_dev, &link);
return 0;
}
/*
* Stop device.
*/
static int enicpmd_dev_close(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
enic_remove(enic);
return 0;
}
static int enicpmd_dev_link_update(struct rte_eth_dev *eth_dev,
__rte_unused int wait_to_complete)
{
ENICPMD_FUNC_TRACE();
return enic_link_update(eth_dev);
}
static int enicpmd_dev_stats_get(struct rte_eth_dev *eth_dev,
struct rte_eth_stats *stats)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
return enic_dev_stats_get(enic, stats);
}
static int enicpmd_dev_stats_reset(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
return enic_dev_stats_clear(enic);
}
static uint32_t speed_capa_from_pci_id(struct rte_eth_dev *eth_dev)
{
const struct vic_speed_capa *m;
struct rte_pci_device *pdev;
uint16_t id;
pdev = RTE_ETH_DEV_TO_PCI(eth_dev);
id = pdev->id.subsystem_device_id;
for (m = vic_speed_capa_map; m->sub_devid != 0; m++) {
if (m->sub_devid == id)
return m->capa;
}
/* 1300 and later models are at least 40G */
if (id >= 0x0100)
return ETH_LINK_SPEED_40G;
/* VFs have subsystem id 0, check device id */
if (id == 0) {
/* Newer VF implies at least 40G model */
if (pdev->id.device_id == PCI_DEVICE_ID_CISCO_VIC_ENET_SN)
return ETH_LINK_SPEED_40G;
}
return ETH_LINK_SPEED_10G;
}
static int enicpmd_dev_info_get(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *device_info)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
/* Scattered Rx uses two receive queues per rx queue exposed to dpdk */
device_info->max_rx_queues = enic->conf_rq_count / 2;
device_info->max_tx_queues = enic->conf_wq_count;
device_info->min_rx_bufsize = ENIC_MIN_MTU;
/* "Max" mtu is not a typo. HW receives packet sizes up to the
* max mtu regardless of the current mtu (vNIC's mtu). vNIC mtu is
* a hint to the driver to size receive buffers accordingly so that
* larger-than-vnic-mtu packets get truncated.. For DPDK, we let
* the user decide the buffer size via rxmode.max_rx_pkt_len, basically
* ignoring vNIC mtu.
*/
device_info->max_rx_pktlen = enic_mtu_to_max_rx_pktlen(enic->max_mtu);
device_info->max_mac_addrs = ENIC_UNICAST_PERFECT_FILTERS;
device_info->min_mtu = ENIC_MIN_MTU;
device_info->max_mtu = enic->max_mtu;
device_info->rx_offload_capa = enic->rx_offload_capa;
device_info->tx_offload_capa = enic->tx_offload_capa;
device_info->tx_queue_offload_capa = enic->tx_queue_offload_capa;
device_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = ENIC_DEFAULT_RX_FREE_THRESH
};
device_info->reta_size = enic->reta_size;
device_info->hash_key_size = enic->hash_key_size;
device_info->flow_type_rss_offloads = enic->flow_type_rss_offloads;
device_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = enic->config.rq_desc_count,
.nb_min = ENIC_MIN_RQ_DESCS,
.nb_align = ENIC_ALIGN_DESCS,
};
device_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = enic->config.wq_desc_count,
.nb_min = ENIC_MIN_WQ_DESCS,
.nb_align = ENIC_ALIGN_DESCS,
.nb_seg_max = ENIC_TX_XMIT_MAX,
.nb_mtu_seg_max = ENIC_NON_TSO_MAX_DESC,
};
device_info->default_rxportconf = (struct rte_eth_dev_portconf) {
.burst_size = ENIC_DEFAULT_RX_BURST,
.ring_size = RTE_MIN(device_info->rx_desc_lim.nb_max,
ENIC_DEFAULT_RX_RING_SIZE),
.nb_queues = ENIC_DEFAULT_RX_RINGS,
};
device_info->default_txportconf = (struct rte_eth_dev_portconf) {
.burst_size = ENIC_DEFAULT_TX_BURST,
.ring_size = RTE_MIN(device_info->tx_desc_lim.nb_max,
ENIC_DEFAULT_TX_RING_SIZE),
.nb_queues = ENIC_DEFAULT_TX_RINGS,
};
device_info->speed_capa = speed_capa_from_pci_id(eth_dev);
return 0;
}
static const uint32_t *enicpmd_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_UNKNOWN
};
static const uint32_t ptypes_overlay[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_TUNNEL_GRENAT,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_INNER_L4_NONFRAG,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst != enic_dummy_recv_pkts &&
dev->rx_pkt_burst != NULL) {
struct enic *enic = pmd_priv(dev);
if (enic->overlay_offload)
return ptypes_overlay;
else
return ptypes;
}
return NULL;
}
static int enicpmd_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
enic->promisc = 1;
ret = enic_add_packet_filter(enic);
if (ret != 0)
enic->promisc = 0;
return ret;
}
static int enicpmd_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
enic->promisc = 0;
ret = enic_add_packet_filter(enic);
if (ret != 0)
enic->promisc = 1;
return ret;
}
static int enicpmd_dev_allmulticast_enable(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
enic->allmulti = 1;
ret = enic_add_packet_filter(enic);
if (ret != 0)
enic->allmulti = 0;
return ret;
}
static int enicpmd_dev_allmulticast_disable(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
enic->allmulti = 0;
ret = enic_add_packet_filter(enic);
if (ret != 0)
enic->allmulti = 1;
return ret;
}
static int enicpmd_add_mac_addr(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *mac_addr,
__rte_unused uint32_t index, __rte_unused uint32_t pool)
{
struct enic *enic = pmd_priv(eth_dev);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
return enic_set_mac_address(enic, mac_addr->addr_bytes);
}
static void enicpmd_remove_mac_addr(struct rte_eth_dev *eth_dev, uint32_t index)
{
struct enic *enic = pmd_priv(eth_dev);
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
ENICPMD_FUNC_TRACE();
if (enic_del_mac_address(enic, index))
dev_err(enic, "del mac addr failed\n");
}
static int enicpmd_set_mac_addr(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *addr)
{
struct enic *enic = pmd_priv(eth_dev);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
ENICPMD_FUNC_TRACE();
ret = enic_del_mac_address(enic, 0);
if (ret)
return ret;
return enic_set_mac_address(enic, addr->addr_bytes);
}
static void debug_log_add_del_addr(struct rte_ether_addr *addr, bool add)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr);
ENICPMD_LOG(DEBUG, " %s address %s\n",
add ? "add" : "remove", mac_str);
}
static int enicpmd_set_mc_addr_list(struct rte_eth_dev *eth_dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct enic *enic = pmd_priv(eth_dev);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
uint32_t i, j;
int ret;
ENICPMD_FUNC_TRACE();
/* Validate the given addresses first */
for (i = 0; i < nb_mc_addr && mc_addr_set != NULL; i++) {
addr = &mc_addr_set[i];
if (!rte_is_multicast_ether_addr(addr) ||
rte_is_broadcast_ether_addr(addr)) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE, addr);
ENICPMD_LOG(ERR, " invalid multicast address %s\n",
mac_str);
return -EINVAL;
}
}
/* Flush all if requested */
if (nb_mc_addr == 0 || mc_addr_set == NULL) {
ENICPMD_LOG(DEBUG, " flush multicast addresses\n");
for (i = 0; i < enic->mc_count; i++) {
addr = &enic->mc_addrs[i];
debug_log_add_del_addr(addr, false);
ret = vnic_dev_del_addr(enic->vdev, addr->addr_bytes);
if (ret)
return ret;
}
enic->mc_count = 0;
return 0;
}
if (nb_mc_addr > ENIC_MULTICAST_PERFECT_FILTERS) {
ENICPMD_LOG(ERR, " too many multicast addresses: max=%d\n",
ENIC_MULTICAST_PERFECT_FILTERS);
return -ENOSPC;
}
/*
* devcmd is slow, so apply the difference instead of flushing and
* adding everything.
* 1. Delete addresses on the NIC but not on the host
*/
for (i = 0; i < enic->mc_count; i++) {
addr = &enic->mc_addrs[i];
for (j = 0; j < nb_mc_addr; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j]))
break;
}
if (j < nb_mc_addr)
continue;
debug_log_add_del_addr(addr, false);
ret = vnic_dev_del_addr(enic->vdev, addr->addr_bytes);
if (ret)
return ret;
}
/* 2. Add addresses on the host but not on the NIC */
for (i = 0; i < nb_mc_addr; i++) {
addr = &mc_addr_set[i];
for (j = 0; j < enic->mc_count; j++) {
if (rte_is_same_ether_addr(addr, &enic->mc_addrs[j]))
break;
}
if (j < enic->mc_count)
continue;
debug_log_add_del_addr(addr, true);
ret = vnic_dev_add_addr(enic->vdev, addr->addr_bytes);
if (ret)
return ret;
}
/* Keep a copy so we can flush/apply later on.. */
memcpy(enic->mc_addrs, mc_addr_set,
nb_mc_addr * sizeof(struct rte_ether_addr));
enic->mc_count = nb_mc_addr;
return 0;
}
static int enicpmd_mtu_set(struct rte_eth_dev *eth_dev, uint16_t mtu)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
return enic_set_mtu(enic, mtu);
}
static int enicpmd_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64
*reta_conf,
uint16_t reta_size)
{
struct enic *enic = pmd_priv(dev);
uint16_t i, idx, shift;
ENICPMD_FUNC_TRACE();
if (reta_size != ENIC_RSS_RETA_SIZE) {
dev_err(enic, "reta_query: wrong reta_size. given=%u expected=%u\n",
reta_size, ENIC_RSS_RETA_SIZE);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = enic_sop_rq_idx_to_rte_idx(
enic->rss_cpu.cpu[i / 4].b[i % 4]);
}
return 0;
}
static int enicpmd_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64
*reta_conf,
uint16_t reta_size)
{
struct enic *enic = pmd_priv(dev);
union vnic_rss_cpu rss_cpu;
uint16_t i, idx, shift;
ENICPMD_FUNC_TRACE();
if (reta_size != ENIC_RSS_RETA_SIZE) {
dev_err(enic, "reta_update: wrong reta_size. given=%u"
" expected=%u\n",
reta_size, ENIC_RSS_RETA_SIZE);
return -EINVAL;
}
/*
* Start with the current reta and modify it per reta_conf, as we
* need to push the entire reta even if we only modify one entry.
*/
rss_cpu = enic->rss_cpu;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
rss_cpu.cpu[i / 4].b[i % 4] =
enic_rte_rq_idx_to_sop_idx(
reta_conf[idx].reta[shift]);
}
return enic_set_rss_reta(enic, &rss_cpu);
}
static int enicpmd_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
return enic_set_rss_conf(enic, rss_conf);
}
static int enicpmd_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct enic *enic = pmd_priv(dev);
ENICPMD_FUNC_TRACE();
if (rss_conf == NULL)
return -EINVAL;
if (rss_conf->rss_key != NULL &&
rss_conf->rss_key_len < ENIC_RSS_HASH_KEY_SIZE) {
dev_err(enic, "rss_hash_conf_get: wrong rss_key_len. given=%u"
" expected=%u+\n",
rss_conf->rss_key_len, ENIC_RSS_HASH_KEY_SIZE);
return -EINVAL;
}
rss_conf->rss_hf = enic->rss_hf;
if (rss_conf->rss_key != NULL) {
int i;
for (i = 0; i < ENIC_RSS_HASH_KEY_SIZE; i++) {
rss_conf->rss_key[i] =
enic->rss_key.key[i / 10].b[i % 10];
}
rss_conf->rss_key_len = ENIC_RSS_HASH_KEY_SIZE;
}
return 0;
}
static void enicpmd_dev_rxq_info_get(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct enic *enic = pmd_priv(dev);
struct vnic_rq *rq_sop;
struct vnic_rq *rq_data;
struct rte_eth_rxconf *conf;
uint16_t sop_queue_idx;
uint16_t data_queue_idx;
ENICPMD_FUNC_TRACE();
sop_queue_idx = enic_rte_rq_idx_to_sop_idx(rx_queue_id);
data_queue_idx = enic_rte_rq_idx_to_data_idx(rx_queue_id, enic);
rq_sop = &enic->rq[sop_queue_idx];
rq_data = &enic->rq[data_queue_idx]; /* valid if data_queue_enable */
qinfo->mp = rq_sop->mp;
qinfo->scattered_rx = rq_sop->data_queue_enable;
qinfo->nb_desc = rq_sop->ring.desc_count;
if (qinfo->scattered_rx)
qinfo->nb_desc += rq_data->ring.desc_count;
conf = &qinfo->conf;
memset(conf, 0, sizeof(*conf));
conf->rx_free_thresh = rq_sop->rx_free_thresh;
conf->rx_drop_en = 1;
/*
* Except VLAN stripping (port setting), all the checksum offloads
* are always enabled.
*/
conf->offloads = enic->rx_offload_capa;
if (!enic->ig_vlan_strip_en)
conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
/* rx_thresh and other fields are not applicable for enic */
}
static void enicpmd_dev_txq_info_get(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
struct rte_eth_txq_info *qinfo)
{
struct enic *enic = pmd_priv(dev);
struct vnic_wq *wq = &enic->wq[tx_queue_id];
ENICPMD_FUNC_TRACE();
qinfo->nb_desc = wq->ring.desc_count;
memset(&qinfo->conf, 0, sizeof(qinfo->conf));
qinfo->conf.offloads = wq->offloads;
/* tx_thresh, and all the other fields are not applicable for enic */
}
static int enicpmd_dev_rx_burst_mode_get(struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
struct enic *enic = pmd_priv(dev);
const char *info_str = NULL;
int ret = -EINVAL;
ENICPMD_FUNC_TRACE();
if (enic->use_noscatter_vec_rx_handler)
info_str = "Vector AVX2 No Scatter";
else if (pkt_burst == enic_noscatter_recv_pkts)
info_str = "Scalar No Scatter";
else if (pkt_burst == enic_recv_pkts)
info_str = "Scalar";
else if (pkt_burst == enic_recv_pkts_64)
info_str = "Scalar 64B Completion";
if (info_str) {
strlcpy(mode->info, info_str, sizeof(mode->info));
ret = 0;
}
return ret;
}
static int enicpmd_dev_tx_burst_mode_get(struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
const char *info_str = NULL;
int ret = -EINVAL;
ENICPMD_FUNC_TRACE();
if (pkt_burst == enic_simple_xmit_pkts)
info_str = "Scalar Simplified";
else if (pkt_burst == enic_xmit_pkts)
info_str = "Scalar";
if (info_str) {
strlcpy(mode->info, info_str, sizeof(mode->info));
ret = 0;
}
return ret;
}
static int enicpmd_dev_rx_queue_intr_enable(struct rte_eth_dev *eth_dev,
uint16_t rx_queue_id)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
vnic_intr_unmask(&enic->intr[rx_queue_id + ENICPMD_RXQ_INTR_OFFSET]);
return 0;
}
static int enicpmd_dev_rx_queue_intr_disable(struct rte_eth_dev *eth_dev,
uint16_t rx_queue_id)
{
struct enic *enic = pmd_priv(eth_dev);
ENICPMD_FUNC_TRACE();
vnic_intr_mask(&enic->intr[rx_queue_id + ENICPMD_RXQ_INTR_OFFSET]);
return 0;
}
static int udp_tunnel_common_check(struct enic *enic,
struct rte_eth_udp_tunnel *tnl)
{
if (tnl->prot_type != RTE_TUNNEL_TYPE_VXLAN &&
tnl->prot_type != RTE_TUNNEL_TYPE_GENEVE)
return -ENOTSUP;
if (!enic->overlay_offload) {
ENICPMD_LOG(DEBUG, " overlay offload is not supported\n");
return -ENOTSUP;
}
return 0;
}
static int update_tunnel_port(struct enic *enic, uint16_t port, bool vxlan)
{
uint8_t cfg;
cfg = vxlan ? OVERLAY_CFG_VXLAN_PORT_UPDATE :
OVERLAY_CFG_GENEVE_PORT_UPDATE;
if (vnic_dev_overlay_offload_cfg(enic->vdev, cfg, port)) {
ENICPMD_LOG(DEBUG, " failed to update tunnel port\n");
return -EINVAL;
}
ENICPMD_LOG(DEBUG, " updated %s port to %u\n",
vxlan ? "vxlan" : "geneve", port);
if (vxlan)
enic->vxlan_port = port;
else
enic->geneve_port = port;
return 0;
}
static int enicpmd_dev_udp_tunnel_port_add(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *tnl)
{
struct enic *enic = pmd_priv(eth_dev);
uint16_t port;
bool vxlan;
int ret;
ENICPMD_FUNC_TRACE();
ret = udp_tunnel_common_check(enic, tnl);
if (ret)
return ret;
vxlan = (tnl->prot_type == RTE_TUNNEL_TYPE_VXLAN);
if (vxlan)
port = enic->vxlan_port;
else
port = enic->geneve_port;
/*
* The NIC has 1 configurable port number per tunnel type.
* "Adding" a new port number replaces it.
*/
if (tnl->udp_port == port || tnl->udp_port == 0) {
ENICPMD_LOG(DEBUG, " %u is already configured or invalid\n",
tnl->udp_port);
return -EINVAL;
}
return update_tunnel_port(enic, tnl->udp_port, vxlan);
}
static int enicpmd_dev_udp_tunnel_port_del(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *tnl)
{
struct enic *enic = pmd_priv(eth_dev);
uint16_t port;
bool vxlan;
int ret;
ENICPMD_FUNC_TRACE();
ret = udp_tunnel_common_check(enic, tnl);
if (ret)
return ret;
vxlan = (tnl->prot_type == RTE_TUNNEL_TYPE_VXLAN);
if (vxlan)
port = enic->vxlan_port;
else
port = enic->geneve_port;
/*
* Clear the previously set port number and restore the
* hardware default port number. Some drivers disable VXLAN
* offloads when there are no configured port numbers. But
* enic does not do that as VXLAN is part of overlay offload,
* which is tied to inner RSS and TSO.
*/
if (tnl->udp_port != port) {
ENICPMD_LOG(DEBUG, " %u is not a configured tunnel port\n",
tnl->udp_port);
return -EINVAL;
}
port = vxlan ? RTE_VXLAN_DEFAULT_PORT : RTE_GENEVE_DEFAULT_PORT;
return update_tunnel_port(enic, port, vxlan);
}
static int enicpmd_dev_fw_version_get(struct rte_eth_dev *eth_dev,
char *fw_version, size_t fw_size)
{
struct vnic_devcmd_fw_info *info;
struct enic *enic;
int ret;
ENICPMD_FUNC_TRACE();
enic = pmd_priv(eth_dev);
ret = vnic_dev_fw_info(enic->vdev, &info);
if (ret)
return ret;
ret = snprintf(fw_version, fw_size, "%s %s",
info->fw_version, info->fw_build);
if (ret < 0)
return -EINVAL;
ret += 1; /* add the size of '\0' */
if (fw_size < (size_t)ret)
return ret;
else
return 0;
}
static const struct eth_dev_ops enicpmd_eth_dev_ops = {
.dev_configure = enicpmd_dev_configure,
.dev_start = enicpmd_dev_start,
.dev_stop = enicpmd_dev_stop,
.dev_set_link_up = NULL,
.dev_set_link_down = NULL,
.dev_close = enicpmd_dev_close,
.promiscuous_enable = enicpmd_dev_promiscuous_enable,
.promiscuous_disable = enicpmd_dev_promiscuous_disable,
.allmulticast_enable = enicpmd_dev_allmulticast_enable,
.allmulticast_disable = enicpmd_dev_allmulticast_disable,
.link_update = enicpmd_dev_link_update,
.stats_get = enicpmd_dev_stats_get,
.stats_reset = enicpmd_dev_stats_reset,
.queue_stats_mapping_set = NULL,
.dev_infos_get = enicpmd_dev_info_get,
.dev_supported_ptypes_get = enicpmd_dev_supported_ptypes_get,
.mtu_set = enicpmd_mtu_set,
.vlan_filter_set = NULL,
.vlan_tpid_set = NULL,
.vlan_offload_set = enicpmd_vlan_offload_set,
.vlan_strip_queue_set = NULL,
.rx_queue_start = enicpmd_dev_rx_queue_start,
.rx_queue_stop = enicpmd_dev_rx_queue_stop,
.tx_queue_start = enicpmd_dev_tx_queue_start,
.tx_queue_stop = enicpmd_dev_tx_queue_stop,
.rx_queue_setup = enicpmd_dev_rx_queue_setup,
.rx_queue_release = enicpmd_dev_rx_queue_release,
.tx_queue_setup = enicpmd_dev_tx_queue_setup,
.tx_queue_release = enicpmd_dev_tx_queue_release,
.rx_queue_intr_enable = enicpmd_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = enicpmd_dev_rx_queue_intr_disable,
.rxq_info_get = enicpmd_dev_rxq_info_get,
.txq_info_get = enicpmd_dev_txq_info_get,
.rx_burst_mode_get = enicpmd_dev_rx_burst_mode_get,
.tx_burst_mode_get = enicpmd_dev_tx_burst_mode_get,
.dev_led_on = NULL,
.dev_led_off = NULL,
.flow_ctrl_get = NULL,
.flow_ctrl_set = NULL,
.priority_flow_ctrl_set = NULL,
.mac_addr_add = enicpmd_add_mac_addr,
.mac_addr_remove = enicpmd_remove_mac_addr,
.mac_addr_set = enicpmd_set_mac_addr,
.set_mc_addr_list = enicpmd_set_mc_addr_list,
.flow_ops_get = enicpmd_dev_flow_ops_get,
.reta_query = enicpmd_dev_rss_reta_query,
.reta_update = enicpmd_dev_rss_reta_update,
.rss_hash_conf_get = enicpmd_dev_rss_hash_conf_get,
.rss_hash_update = enicpmd_dev_rss_hash_update,
.udp_tunnel_port_add = enicpmd_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = enicpmd_dev_udp_tunnel_port_del,
.fw_version_get = enicpmd_dev_fw_version_get,
};
static int enic_parse_zero_one(const char *key,
const char *value,
void *opaque)
{
struct enic *enic;
bool b;
enic = (struct enic *)opaque;
if (strcmp(value, "0") == 0) {
b = false;
} else if (strcmp(value, "1") == 0) {
b = true;
} else {
dev_err(enic, "Invalid value for %s"
": expected=0|1 given=%s\n", key, value);
return -EINVAL;
}
if (strcmp(key, ENIC_DEVARG_CQ64) == 0)
enic->cq64_request = b;
if (strcmp(key, ENIC_DEVARG_DISABLE_OVERLAY) == 0)
enic->disable_overlay = b;
if (strcmp(key, ENIC_DEVARG_ENABLE_AVX2_RX) == 0)
enic->enable_avx2_rx = b;
return 0;
}
static int enic_parse_ig_vlan_rewrite(__rte_unused const char *key,
const char *value,
void *opaque)
{
struct enic *enic;
enic = (struct enic *)opaque;
if (strcmp(value, "trunk") == 0) {
/* Trunk mode: always tag */
enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_DEFAULT_TRUNK;
} else if (strcmp(value, "untag") == 0) {
/* Untag default VLAN mode: untag if VLAN = default VLAN */
enic->ig_vlan_rewrite_mode =
IG_VLAN_REWRITE_MODE_UNTAG_DEFAULT_VLAN;
} else if (strcmp(value, "priority") == 0) {
/*
* Priority-tag default VLAN mode: priority tag (VLAN header
* with ID=0) if VLAN = default
*/
enic->ig_vlan_rewrite_mode =
IG_VLAN_REWRITE_MODE_PRIORITY_TAG_DEFAULT_VLAN;
} else if (strcmp(value, "pass") == 0) {
/* Pass through mode: do not touch tags */
enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_PASS_THRU;
} else {
dev_err(enic, "Invalid value for " ENIC_DEVARG_IG_VLAN_REWRITE
": expected=trunk|untag|priority|pass given=%s\n",
value);
return -EINVAL;
}
return 0;
}
static int enic_check_devargs(struct rte_eth_dev *dev)
{
static const char *const valid_keys[] = {
ENIC_DEVARG_CQ64,
ENIC_DEVARG_DISABLE_OVERLAY,
ENIC_DEVARG_ENABLE_AVX2_RX,
ENIC_DEVARG_IG_VLAN_REWRITE,
ENIC_DEVARG_REPRESENTOR,
NULL};
struct enic *enic = pmd_priv(dev);
struct rte_kvargs *kvlist;
ENICPMD_FUNC_TRACE();
enic->cq64_request = true; /* Use 64B entry if available */
enic->disable_overlay = false;
enic->enable_avx2_rx = false;
enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_PASS_THRU;
if (!dev->device->devargs)
return 0;
kvlist = rte_kvargs_parse(dev->device->devargs->args, valid_keys);
if (!kvlist)
return -EINVAL;
if (rte_kvargs_process(kvlist, ENIC_DEVARG_CQ64,
enic_parse_zero_one, enic) < 0 ||
rte_kvargs_process(kvlist, ENIC_DEVARG_DISABLE_OVERLAY,
enic_parse_zero_one, enic) < 0 ||
rte_kvargs_process(kvlist, ENIC_DEVARG_ENABLE_AVX2_RX,
enic_parse_zero_one, enic) < 0 ||
rte_kvargs_process(kvlist, ENIC_DEVARG_IG_VLAN_REWRITE,
enic_parse_ig_vlan_rewrite, enic) < 0) {
rte_kvargs_free(kvlist);
return -EINVAL;
}
rte_kvargs_free(kvlist);
return 0;
}
/* Initialize the driver for PF */
static int eth_enic_dev_init(struct rte_eth_dev *eth_dev,
void *init_params __rte_unused)
{
struct rte_pci_device *pdev;
struct rte_pci_addr *addr;
struct enic *enic = pmd_priv(eth_dev);
int err;
ENICPMD_FUNC_TRACE();
eth_dev->dev_ops = &enicpmd_eth_dev_ops;
eth_dev->rx_queue_count = enicpmd_dev_rx_queue_count;
eth_dev->rx_pkt_burst = &enic_recv_pkts;
eth_dev->tx_pkt_burst = &enic_xmit_pkts;
eth_dev->tx_pkt_prepare = &enic_prep_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
enic_pick_tx_handler(eth_dev);
enic_pick_rx_handler(eth_dev);
return 0;
}
/* Only the primary sets up adapter and other data in shared memory */
enic->port_id = eth_dev->data->port_id;
enic->rte_dev = eth_dev;
enic->dev_data = eth_dev->data;
pdev = RTE_ETH_DEV_TO_PCI(eth_dev);
rte_eth_copy_pci_info(eth_dev, pdev);
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
enic->pdev = pdev;
addr = &pdev->addr;
snprintf(enic->bdf_name, ENICPMD_BDF_LENGTH, "%04x:%02x:%02x.%x",
addr->domain, addr->bus, addr->devid, addr->function);
err = enic_check_devargs(eth_dev);
if (err)
return err;
err = enic_probe(enic);
if (!err && enic->fm) {
err = enic_fm_allocate_switch_domain(enic);
if (err)
ENICPMD_LOG(ERR, "failed to allocate switch domain id");
}
return err;
}
static int eth_enic_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
int err;
ENICPMD_FUNC_TRACE();
eth_dev->device = NULL;
eth_dev->intr_handle = NULL;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
err = rte_eth_switch_domain_free(enic->switch_domain_id);
if (err)
ENICPMD_LOG(WARNING, "failed to free switch domain: %d", err);
return 0;
}
static int eth_enic_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
char name[RTE_ETH_NAME_MAX_LEN];
struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
struct rte_eth_dev *pf_ethdev;
struct enic *pf_enic;
int i, retval;
ENICPMD_FUNC_TRACE();
if (pci_dev->device.devargs) {
retval = rte_eth_devargs_parse(pci_dev->device.devargs->args,
&eth_da);
if (retval)
return retval;
}
if (eth_da.nb_representor_ports > 0 &&
eth_da.type != RTE_ETH_REPRESENTOR_VF) {
ENICPMD_LOG(ERR, "unsupported representor type: %s\n",
pci_dev->device.devargs->args);
return -ENOTSUP;
}
retval = rte_eth_dev_create(&pci_dev->device, pci_dev->device.name,
sizeof(struct enic),
eth_dev_pci_specific_init, pci_dev,
eth_enic_dev_init, NULL);
if (retval || eth_da.nb_representor_ports < 1)
return retval;
/* Probe VF representor */
pf_ethdev = rte_eth_dev_allocated(pci_dev->device.name);
if (pf_ethdev == NULL)
return -ENODEV;
/* Representors require flowman */
pf_enic = pmd_priv(pf_ethdev);
if (pf_enic->fm == NULL) {
ENICPMD_LOG(ERR, "VF representors require flowman");
return -ENOTSUP;
}
/*
* For now representors imply switchdev, as firmware does not support
* legacy mode SR-IOV
*/
pf_enic->switchdev_mode = 1;
/* Calculate max VF ID before initializing representor*/
pf_enic->max_vf_id = 0;
for (i = 0; i < eth_da.nb_representor_ports; i++) {
pf_enic->max_vf_id = RTE_MAX(pf_enic->max_vf_id,
eth_da.representor_ports[i]);
}
for (i = 0; i < eth_da.nb_representor_ports; i++) {
struct enic_vf_representor representor;
representor.vf_id = eth_da.representor_ports[i];
representor.switch_domain_id =
pmd_priv(pf_ethdev)->switch_domain_id;
representor.pf = pmd_priv(pf_ethdev);
snprintf(name, sizeof(name), "net_%s_representor_%d",
pci_dev->device.name, eth_da.representor_ports[i]);
retval = rte_eth_dev_create(&pci_dev->device, name,
sizeof(struct enic_vf_representor), NULL, NULL,
enic_vf_representor_init, &representor);
if (retval) {
ENICPMD_LOG(ERR, "failed to create enic vf representor %s",
name);
return retval;
}
}
return 0;
}
static int eth_enic_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_eth_dev *ethdev;
ENICPMD_FUNC_TRACE();
ethdev = rte_eth_dev_allocated(pci_dev->device.name);
if (!ethdev)
return -ENODEV;
if (ethdev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
return rte_eth_dev_destroy(ethdev, enic_vf_representor_uninit);
else
return rte_eth_dev_destroy(ethdev, eth_enic_dev_uninit);
}
static struct rte_pci_driver rte_enic_pmd = {
.id_table = pci_id_enic_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_enic_pci_probe,
.remove = eth_enic_pci_remove,
};
int dev_is_enic(struct rte_eth_dev *dev)
{
return dev->device->driver == &rte_enic_pmd.driver;
}
RTE_PMD_REGISTER_PCI(net_enic, rte_enic_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_enic, pci_id_enic_map);
RTE_PMD_REGISTER_KMOD_DEP(net_enic, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_enic,
ENIC_DEVARG_CQ64 "=0|1"
ENIC_DEVARG_DISABLE_OVERLAY "=0|1 "
ENIC_DEVARG_ENABLE_AVX2_RX "=0|1 "
ENIC_DEVARG_IG_VLAN_REWRITE "=trunk|untag|priority|pass");